www.wikidata.uk-ua.nina.az
U matematici algebra Li ce vektornij prostir g displaystyle mathfrak g razom iz operaciyeyu yaku nazivayut duzhkoyu Li antisimetrichne bilinijne vidobrazhennya en g g g displaystyle mathfrak g times mathfrak g rightarrow mathfrak g x y x y displaystyle x y mapsto x y sho zadovolnyaye totozhnist Yakobi a Vektornij prostir g displaystyle mathfrak g z ciyeyu operaciyeyu ne obov yazkovo ye asociativnoyu algebroyu tobto duzhka Li ne ye obov yazkovo asociativnoyu Algebri Li tisno pov yazani z grupami Li tobto grupami sho takozh ye gladkimi mnogovidami bud yakij grupi Li vidpovidaye algebra Li yaka ye yiyi dotichnim prostorom v odinici I navpaki dlya bud yakoyi skinchennovimirnoyi algebri Li nad dijsnim abo kompleksnim polem isnuye vidpovidna zv yazna grupa Li yedina z tochnistyu do skinchennih nakrittiv tretya teorema Li en Cya vidpovidnist en dozvolyaye zvesti doslidzhennya strukturi ta klasifikaciyu grup Li vidpovidno do doslidzhennya strukturi ta klasifikaciyi algebr Li U fizici grupi Li vinikayut yak grupi simetriyi fizichnih sistem a yih algebri Li mozhna rozglyadati yak infinitezimalni peretvorennya en simetriyi z okolu odinichnogo peretvorennya Zagalom algebri Li ta yih predstavlennya shiroko vikoristovuyutsya u fizici zokrema v kvantovij mehanici ta fizici elementarnih chastinok Elementarnim prikladom ye trivimirnij vektornij prostir g R 3 displaystyle mathfrak g mathbb R 3 z duzhkoyu viznachenoyu yak vektornij dobutok x y x y displaystyle x y x times y Vona ye antisimetrichnoyu oskilki x y y x displaystyle x times y y times x i zadovolnyaye totozhnist Yakobi x y z x y z y x z displaystyle x times y times z x times y times z y times x times z Ce algebra Li grupi Li obertan prostoru i kozhen vektor v R 3 displaystyle v in mathbb R 3 mozhe buti zobrazhenij yak infinitezimalnij povorot navkolo osi spivnapryamlenoyi z v displaystyle v zi shvidkistyu sho dorivnyuye dovzhini v displaystyle v Takozh bud yakij povorot komutuye sam iz soboyu tomu spravedliva vlastivist alternativnosti x x x x 0 displaystyle x x x times x 0 Znachennya duzhki Li dvoh povorotiv rivne nulyu todi j lishe todi koli taki povoroti komutuyut Tomu govoryat sho duzhka Li ye miroyu nekomutativnosti povorotiv Zmist 1 Istoriya 2 Oznachennya 2 1 Oznachennya algebri Li 2 2 Generatori ta rozmirnist 2 3 Pidalgebri ideali ta gomomorfizmi 2 4 Prikladi 2 5 Pryama suma ta napivpryamij dobutok 2 6 Diferenciyuvannya 2 7 Prikladi 2 8 Rozshepleni algebri Li 2 9 Bazis vektornogo prostoru 2 10 Oznachennya u ramkah teoretiko kategornogo pidhodu 3 Prikladi 3 1 Vektorni prostori 3 2 Asociativna algebra z komutativnoyu duzhkoyu 3 3 Specialni matrici 3 4 Matrichni algebri Li 3 5 Rozmirnist dva 3 6 Rozmirnist tri 3 7 Neskinchennovimirni algebri Li 4 Predstavlennya 4 1 Oznachennya 4 2 Priyednane predstavlennya 4 3 Zavdannya teoriyi predstavlen 4 4 Teoriya predstavlen u fizici 5 Strukturna teoriya ta klasifikaciya 5 1 Abelevi nilpotentni i rozv yazni algebri Li 5 2 Prosti i napivprosti algebri Li 5 3 Kriterij Kartana 5 4 Klasifikaciya 6 Zv yazok iz grupami Li 7 Dijsna forma i kompleksifikaciya 8 Algebra Li z dodatkovimi strukturami 9 Kilce Li 9 1 Prikladi 10 Div takozh 11 Primitki 12 Literatura 13 Dzherela 14 Zovnishni posilannyaIstoriya RedaguvatiAlgebri Li buli zaproponovani pri doslidzhenni koncepciyi infinitezimalnih peretvoren en Mariusom Sofusom Li v 70 h rokah XIX stolittya 1 i nezalezhno perevidkriti Vilgelmom Killingom en 2 u 1880 h rr Nazva algebra Li bula vvedena Germanom Vejlem u 1930 h rr do cogo vikoristovuvavsya termin infinitezimalnoyi grupi Oznachennya RedaguvatiOznachennya algebri Li Redaguvati Algebra Li ce vektornij prostir g displaystyle mathfrak g nbsp nad deyakim polem F displaystyle mathbb F nbsp razom iz binarnoyu operaciyeyu g g g displaystyle cdot cdot colon mathfrak g times mathfrak g rightarrow mathfrak g nbsp yaka nazivayetsya duzhkoyu Li sho zadovolnyaye nastupnim aksiomam b Bilinijnist a x b y z a x z b y z displaystyle ax by z a x z b y z nbsp z a x b y a z x b z y displaystyle z ax by a z x b z y nbsp dd dlya vsih skalyariv a displaystyle a nbsp b displaystyle b nbsp z polya F displaystyle mathbb F nbsp i vsih elementiv x displaystyle x nbsp y displaystyle y nbsp z displaystyle z nbsp z algebri g displaystyle mathfrak g nbsp Alternativnist en x x 0 displaystyle x x 0 nbsp dd dlya vsih x displaystyle x nbsp z algebri g displaystyle mathfrak g nbsp Totozhnist Yakobi x y z y z x z x y 0 displaystyle x y z y z x z x y 0 nbsp dd dlya vsih x displaystyle x nbsp y displaystyle y nbsp z displaystyle z nbsp z algebri g displaystyle mathfrak g nbsp Z vikoristannyam vlastivostej bilinijnosti ta alternativnosti duzhku Li x y x y displaystyle x y x y nbsp mozhna zapisati yak x y y x 0 displaystyle x y y x 0 nbsp dlya vsih elementiv x displaystyle x nbsp y displaystyle y nbsp z algebri g displaystyle mathfrak g nbsp Takim chinom z bilinijnosti ta alternativnosti viplivaye Antikomutativnist x y y x displaystyle x y y x nbsp dd dlya vsih elementiv x displaystyle x nbsp y displaystyle y nbsp z algebri g displaystyle mathfrak g nbsp Yaksho harakteristika polya ne dorivnyuye 2 to z antikomutativnosti viplivaye alternativnist oskilki x x x x displaystyle x x x x nbsp 3 Algebru Li yak pravilo poznachayut malimi gotichnimi literami frakturami napriklad g displaystyle mathfrak g nbsp h displaystyle mathfrak h nbsp b displaystyle mathfrak b nbsp n displaystyle mathfrak n nbsp Yaksho algebra Li pov yazana z grupoyu Li to algebra Li poznachayetsya malimi gotichnimi literami sho vidpovidayut poznachennyam grupi Li napriklad algebra Li grupi Li S U n displaystyle rm SU n nbsp poznachayetsya yak s u n displaystyle mathfrak su n nbsp Generatori ta rozmirnist Redaguvati Kazhut sho elementi algebri Li g displaystyle mathfrak g nbsp porodzhuyut en yiyi yaksho voni utvoryuyut najmenshu pidalgebru yaka mistit ci elementi i spivpadaye z samoyu algebroyu g displaystyle mathfrak g nbsp Rozmirnist algebri Li ce yiyi rozmirnist yak vektornogo prostoru nad polem F displaystyle mathbb F nbsp Kardinalne chislo minimalnoyi porodzhuvalnoyi mnozhini algebri Li zavzhdi mensha abo dorivnyuye yiyi rozmirnosti Divis klasifikaciyu nizkorozmirnih dijsnih algebr Li en dlya inshih prikladiv nizkorozmirnih algebr Li Pidalgebri ideali ta gomomorfizmi Redaguvati Duzhka Li ne obov yazkovo maye buti asociativnoyu tobto x y z displaystyle x y z nbsp mozhe i ne dorivnyuvati x y z displaystyle x y z nbsp Odnak duzhka Li gnuchka en Tim ne mensh znachna chastina terminologiyi asociativnih kilec i algebr zazvichaj vikoristovuyetsya v algebrah Li Pidalgebra Li pidprostir h g displaystyle mathfrak h subseteq mathfrak g nbsp zamknenij vidnosno duzhki Li Ideal i g displaystyle mathfrak i subseteq mathfrak g nbsp pidalgebra sho zadovolnyaye silnishu umovu 4 g i i displaystyle mathfrak g mathfrak i subseteq mathfrak i nbsp Gomomorfizm algebr Li ce linijne vidobrazhennya bazovih vektornih prostoriv sho uzgodzhene z vidpovidnimi duzhkami Li ϕ g g ϕ x y ϕ x ϕ y displaystyle phi colon mathfrak g to mathfrak g quad phi x y phi x phi y nbsp dlya vsih x y g displaystyle x y in mathfrak g nbsp U vipadku asociativnih kilec yadra gomomorfizmiv ye idealami Takozh dlya zadanoyi algebri Li g displaystyle mathfrak g nbsp ta idealu i displaystyle mathfrak i nbsp v nij mozhna pobuduvati faktor algebru g i displaystyle mathfrak g mathfrak i nbsp Oskilki yadra gomomorfizmiv ye idealami to dlya algebr Li maye misce persha teorema pro izomorfizm Duzhka Li ye riznovidom infinitezimalnogo komutatora vidpovidnoyi grupi Li a tomu dva elementi x y g displaystyle x y in mathfrak g nbsp nazivayut komutuyuchimi yaksho yih duzhka Li dorivnyuye 0 x y 0 displaystyle x y 0 nbsp Centralizator pidmnozhini S g displaystyle S subset mathfrak g nbsp ce mnozhina komutuyuchih elementiv z S displaystyle S nbsp tobto z g S x g x s 0 s S displaystyle mathfrak z mathfrak g S x in mathfrak g x s 0 forall s in S nbsp Centralizator z g displaystyle mathfrak z mathfrak g nbsp ye centrom algebri g displaystyle mathfrak g nbsp Analogichno dlya pidprostoru S displaystyle S nbsp normalizatorom mnozhini S displaystyle S nbsp ye n g S x g x s S s S displaystyle mathfrak n mathfrak g S x in mathfrak g x s in S forall s in S nbsp 5 Ekvivalentno yaksho S displaystyle S nbsp ye pidalgebroyu Li to n g S displaystyle mathfrak n mathfrak g S nbsp ce najbilsha pidalgebra taka sho S displaystyle S nbsp ye idealom normalizatora n g S displaystyle mathfrak n mathfrak g S nbsp Prikladi Redaguvati Rozglyanemo vektornij prostir matric rozmiru 2 2 displaystyle 2 times 2 nbsp z elementami z polya F displaystyle mathbb F nbsp g l 2 F displaystyle mathfrak gl 2 mathbb F nbsp Komutatorom dvoh matric A B g l 2 F displaystyle A B in mathfrak gl 2 mathbb F nbsp budemo nazivati matricyu A B A B B A displaystyle A B A cdot B B cdot A nbsp de displaystyle cdot nbsp poznachaye zvichajnij dobutok matric Prostir g l 2 F displaystyle mathfrak gl 2 mathbb F nbsp razom iz komutatorom utvoryuye algebru Li Nehaj d 2 displaystyle mathfrak d 2 nbsp ye pidmnozhinoyu g l 2 F displaystyle mathfrak gl 2 mathbb F nbsp yaka skladayetsya z diagonalnih matric Cya mnozhina sama po sobi ye vektornim pidprostorom prostoru g l 2 F displaystyle mathfrak gl 2 mathbb F nbsp i vona zamknena vidnosno komutatora a znachit ye pidalgebroyu Li g l 2 F displaystyle mathfrak gl 2 mathbb F nbsp Komutator dvoh elementiv g g l 2 displaystyle g in mathfrak gl 2 nbsp i d d 2 displaystyle d in mathfrak d 2 nbsp maye viglyad a b c d x 0 0 y a x b y c x d y a x b x c y d y 0 b y x c x y 0 displaystyle begin aligned left begin bmatrix a amp b c amp d end bmatrix begin bmatrix x amp 0 0 amp y end bmatrix right begin bmatrix ax amp by cx amp dy end bmatrix begin bmatrix ax amp bx cy amp dy end bmatrix begin bmatrix 0 amp b y x c x y amp 0 end bmatrix end aligned nbsp Otzhe d 2 displaystyle mathfrak d 2 nbsp pidalgebra ale ne ideal Po suti kozhnij odnovimirnij linijnij pidprostir algebri Li maye indukovanu strukturu abelevoyi algebri Li yaka u zagalnomu vipadku ne ye idealom Dlya bud yakoyi prostoyi algebri Li usi yiyi abelevi pidalgebri Li nikoli ne ye idealami Pryama suma ta napivpryamij dobutok Redaguvati Dlya dvoh algebr Li g displaystyle mathfrak g nbsp i g displaystyle mathfrak g nbsp yih pryama suma vektornij prostir g g displaystyle mathfrak g oplus mathfrak g nbsp sho skladayetsya z usih par x x displaystyle x x nbsp x g displaystyle x in mathfrak g nbsp x g displaystyle x in mathfrak g nbsp z operaciyeyu x x y y x y x y displaystyle x x y y x y x y nbsp takoyu sho kopiyi g displaystyle mathfrak g nbsp g displaystyle mathfrak g nbsp komutuyut odna z odnoyu x 0 0 x 0 displaystyle x 0 0 x 0 nbsp Nehaj g displaystyle mathfrak g nbsp algebra Li a i displaystyle mathfrak i nbsp ideal algebri Li g displaystyle mathfrak g nbsp Yaksho kanonichne vidobrazhennya g g i displaystyle mathfrak g to mathfrak g mathfrak i nbsp rozsheplyuyetsya tobto dopuskaye pereriz to algebra g displaystyle mathfrak g nbsp nazivayetsya napivpryamim dobutkom idealu i displaystyle mathfrak i nbsp i jogo dopovnennya yake izomorfne faktor algebri g i displaystyle mathfrak g mathfrak i nbsp zapisuyetsya yak g f i displaystyle mathfrak g mathfrak f ltimes mathfrak i nbsp de f g i displaystyle mathfrak f simeq mathfrak g mathfrak i nbsp Divis takozh paragraf Napivpryama suma algebr Li nizhche Zgidno teoremi Levi en skinchennovimirna algebra Li ye napivpryamim dobutkom yiyi radikala i dopovnyalnoyi pidalgebri pidlgebra Levi en Diferenciyuvannya Redaguvati Diferenciyuvannyam v algebri Li g displaystyle mathfrak g nbsp abo v bud yakij neasociativnij algebri en nazivayetsya linijne vidobrazhennya d g g displaystyle delta colon mathfrak g rightarrow mathfrak g nbsp sho zadovolnyaye pravilu Lejbnica en tobto d x y d x y x d y displaystyle delta x y delta x y x delta y nbsp dlya vsih x y g displaystyle x y in mathfrak g nbsp Vnutrishnim diferenciyuvannyam sho pov yazane z bud yakim x g displaystyle x in mathfrak g nbsp ye priyednane vidobrazhennya a d x displaystyle rm ad x nbsp yake viznachayetsya nastupnim chinom a d x y x y displaystyle rm ad x y x y nbsp Ce diferenciyuvannya naslidok totozhnosti Yakobi Zovnishni diferenciyuvannya ce diferenciyuvannya yaki ne mozhna otrimati z priyednanogo predstavlennya algebri Li Yaksho algebra g displaystyle mathfrak g nbsp napivprosta to vsi diferenciyuvannya ye vnutrishnimi Diferenciyuvannya utvoryuyut vektornij prostir Der g displaystyle operatorname Der mathfrak g nbsp yakij ye pidalgebroyu algebri g l n displaystyle mathfrak gl n nbsp de duzhka Li komutator Vnutrishni diferenciyuvannya utvoryuyut pidalgebru algebri Der g displaystyle operatorname Der mathfrak g nbsp Prikladi Redaguvati Napriklad na zadanomu ideali algebri Li i g displaystyle mathfrak i subset mathfrak g nbsp priyednane predstavlennya a d x displaystyle rm ad x nbsp algebri g displaystyle mathfrak g nbsp de x g i displaystyle x in mathfrak g setminus mathfrak i nbsp diye yak zovnishni diferenciyuvannya na ideali i displaystyle mathfrak i nbsp oskilki x i i displaystyle x i in mathfrak i nbsp dlya bud yakogo x g displaystyle x in mathfrak g nbsp i i i displaystyle i in mathfrak i nbsp Idealom algebri Li b n displaystyle mathfrak b n nbsp verhnotrikutnih matric v g l n displaystyle mathfrak gl n nbsp ye algebra n n displaystyle mathfrak n n nbsp strogo verhnotrikutnih matric de nenulovi elementi znahodyatsya lishe vishe diagonali matrici Oskilki komutator dovilnih elementiv z b 3 displaystyle mathfrak b 3 nbsp i n 3 displaystyle mathfrak n 3 nbsp daye a b c 0 d e 0 0 f 0 x y 0 0 z 0 0 0 0 a x a y b z 0 0 d z 0 0 0 0 d x e x y f 0 0 f z 0 0 0 0 a d x a f y e x b z 0 0 d f z 0 0 0 displaystyle begin aligned left begin bmatrix a amp b amp c 0 amp d amp e 0 amp 0 amp f end bmatrix begin bmatrix 0 amp x amp y 0 amp 0 amp z 0 amp 0 amp 0 end bmatrix right begin bmatrix 0 amp ax amp ay bz 0 amp 0 amp dz 0 amp 0 amp 0 end bmatrix begin bmatrix 0 amp dx amp ex yf 0 amp 0 amp fz 0 amp 0 amp 0 end bmatrix begin bmatrix 0 amp a d x amp a f y ex bz 0 amp 0 amp d f z 0 amp 0 amp 0 end bmatrix end aligned nbsp to zvidsi viplivaye sho isnuyut vnutrishni diferenciyuvannya algebri b 3 displaystyle mathfrak b 3 nbsp yaki ye zovnishnimi diferenciyuvannyami algebri n 3 displaystyle mathfrak n 3 nbsp Rozshepleni algebri Li Redaguvati Nehaj V displaystyle V nbsp skinchennovimirnij vektornij prostir nad polem F displaystyle mathbb F nbsp g l V displaystyle mathfrak gl V nbsp algebra Li linijnih peretvoren g g l V displaystyle mathfrak g subseteq mathfrak gl V nbsp pidalgebra Li Todi algebra Li g displaystyle mathfrak g nbsp nazivayetsya rozsheplenoyu yaksho koreni harakteristichnih polinomiv usih linijnih peretvoren v algebri g displaystyle mathfrak g nbsp nalezhat bazovomu polyu F displaystyle mathbb F nbsp 6 U zagalnomu vipadku skinchennovimirna algebra Li g displaystyle mathfrak g nbsp nazivayetsya rozsheplenoyu yaksho vona maye pidalgebru Kartana obraz yakoyi pri priyednanomu predstavlenni ad g g l g displaystyle operatorname ad colon mathfrak g to mathfrak gl mathfrak g nbsp ye rozsheplenoyu algebroyu Li Rozsheplena dijsna forma en kompleksnoyi napivprostoyi algebri Li div Dijsna forma i kompleksifikaciya nizhche ye prikladom rozsheplenoyi dijsnoyi algebri Li Divis takozh stattyu pro rozshepleni algebri Li en dlya dodatkovoyi informaciyi Bazis vektornogo prostoru Redaguvati Dlya praktichnih obchislen pov yazanih iz algebrami Li chasto zruchno vibirati yavnij bazis vektornogo prostoru Zagalna konstrukciya dlya cogo bazisu shematichno opisana v statti pro strukturni stali en Oznachennya u ramkah teoretiko kategornogo pidhodu Redaguvati Navedenih vishe oznachen dostatno dlya zagalnoprijnyatogo rozuminnya algebr Li Ale rozglyad u formalizmi teoriyi kategorij dozvolyaye detalnishe dosliditi vlastivosti algebr Li V ramkah cogo pidhodu algebra Li viznachayetsya v terminah linijnih vidobrazhen tobto morfizmiv kategoriyi vektornih prostoriv en bez rozglyadu okremih elementiv U comu paragrafi vvazhayemo sho pole nad yakim viznachayetsya algebra maye harakteristiku ne rivnu dvom Dlya teoretiko kategorialnogo oznachennya algebr Li neobhidni dva zavuzleni izomorfizmi Yaksho A displaystyle A nbsp ce vektornij prostir to izomorfizm perestanovki t A A A A displaystyle tau colon A otimes A to A otimes A nbsp viznachayetsya yak t x y y x displaystyle tau x otimes y y otimes x nbsp Ciklichno perestavne zavuzlene vidobrazhennya s A A A A A A displaystyle sigma colon A otimes A otimes A to A otimes A otimes A nbsp viznachayetsya yak s i d t t i d displaystyle sigma rm id otimes tau circ tau otimes rm id nbsp de i d displaystyle rm id nbsp totozhnij morfizm Ekvivalentno s displaystyle sigma nbsp viznachayetsya yak s x y z y z x displaystyle sigma x otimes y otimes z y otimes z otimes x nbsp Za dopomogoyu cogo poznachennya algebra Li mozhe buti viznachena yak ob yekt A displaystyle A nbsp v kategoriyi vektornih prostoriv razom iz morfizmom A A A displaystyle cdot cdot colon A otimes A rightarrow A nbsp sho zadovolnyaye dva spivvidnoshennya dlya morfizmu i d t 0 displaystyle cdot cdot circ rm id tau 0 nbsp i i d i d s s 2 0 displaystyle cdot cdot circ cdot cdot otimes rm id circ rm id sigma sigma 2 0 nbsp Prikladi RedaguvatiVektorni prostori Redaguvati Bud yakij vektornij prostir V displaystyle V nbsp z nulovoyu duzhkoyu Li ye algebroyu Li Taki algebri Li nazivayutsya abelevimi div nizhche Bud yaka odnovimirna algebra Li nad polem ye abelevoyu z oglyadu na antisimetrichnist duzhki Li Asociativna algebra z komutativnoyu duzhkoyu Redaguvati Na asociativnij algebri A displaystyle A nbsp nad polem F displaystyle mathbb F nbsp z mnozhennyam x y x y displaystyle x y mapsto xy nbsp duzhka Li mozhe buti viznachena za dopomogoyu komutatora x y x y y x displaystyle x y xy yx nbsp Z ciyeyu duzhkoyu algebra A displaystyle A nbsp ye algebroyu Li 7 Asociativna algebra A displaystyle A nbsp nazivayetsya obgortuyuchoyu algebroyu algebri Li A displaystyle A cdot cdot nbsp Bud yaku algebru Li mozhna vklasti v algebru Li pobudovanu na asociativnij algebri divis pro universalnu obgortuyuchu algebru Asociativna algebra endomorfizmiv en F displaystyle mathbb F nbsp vektornogo prostoru V displaystyle V nbsp z navedenoyu vishe duzhkoyu Li poznachayetsya yak g l V displaystyle mathfrak gl V nbsp Dlya skinchennovimirnogo vektornogo prostoru V F n displaystyle V mathbb F n nbsp poperednij priklad ye same algebroyu Li n n displaystyle n times n nbsp matric yaku poznachayut yak g l n F displaystyle mathfrak gl n mathbb F nbsp abo g l n F displaystyle mathfrak gl n mathbb F nbsp 8 z duzhkoyu X Y X Y Y X displaystyle X Y XY YX nbsp de X Y displaystyle XY nbsp dobutok matric X displaystyle X nbsp ta Y displaystyle Y nbsp Ce algebra Li zagalnoyi linijnoyi grupi sho skladayetsya iz nevirodzhenih matric Specialni matrici Redaguvati Dvoma vazhlivimi pidalgebrami algebri g l n F displaystyle mathfrak gl n mathbb F nbsp ye Matrici z nulovim slidom sho utvoryuyut specialnu linijnu algebru Li en s l n F displaystyle mathfrak sl n F nbsp algebra specialnoyi linijnoyi grupi S L n F displaystyle rm SL n mathbb F nbsp 9 Kosoermitovi matrici utvoryuyut unitarnu algebru Li u n displaystyle mathfrak u n nbsp algebra Li unitarnoyi grupi U n displaystyle U n nbsp Matrichni algebri Li Redaguvati Kompleksna matrichna grupa grupa Li yaka porodzhena matricyami G G L n C displaystyle G subset rm GL n mathbb C nbsp de mnozhennya v grupi G displaystyle G nbsp ye mnozhennyam matric Vidpovidna algebra Li g displaystyle mathfrak g nbsp ce prostir matric yaki ye dotichnimi vektorami do grupi G displaystyle G nbsp u linijnomu prostori G L n C displaystyle rm GL n mathbb C nbsp Vona utvorena pohidnimi vid gladkih krivih v grupi G displaystyle G nbsp v odinichnomu elementi g X c 0 M n C displaystyle mathfrak g X c 0 in M n mathbb C nbsp gladka kriva c R G c 0 I displaystyle c colon mathbb R to G c 0 I nbsp Duzhka Li algebri g displaystyle mathfrak g nbsp viznachayetsya yak komutator matric X Y X Y Y X displaystyle X Y XY YX nbsp Dlya zadanoyi algebri Li mozhna vidnoviti vidpovidnu grupu Li yak obraz matrichnoyi eksponenti exp G L n C M n C displaystyle exp colon rm GL n mathbb C to M n mathbb C nbsp yaka viznachayetsya yak exp X I X 1 2 X 2 displaystyle exp X I X tfrac 1 2 X 2 cdots nbsp sho zbigayetsya dlya kozhnoyi matrici X displaystyle X nbsp tobto G exp g displaystyle G exp mathfrak g nbsp Nizhche navedeno prikladi algebr Li matrichnih grup Li 10 Specialna linijna grupa S L n C displaystyle rm SL n mathbb C nbsp sho skladayetsya z usih n n displaystyle n times n nbsp matric z viznachnikom yakij dorivnyuye 1 Yiyi algebra Li s l n C displaystyle mathfrak sl n mathbb C nbsp skladayetsya z usih n n displaystyle n times n nbsp matric z kompleksnimi elementami i slidom sho rivnij 0 Analogichno mozhna viznachiti vidpovidnu dijsnu grupu Li S L n R displaystyle rm SL n mathbb R nbsp i yiyi algebru Li s l n R displaystyle mathfrak sl n mathbb R nbsp Unitarna grupa U n displaystyle rm U n nbsp skladayetsya z n n displaystyle n times n nbsp unitarnih matric sho zadovolnyaye umovu U U 1 displaystyle U U 1 nbsp Yiyi algebra Li u n displaystyle mathfrak u n nbsp skladayetsya z kosoermitovih matric X X displaystyle X X nbsp Specialna ortogonalna grupa S O n displaystyle rm SO n nbsp utvorena dijsnimi ortogonalnimi matricyami z viznachnikom yakij dorivnyuye 1 Yiyi algebra Li s o n displaystyle mathfrak so n nbsp skladayetsya z dijsnih kososimetrichnih matric X T X displaystyle X rm T X nbsp Povna ortogonalna grupa O n displaystyle rm O n nbsp bez umovi rivnosti viznachnika 1 skladayetsya z grupi S O n displaystyle rm SO n nbsp i okremoyi zv yaznoyi komponenti tomu vona maye tu samu algebru Li yak i grupa S O n displaystyle rm SO n nbsp Div takozh infinitezimalni obertannya z kososimetrichnimi matricyami Analogichno mozhna viznachiti versiyi ciyeyi grupi i algebri nad kompleksnim polem dozvolyayuchi matrichnim elementam buti kompleksnimi chislami Rozmirnist dva Redaguvati Nad bud yakim polem F displaystyle mathbb F nbsp isnuye z tochnistyu do izomorfizmu yedina dvovimirna neabeleva algebra Li Dlya generatoriv x displaystyle x nbsp y displaystyle y nbsp yih duzhka Li viznachayetsya yak x y y displaystyle x y y nbsp Vona porodzhuye afinnu grupu rozmirnosti odin en Cyu grupu mozhna realizuvati za dopomogoyu matric x 1 0 0 0 y 0 1 0 0 displaystyle x left begin matrix 1 amp 0 0 amp 0 end matrix right quad y left begin matrix 0 amp 1 0 amp 0 end matrix right nbsp Oskilki 1 c 0 0 n 1 1 c 0 0 displaystyle left begin matrix 1 amp c 0 amp 0 end matrix right n 1 left begin matrix 1 amp c 0 amp 0 end matrix right nbsp dlya bud yakogo naturalnogo chisla n displaystyle n nbsp i bud yakogo chisla c displaystyle c nbsp to otrimani elementi grupi Li ye verhnotrikutnimi 2 2 displaystyle 2 times 2 nbsp matricyami z odiniceyu vnizu diagonali exp a x b y e a b a e a 1 0 1 1 e a 1 a a x b y displaystyle exp a cdot x b cdot y left begin matrix e a amp tfrac b a e a 1 0 amp 1 end matrix right 1 tfrac e a 1 a left a cdot x b cdot y right nbsp Rozmirnist tri Redaguvati Algebra Gejzenberga en h 3 R displaystyle mathfrak h 3 mathbb R nbsp ye trivimirnoyu algebroyu Li porodzhenoyu elementami x displaystyle x nbsp y displaystyle y nbsp i z displaystyle z nbsp z duzhkami Li x y z x z 0 y z 0 displaystyle x y z quad x z 0 quad y z 0 nbsp Zazvichaj vona realizuyetsya yak prostir 3 3 displaystyle 3 times 3 nbsp strogo verhnotrikutnih matric z bazisom x 0 1 0 0 0 0 0 0 0 y 0 0 0 0 0 1 0 0 0 z 0 0 1 0 0 0 0 0 0 displaystyle x left begin matrix 0 amp 1 amp 0 0 amp 0 amp 0 0 amp 0 amp 0 end matrix right quad y left begin matrix 0 amp 0 amp 0 0 amp 0 amp 1 0 amp 0 amp 0 end matrix right quad z left begin matrix 0 amp 0 amp 1 0 amp 0 amp 0 0 amp 0 amp 0 end matrix right nbsp Bud yakij element grupi Gejzenberga en maye predstavlennya u viglyadi dobutku grupi generatoriv tobto eksponent matric vidpovidnih generatoriv algebri Li 1 a c 0 1 b 0 0 1 e b y e c z e a x displaystyle left begin matrix 1 amp a amp c 0 amp 1 amp b 0 amp 0 amp 1 end matrix right e by e cz e ax nbsp Algebra Li s o 3 displaystyle mathfrak so 3 nbsp grupi S O 3 displaystyle rm SO 3 nbsp linijna obolonka sho porodzhena troma matricyamiF 1 0 0 0 0 0 1 0 1 0 F 2 0 0 1 0 0 0 1 0 0 F 3 0 1 0 1 0 0 0 0 0 displaystyle F 1 left begin matrix 0 amp 0 amp 0 0 amp 0 amp 1 0 amp 1 amp 0 end matrix right quad F 2 left begin matrix 0 amp 0 amp 1 0 amp 0 amp 0 1 amp 0 amp 0 end matrix right quad F 3 left begin matrix 0 amp 1 amp 0 1 amp 0 amp 0 0 amp 0 amp 0 end matrix right nbsp Komutacijni vidnoshennya dlya cih generatoriv nastupni F 1 F 2 F 3 F 2 F 3 F 1 F 3 F 1 F 2 displaystyle F 1 F 2 F 3 quad F 2 F 3 F 1 quad F 3 F 1 F 2 nbsp Trivimirnij evklidiv prostir R 3 displaystyle mathbb R 3 nbsp z duzhkoyu Li viznachayetsya vektornim dobutkom vektoriv sho maye ti sami komutacijni vidnoshennya sho j vishe Takim chinom vin izomorfnij algebri s o 3 displaystyle mathfrak so 3 nbsp Cya algebra Li unitarno ekvivalentna zvichajnim operatoram spinovih komponentiv kutovogo momentu dlya chastinok zi spinom 1 u kvantovij mehanici Neskinchennovimirni algebri Li Redaguvati U diferencialnij topologiyi vinikaye vazhlivij klas neskinchennovimirnih dijsnih algebr Li Prostir gladkih vektornih poliv na diferencijovnomu mnogovidi M displaystyle M nbsp utvoryuye algebru Li de duzhka Li viznachayetsya yak komutator vektornih poliv Odin zi sposobiv predstavlennya duzhki Li ye vikoristannya pohidnih Li yakij ototozhnyuye vektorne pole X displaystyle X nbsp z diferencialnim operatorom pershogo poryadku L X displaystyle L X nbsp sho diye na gladki funkciyi tobto L X f displaystyle L X f nbsp pohidna vid funkciyi f displaystyle f nbsp za napryamkom X displaystyle X nbsp Duzhka Li X Y displaystyle X Y nbsp dvoh vektornih poliv ce vektorne pole viznachene cherez jogo diyu na funkciyi za formuloyu L X Y f L X L Y f L Y L X f displaystyle L X Y f L X L Y f L Y L X f nbsp Algebri Kaca Mudi ce velikij klas neskinchennovimirnih algebr Li struktura yakih duzhe shozha na navedeni vishe skinchennovimirni vipadki Algebra Moyalya ce neskinchennovimirna algebra Li sho vklyuchaye usi klasichni algebri Li en yak pidalgebri Algebra Virasora en maye pershochergove znachennya v teoriyi strun Predstavlennya RedaguvatiOsnovna stattya Predstavlennya algebri Li Oznachennya Redaguvati Dlya zadanogo vektornogo prostoru V displaystyle V nbsp cherez g l V displaystyle mathfrak gl V nbsp poznachimo algebru Li sho skladayetsya z usih linijnih endomorfizmiv prostoru V displaystyle V nbsp z duzhkoyu Li viznachenoyu yak X Y X Y Y X displaystyle X Y XY YX nbsp Predstavlennya algebri Li g displaystyle mathfrak g nbsp na vektornomu prostori V displaystyle V nbsp ce gomomorfizm algebri Li p g g l V displaystyle pi colon mathfrak g to mathfrak gl V nbsp Predstavlennya nazivayetsya tochnim yaksho jogo yadro ye nulovim Vidpovidno do teoremi Ado en 11 bud yaka skinchennovimirna algebra Li maye tochne predstavlennya na skinchennovimirnomu vektornomu prostori Priyednane predstavlennya Redaguvati Dlya bud yakoyi algebri Li g displaystyle mathfrak g nbsp mozhna viznachiti predstavlennya a d g g l g displaystyle rm ad colon mathfrak g to mathfrak gl mathfrak g nbsp sho viznachayetsya yak a d x y x y displaystyle rm ad x y x y nbsp Ce predstavlennya na vektornomu prostori g displaystyle mathfrak g nbsp nazivayetsya priyednanim predstavlennyam Zavdannya teoriyi predstavlen Redaguvati Odnim iz vazhlivih aspektiv doslidzhennya algebr Li osoblivo dlya napivprostih algebr Li ye vivchennya yih predstavlen Dijsno bilshist knig predstavlenih u spisku literaturi nizhche prisvyachuyut znachnu chastinu svoyih storinok teoriyi predstavlen Hocha teorema Ado ye vazhlivim rezultatom ale osnovne zavdannya teoriyi predstavlen ne polyagaye v tomu shob otrimati tochne predstavlennya zadanoyi algebri Li g displaystyle mathfrak g nbsp Dijsno dlya napivprostoyi algebri Li priyednane predstavlennya vzhe ye tochnim Tomu skorishe zavdannya polyagaye v tomu shob zrozumiti vsi mozhlivi predstavlennya algebri g displaystyle mathfrak g nbsp z tochnistyu do prirodnogo ponyattya ekvivalentnosti Zgidno teoremi Vejlya en 12 bud yake skinchennovimirne predstavlennya napivprostoyi algebri nad polem harakteristiki 0 ye pryamoyu sumoyu nezvidnih predstavlen tobto predstavlen yaki ne mayut netrivialnih invariantnih pidprostoriv U svoyu chergu nezvidni predstavlennya klasifikuyutsya za dopomogoyu teoremi pro najvishu vagu Teoriya predstavlen u fizici Redaguvati Teoriya predstavlen algebr Li vidigraye vazhlivu rol u riznih galuzyah teoretichnoyi fiziki de rozglyadayutsya operatori na prostori staniv yaki zadovolnyayut pevnim prirodnim komutacijnim spivvidnoshennyam Ci komutacijni spivvidnoshennya zazvichaj viznachayutsya simetriyeyu zadach zokrema voni ye spivvidnoshennyami algebri Li vidpovidnoyi grupi simetriyi Prikladom mozhut buti operatori kutovogo momentu komutacijni spivvidnoshennya yakih vidpovidayut algebri Li s o 3 displaystyle mathfrak so 3 nbsp grupi obertan S O 3 displaystyle rm SO 3 nbsp Yak pravilo prostir staniv duzhe dalekij vid togo shob buti nezvidnim vidnosno vidpovidnih operatoriv ale mozhna sprobuvati rozklasti jogo na nezvidni chastini Dlya cogo neobhidno znati nezvidni predstavlennya zadanoyi algebri Li Pri doslidzhenni kvantovogo atoma vodnyu napriklad pidruchniki kvantovoyi mehaniki dayut ne nazivayuchi ce tak klasifikaciyu nezvidnih predstavlen algebri Li s o 3 displaystyle mathfrak so 3 nbsp Strukturna teoriya ta klasifikaciya RedaguvatiAlgebri Li mozhna pevnoyu miroyu klasifikuvati Zokrema taka klasifikaciya vikoristovuyetsya pri klasifikaciyi grup Li Abelevi nilpotentni i rozv yazni algebri Li Redaguvati Analogichno abelevim nilpotentnim i rozv yaznim grupam viznachenim u terminah pohidnih pidgrup mozhna viznachiti abelevi nilpotentni ta rozv yazni algebri Li Algebra Li g displaystyle mathfrak g nbsp nazivayetsya abelevoyu yaksho duzhka Li nulova tobto x y 0 displaystyle x y 0 nbsp dlya vsih x displaystyle x nbsp i y displaystyle y nbsp z algebri g displaystyle mathfrak g nbsp Abelevi algebri Li vidpovidayut komutativnim abo abelevim zv yaznim grupam Li takim yak vektorni prostori K n displaystyle mathbb K n nbsp abo tori T n displaystyle mathbb T n nbsp i vsi prostori viglyadu k n displaystyle mathfrak k n nbsp tobto n displaystyle n nbsp vimirni vektorni prostori z trivialnoyu duzhkoyu Li Bilsh zagalnij klas algebr Li viznachayetsya zanulennyam usih komutatoriv zadanoyi dovzhini Algebra Li g displaystyle mathfrak g nbsp nazivayetsya nilpotentnoyu yaksho nizhnij centralnij ryad en g gt g g gt g g g gt g g g g gt displaystyle mathfrak g gt mathfrak g mathfrak g gt mathfrak g mathfrak g mathfrak g gt mathfrak g mathfrak g mathfrak g mathfrak g gt cdots nbsp zreshtoyu staye nulovim Za teoremoyu Engelya algebra Li nilpotentna todi j lishe todi koli dlya kozhnogo u displaystyle u nbsp z algebri g displaystyle mathfrak g nbsp priyednanij endomorfizm a d u g g a d u v u v displaystyle rm ad u colon mathfrak g to mathfrak g quad rm ad u v u v nbsp ye nilpotentnim U bilsh zagalnomu viglyadi algebra Li g displaystyle mathfrak g nbsp nazivayetsya rozv yaznoyu yaksho pohidnij ryad g gt g g gt g g g g gt g g g g g g g g gt displaystyle mathfrak g gt mathfrak g mathfrak g gt mathfrak g mathfrak g mathfrak g mathfrak g gt mathfrak g mathfrak g mathfrak g mathfrak g mathfrak g mathfrak g mathfrak g mathfrak g gt cdots nbsp zreshtoyu staye nulovim Bud yaka skinchennovimirna algebra Li maye yedinij maksimalnij rozv yaznij ideal yakij nazivayetsya yiyi radikalom en Z oglyadu na vidpovidnist mizh grupami i algebrami Li nilpotentni vidpovidno rozv yazni zv yazni grupi Li vidpovidayut nilpotentnim vidpovidno rozv yaznim algebram Li Prosti i napivprosti algebri Li Redaguvati Osnovna stattya Napivprosta algebra LiAlgebra Li nazivayetsya prostoyu en yaksho vona ne maye netrivialnih idealiv i ne ye abelevoyu Z cogo viplivaye sho odnovimirna obov yazkovo abeleva algebra Li za oznachennyam ne ye prostoyu navit yaksho vona ne maye netrivialnih idealiv Algebra Li g displaystyle mathfrak g nbsp nazivayetsya napivprostoyu yaksho vona izomorfna pryamij sumi prostih algebr Isnuye dekilka ekvivalentnih harakteristik napivprostih algebr taki yak vidsutnist nenulovih rozv yaznih idealiv Ponyattya napivprostoti dlya algebr Li tisno pov yazane z povnoyu zvedenistyu napivprostotoyu yih predstavlen Yaksho osnovne pole F displaystyle mathbb F nbsp maye nulovu harakteristiku to bud yake skinchennovimirne predstavlennya napivprostoyi algebri Li ye napivprostim en tobto pryamoyu sumoyu nezvedenih predstavlen U zagalnomu vipadku algebru Li nazivayut reduktivnoyu yaksho priyednane predstavlennya ye napivprostim Takim chinom bud yaka napivprosta algebra Li ye reduktivnoyu Kriterij Kartana Redaguvati Kriterij Kartana en nadaye umovi dlya togo shob algebra Li bula nilpotentnoyu rozv yaznoyu abo napivprostoyu Vin bazuyetsya na ponyatti formi Killinga tobto simetrichnij bilinijnij formi na algebri g displaystyle mathfrak g nbsp yaka viznachayetsya za formuloyu K u v t r a d u a d v displaystyle K u v rm tr rm ad u rm ad v nbsp de t r displaystyle rm tr nbsp slid linijnogo operatora Algebra Li g displaystyle mathfrak g nbsp ye napivprostoyu todi j lishe todi koli yiyi forma Killinga ye nevirodzhenoyu en Algebra Li g displaystyle mathfrak g nbsp rozv yazna todi j lishe todi koli K g g g 0 displaystyle K mathfrak g mathfrak g mathfrak g 0 nbsp Klasifikaciya Redaguvati Vidpovidno do rozkladu Levi en dovilnu algebru Li mozhna predstaviti majzhe kanonichnim sposobom yak napivpryamu sumu yiyi rozv yaznogo radikala ta napivprostoyi algebri Li Takij rozklad isnuye dlya skinchennovimirnoyi algebri Li nad polem harakteristiki 0 13 Bilsh togo napivprosti algebri Li nad algebrayichno zamknenim polem povnistyu proklasifikovano z vikoristannyam yih korenevih sistem Zv yazok iz grupami Li RedaguvatiOsnovna stattya Vidpovidnist mizh grupami Li ta algebrami Li en nbsp Dotichnij prostir do sferi v tochci x displaystyle x nbsp Yaksho x displaystyle x nbsp odinichnij element todi dotichnij prostir takozh ye algebroyu Li Hocha algebri Li chasto vivchayutsya sami po sobi istorichno voni vinikli yak instrument doslidzhennya grup Li Nizhche korotko rozglyanemo zv yazok mizh grupami Li ta algebrami Li Bud yaka grupa Li porodzhuye kanonichno viznachenu algebru Li tochnishe dotichnij prostir v odinici I navpaki dlya bud yakoyi skinchennovimirnoyi algebri Li g displaystyle mathfrak g nbsp isnuye vidpovidna zv yazna grupa Li G displaystyle G nbsp z algebroyu Li g displaystyle mathfrak g nbsp Cej zv yazok garantuye tretya teorema Li en div formulu Bejkera Kempbella Hausdorfa en Cya grupa Li viznachayetsya neodnoznachno odnak bud yaki dvi grupi Li z odnakovoyu algebroyu Li ye lokalno izomorfnimi i zokrema mayut te zh same universalne nakrittya Napriklad specialna ortogonalna grupa SO 3 i specialna unitarna grupa SU 2 porodzhuyut tu samu algebru Li yaka izomorfna evklidovomu prostoru R 3 displaystyle mathbb R 3 nbsp z vektornim dobutkom ale grupa S U 2 displaystyle rm SU 2 nbsp ye odnozv yaznim podvijnim nakrittyam dlya S O 3 displaystyle rm SO 3 nbsp Odnak yaksho rozglyadati odnozv yazni grupi Li to otrimayemo vzayemno odnoznachnu vidpovidnist dlya bud yakoyi skinchennovimirnoyi dijsnoyi algebri Li g displaystyle mathfrak g nbsp isnuye yedina odnozv yazna grupa Li G displaystyle G nbsp z algebroyu Li g displaystyle mathfrak g nbsp Vidpovidnist mizh algebrami Li ta grupami Li vikoristovuyetsya zokrema pri klasifikaciyi grup Li en ta pov yazanimi zadachami teoriyi predstavlen grup Li Za bud yakim predstavlennyam algebri Li odnoznachno buduyetsya vidpovidne predstavlennya odnozv yaznoyi grupi Li i navpaki bud yake predstavlennya grupi Li indukuye predstavlennya algebri Li ciyeyi grupi cya vidpovidnist vzayemno odnoznachna Otzhe znannya predstavlen algebri Li rozv yazuye pitannya pro predstavlennya grupi Shodo klasifikaciyi mozhna pokazati sho bud yaka zv yazana grupa Li iz zadanoyu algebroyu Li izomorfna universalnomu nakrittyu za modulem diskretnoyi centralnoyi pidgrupi Takim chinom klasifikaciya grup Li staye prosto pitannyam pereboru diskretnih pidgrup centru oskilki vidoma klasifikaciya algebr Li rozv yazana Kartanom ta inshimi u napivprostomu vipadku Yaksho algebra Li ye neskinchennovimirnoyu to problema ye bilsh vitonchenoyu U bagatoh vipadkah eksponencialne vidobrazhennya ne ye gomeomorfizmom navit lokalno napriklad dlya D i f f S 1 displaystyle rm Diff mathbb S 1 nbsp mozhna znajti diffeomorfizmi yak zavgodno blizki do odinici yaki ne nalezhat obrazu vidobrazhennya exp displaystyle exp nbsp Bilsh togo deyaki neskinchennovimirni algebri Li ne ye algebrami Li zhodnoyi grupi Dijsna forma i kompleksifikaciya RedaguvatiNehaj zadano kompleksnu algebru Li en g displaystyle mathfrak g nbsp dijsna algebra Li g 0 displaystyle mathfrak g 0 nbsp nazivayetsya dijsnoyu formoyu en g displaystyle mathfrak g nbsp yaksho kompleksifikaciya g 0 R C g displaystyle mathfrak g 0 otimes mathbb R mathbb C simeq mathfrak g nbsp ye izomorfnoyu do g displaystyle mathfrak g nbsp 14 Dijsna forma ne obov yazkovo povinna buti yedinoyu napriklad s l 2 C displaystyle mathfrak sl 2 mathbb C img