www.wikidata.uk-ua.nina.az
V diferencialnij geometriyi duzhkami Li vektornih poliv abo komutatorom vektornih poliv nazivayetsya operator sho dlya dvoh vektornih poliv X i Y na gladkomu mnogovidi M viznachaye tretye vektorne pole sho poznachayetsya yak X Y Vektorne pole X Y mozhna viznachiti yak pohidnu polya Y v napryamku potoku viznachenogo polem X Uzagalnennyam duzhki Li ye pohidna Li yaka ye diferenciyuvannyam tenzornogo polya v napryamku potoku vektornogo polya X Duzhki Li ye bilinijnim operatorom i prostir vektornih poliv na mnogovidi razom z ciyeyu operaciyeyu ye neskinchennovimirnoyu algebroyu Li Duzhki Li vidigrayut znachnu rol v diferencialnij geometriyi i diferencialnij topologiyi Zmist 1 Viznachennya 1 1 Vektorni polya yak diferenciyuvannya 1 2 Potoki i granici 1 3 Viznachennya v lokalnih koordinatah 2 Vlastivosti 3 Div takozh 4 DzherelaViznachennya RedaguvatiDuzhki Li vektornih poliv mozhna viznachiti kilkoma ekvivalentnimi sposobami Vektorni polya yak diferenciyuvannya Redaguvati Vektorne pole X na gladkomu mnogovidi M mozhna viznachiti yak operator diferenciyuvannya na mnozhini gladkih funkcij viznachenih na M detali u stattyah dotichnij prostir i dotichnij vektor Okrim cogo kozhen operator diferenciyuvannya zadayetsya cherez odnoznachno viznachene vektorne pole Dlya gladkih vektornogo polya X i funkciyi f znachennya X f tezh ye gladkoyu funkciyeyu i tomu dlya vektornogo polya Y maye zmist viraz Y X f Duzhka Li X Y dlya vektornih poliv X i Y viznachayetsya yak X Y f X Y f Y X f f C M displaystyle X Y f X Y f Y X f forall f in C infty M nbsp Viznachenij tak operator X Y ye diferenciyuvannyam Aditivnist ye ochevidnoyu a pravilo dobutku otrimuyetsya z rivnostej X Y f g X Y f g Y X f g X f Y g X g Y f Y f X g Y g X f f X Y g X f Y g X g Y f g X Y f f Y X g Y f X g Y g X f g Y X f f X Y g g X Y f displaystyle begin aligned X Y fg amp X Y fg Y X fg X fY g X gY f Y fX g Y gX f amp fX Y g X f Y g X g Y f gX Y f fY X g Y f X g Y g X f gY X f amp f X Y g g X Y f end aligned nbsp Vidpovidno X Y ye gladkim vektornim polem Potoki i granici Redaguvati Nehaj F t X displaystyle Phi t X nbsp potik dlya vektornogo polya X a d poznachatime diferencial vidobrazhennya Todi duzhka Li vektornih poliv X i Y v tochci p M mozhe buti viznachena yak X Y p lim t 0 Y p d F t X Y F t X p t d d t t 0 d F t X Y F t X p displaystyle X Y p lim t to 0 frac Y p mathrm d Phi t X Y Phi t X p t left frac mathrm d mathrm d t right t 0 mathrm d Phi t X Y Phi t X p nbsp abo ekvivalentno X Y p 1 2 d 2 d t 2 t 0 F t Y F t X F t Y F t X p d d t t 0 F t Y F t X F t Y F t X p displaystyle X Y p left frac 1 2 frac mathrm d 2 mathrm dt 2 right t 0 Phi t Y circ Phi t X circ Phi t Y circ Phi t X p left frac mathrm d mathrm d t right t 0 Phi sqrt t Y circ Phi sqrt t X circ Phi sqrt t Y circ Phi sqrt t X p nbsp Dlya dovedennya ekvivalentnosti dvoh oznachen spershu slid zauvazhiti sho yaksho f t p displaystyle f t p nbsp ye funkciyeyu na I e M displaystyle I varepsilon times M nbsp de I e displaystyle I varepsilon nbsp ye vidkritij interval e e displaystyle varepsilon varepsilon nbsp i f 0 p 0 displaystyle f 0 p 0 nbsp dlya vsih p M displaystyle p in M nbsp to funkciya g t p 0 1 f t s p d s displaystyle g t p int 0 1 f ts p ds nbsp zadovolnyaye vlastivosti f t p t g t p displaystyle f t p t cdot g t p nbsp i g 0 p f 0 p displaystyle g 0 p f 0 p nbsp de vikoristani poznachennya f d f d t displaystyle f df dt nbsp dlya p M displaystyle p in M nbsp Zvidsi viplivaye sho yaksho F t X displaystyle Phi t X nbsp ye potokom vektornogo polya X to dlya bud yakoyi funkciyi f na M isnuye funkciya g t p g t p displaystyle g t p g t p nbsp taka sho f F t X f t g t displaystyle f circ Phi t X f tg t nbsp i g 0 X f displaystyle g 0 Xf nbsp Cya funkciya viznachayetsya dlya kozhnogo fiksovanogo p M displaystyle p in M nbsp dlya t lt e displaystyle t lt varepsilon nbsp dlya deyakogo e displaystyle varepsilon nbsp Dijsno yaksho vvesti funkciyu F t p f F t X p f p displaystyle F t p f Phi t X p f p nbsp to f 0 p 0 displaystyle f 0 p 0 nbsp dlya vsih p M displaystyle p in M nbsp i z poperednogo isnuye funkciya g t p g t p displaystyle g t p g t p nbsp dlya yakoyi f F t X f t g t displaystyle f circ Phi t X f tg t nbsp iX f p lim t 0 f F t X p f p t lim t 0 F t p t lim t 0 g t p g 0 p displaystyle Xf p lim t to 0 frac f Phi t X p f p t lim t to 0 frac F t p t lim t to 0 g t p g 0 p nbsp dd Poznachimo teper p t F t X p displaystyle p t Phi t X p nbsp Todi d F t X Y p f Y f F t X p t Y p t f t Y p t g t displaystyle mathrm d Phi t X Y p f Y f circ Phi t X p t Y p t f tY p t g t nbsp dd i zvidsilim t 0 Y p d F t X Y p t t f lim t 0 Y p f Y p t f t lim t 0 Y p t g t X p Y f Y p g 0 X Y p f displaystyle lim t to 0 frac Y p mathrm d Phi t X Y p t t f lim t to 0 frac Y p f Y p t f t lim t to 0 Y p t g t X p Yf Y p g 0 X Y p f nbsp dd sho i dovodit nashe tverdzhennya Viznachennya v lokalnih koordinatah Redaguvati Vibravshi lokalnu koordinatnu sistemu na mnogovidi M z koordinatnimi funkciyami x i displaystyle x i nbsp i poznachivshi i x i displaystyle partial i frac partial partial x i nbsp asocijovanij lokalnij bazis dotichnogo rozsharuvannya lokalno vektorni polya mozhna zapisati yak X i 1 n X i i displaystyle X sum i 1 n X i partial i nbsp Y i 1 n Y i i displaystyle Y sum i 1 n Y i partial i nbsp de X i M R displaystyle X i M to mathbb R nbsp and Y i M R displaystyle Y i M to mathbb R nbsp deyaki gladki funkciyi Todi duzhki Li v cih koordinatah viznachayutsya yak X Y i 1 n X Y i Y X i i i 1 n j 1 n X j j Y i Y j j X i i displaystyle X Y sum i 1 n left X Y i Y X i right partial i sum i 1 n sum j 1 n left X j partial j Y i Y j partial j X i right partial i nbsp Sama forma zapisu pokazuye sho X Y ye vektornim polem Yaksho M ye evklidovim prostorom Rn abo jogo vidkritoyu pidmnozhinoyu to vektorni polya X i Y mozhna zapisati yak gladki vidobrazhennya X M R n displaystyle X M to mathbb R n nbsp i Y M R n displaystyle Y M to mathbb R n nbsp a duzhka Li X Y M R n displaystyle X Y M to mathbb R n nbsp mozhe buti viznachena yak X Y J Y X J X Y displaystyle X Y J Y X J X Y nbsp de J Y displaystyle J Y nbsp i J X displaystyle J X nbsp matrici Yakobi vidobrazhen Y displaystyle Y nbsp i X displaystyle X nbsp vidpovidno Vlastivosti RedaguvatiRazom z operaciyeyu duzhok Li vektornij prostij V G T M displaystyle V Gamma TM nbsp vsih gladkih vektornih poliv na M tobto gladkih pereriziv dotichnogo rozsharuvannya T M displaystyle TM nbsp mnogovida M displaystyle M nbsp ye algebroyu Li tobto ye vidobrazhennyam V V V displaystyle V times V to V nbsp z takimi vlastivostyami displaystyle cdot cdot nbsp is R bilinijnim vidobrazhennyam tobto X Y Z X Z Y Z X Y Z X Y X Z displaystyle X Y Z X Z Y Z X Y Z X Y X Z nbsp dlya vsih vektornih poliv X Y Z X Y Y X displaystyle X Y Y X nbsp i ekvivalentno X X 0 displaystyle X X 0 nbsp dlya vsih vektornih poliv X displaystyle X nbsp X Y Z Z X Y Y Z X 0 displaystyle X Y Z Z X Y Y Z X 0 nbsp Cya vlastivist nazivayetsya totozhnistyu Yakobi Dlya gladkoyi funkciyi f viznachenoyi na M duzhka Li vektornih poliv X i fY zadovolnyaye rivnist X f Y X f Y f X Y displaystyle X fY X f Y f X Y nbsp X Y 0 displaystyle X Y 0 nbsp todi j lishe todi koli X i Y lokalno komutuyut tobto dlya vsih x M i dostatno malih dijsnih chisel s t vikonuyetsya rivnist F t Y F s X x F s X F t Y x displaystyle Phi t Y Phi s X x Phi s X Phi t Y x nbsp Nehaj teper M N gladki mnogovidi F gladke vidobrazhennya mizh nimi dF diferencial cogo vidobrazhennya a X i Y vektorni polya na M Todi vikonuyetsya rivnist d F X Y d F X d F Y displaystyle operatorname d F X Y operatorname d F X operatorname d F Y nbsp Dlya tochki p M displaystyle p in M nbsp diferencial dF ye vidobrazhennyam z dotichnogo prostoru T p M displaystyle T p M nbsp v dotichnij prostir T F p N displaystyle T F p N nbsp takim sho dlya funkciyi g C N displaystyle g in C infty N nbsp za viznachennyam d F X g F p X g F p displaystyle operatorname d F X g F p X g circ F p nbsp i tomu d F X g F X g F displaystyle operatorname d F X g circ F X g circ F nbsp Tozh dlya dovilnih gladkih vektornih poliv X Y displaystyle X Y nbsp i vsih funkcij g C N displaystyle g in C infty N nbsp d F X Y F p g X Y p g F X p Y g F Y p X g F X p d F Y g F Y p d F X g F d F X F p d F Y g d F Y F p d F X g d F X d F Y F p g displaystyle begin aligned amp operatorname d F X Y F p g X Y p g circ F amp X p Y g circ F Y p X g circ F amp X p operatorname d F Y g circ F Y p operatorname d F X g circ F amp operatorname d F X F p operatorname d F Y g operatorname d F Y F p operatorname d F X g amp operatorname d F X operatorname d F Y F p g end aligned nbsp Zvidsi i otrimuyetsya neobhidna rivnist Div takozh RedaguvatiAlgebra Li Dotichnij vektor Duzhki Puassona Pohidna LiDzherela RedaguvatiGolod P I Klimik A U Matematichni osnovi teoriyi simetriyi K Naukova dumka 1992 368 s ukr Hazewinkel Michiel red 2001 Lie bracket Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Hicks Noel 1965 Notes on Differential Geometry Van Nostrand Princeton N J ISBN 0442034105 angl Kolar I Michor P and Slovak J 1993 Natural operations in differential geometry Springer Verlag Arhiv originalu za 14 lyutogo 2021 Procitovano 2 grudnya 2016 Lang S 1995 Differential and Riemannian manifolds Springer Verlag ISBN 978 0 387 94338 1 Warner Frank 1983 1971 Foundations of differentiable manifolds and Lie groups New York Berlin Springer Verlag ISBN 0 387 90894 3 Otrimano z https uk wikipedia org w index php title Duzhka Li vektornih poliv amp oldid 34876124