www.wikidata.uk-ua.nina.az
U matematici verhnya nepovna gamma funkciya i nizhnya nepovna gamma funkciya ye tipom specialnih funkcij yaki vinikayut pri rozv yazanni riznomanitnih matematichnih zadach takih yak deyaki integrali Nizhnya nepovna gamma funkciya v 3DAnimaciya nizhnoyi nepovnoyi gamma funkciyiVerhnya nepovna gamma funkciya v 3DYih vidpovidni nazvi viplivayut z yih integralnih viznachen yaki viznachayutsya analogichno gamma funkciyi inshim tipom specialnoyi funkciyi ale z riznimi abo nepovnimi integralnimi mezhami Gamma funkciya viznachayetsya yak integral vid nulya do neskinchennosti Ce vidriznyayetsya vid nizhnoyi nepovnoyi gamma funkciyi yaka viznachayetsya yak integral vid nulya do zminnoyi verhnoyi mezhi Vidpovidno verhnya nepovna gamma funkciya viznachayetsya yak integral vid zminnoyi nizhnoyi mezhi do neskinchennosti Zmist 1 Viznachennya 2 Vlastivosti 2 1 Prodovzhennya dlya kompleksnih znachen 2 1 1 Golomorfne rozshirennya 2 1 2 Bagatoznachnist 2 1 3 Povedinka poblizu tochki rozgaluzhennya 2 1 4 Algebrayichni spivvidnoshennya 2 1 5 Integralne zobrazhennya 2 1 5 1 Dijsni znachennya 2 1 5 2 Kompleksna s 2 1 5 3 Porozhnya zbizhnist 2 1 6 Zagalne zobrazhennya 2 1 7 Verhnya nepovna gamma funkciya 2 2 Specialni znachennya 2 3 Asimptotichna povedinka 3 Ocinochni formuli 3 1 Zv yazok z virodzhenoyu gipergeometrichnoyu funkciyeyu Kummera 3 2 Teorema mnozhennya 4 Regulyarizovani gamma funkciyi ta vipadkovi velichini Puassona 5 Pohidni 6 Neviznacheni i viznacheni integrali 7 Primitki 8 Div takozh 9 DzherelaViznachennya red Verhnya nepovna gamma funkciya viznachayetsya yak G s x x ts 1e tdt displaystyle Gamma s x int x infty t s 1 e t rm d t nbsp v toj chas yak nizhnya nepovna gamma funkciya viznachayetsya yak g s x 0xts 1e tdt displaystyle gamma s x int 0 x t s 1 e t rm d t nbsp Vlastivosti red V oboh vipadkah s ye skladnim parametrom takim sho dijsna chastina s ye pozitivnoyu Integruvannyam chastinami znahodimo rekurentne spivvidnoshennya G s 1 x sG s x xse x displaystyle Gamma s 1 x s Gamma s x x s e x nbsp ta g s 1 x sg s x xse x displaystyle gamma s 1 x s gamma s x x s e x nbsp Oskilki zvichajna gamma funkciya viznachayetsya yak G s 0 ts 1e tdt displaystyle Gamma s int 0 infty t s 1 e t rm d t nbsp mayemo G s G s 0 limx g s x displaystyle Gamma s Gamma s 0 lim x to infty gamma s x nbsp ta g s x G s x G s displaystyle gamma s x Gamma s x Gamma s nbsp Prodovzhennya dlya kompleksnih znachen red Nizhnya nepovna gamma funkciya ta verhnya nepovna gamma funkciya sho viznacheni vishe dlya dijsnih pozitivnih s i x mozhut buti rozvineni v golomorfnij funkciyi s po vidnoshennyu yak do x tak i do s viznacheni dlya majzhe vsih kombinacij skladnih x ta s 1 Kompleksnij analiz pokazuye sho vlastivosti dijsnih nepovnih gamma funkcij poshiryuyutsya na yih golomorfni analogi Golomorfne rozshirennya red Povtorne zastosuvannya rekurentnogo vidnoshennya do nizhnoyi nepovnoyi gamma funkciyi prizvodit do rozshirennya stepenevogo ryadu 2 g s x k 0 xse xxks s 1 s k xsG s e x k 0 xkG s k 1 displaystyle gamma s x sum k 0 infty frac x s e x x k s s 1 s k x s Gamma s e x sum k 0 infty frac x k Gamma s k 1 nbsp Vrahovuyuchi strimke zrostannya absolyutnoyi velichini G z k pri k a takozh toj fakt sho vzayemna G z ye ciloyu funkciyeyu koeficiyenti u pravij chastini sumi ye chitko viznachenimi a lokalno suma shoditsya rivnomirno dlya vsih kompleksnih s ta x Za teoremoyu Vejershtrassa granichna funkciya inodi poznachayetsya yak g displaystyle gamma nbsp g s z e z k 0 zkG s k 1 displaystyle gamma s z e z sum k 0 infty frac z k Gamma s k 1 nbsp 3 ye ciloyu shodo z dlya fiksovanih s ta s dlya fiksovanih z 4 i takim chinom golomorfna na ℂ ℂ za teoremoyu Hartogsa 5 Otzhe nastupne rozvinennya g s z zsG s g s z displaystyle gamma s z z s Gamma s gamma s z nbsp 6 rozshiryuye dijsnu nepovnu gamma funkciyu v golomorfnu funkciyu yak spilno tak i okremo v z i s Z vlastivostej zs ta gamma funkciyi viplivaye sho pershi dva chinniki fiksuyut osoblivi tochki g pri z 0 abo s ne dodatnye cile chislo todi yak ostannij chinnik spriyaye jogo nulyam Bagatoznachnist red Kompleksnij logarifm log z log z i arg z viznachayetsya lishe kratnim 2pi sho robit jogo bagatoznachnim Funkciyi sho vklyuchayut skladnij logarifm yak pravilo uspadkovuyut cyu vlastivist Sered nih skladna potuzhnist i oskilki z s z yavlyayetsya v jogo rozkladi to g funkciya tezh Neviznachenist bagatoznachnih funkcij prizvodit do uskladnen oskilki neobhidno vkazati yak vibrati znachennya Strategiyi dlya virishennya cogo ye najbilsh zagalnij sposib zaminiti domen ℂ bagatoznachnih funkcij vidpovidnim riznovidom u ℂ ℂ sho nazivayetsya poverhneyu Rimana U toj chas yak ce usuvaye bagatoznachnist potribno znati teoriyu yaka lezhit v osnovi 7 obmezhujte takij domen pri yakomu bagatoznachna funkciya rozkladayetsya na okremi odnoznachni gilki yaki mozhna obroblyati individualno Povedinka poblizu tochki rozgaluzhennya red Poryad z z 0 g povoditsya asimptotichno g s z zsG s g s 0 zsG s G s 1 zs s displaystyle gamma s z asymp z s Gamma s gamma s 0 z s Gamma s Gamma s 1 z s s nbsp Dlya dodatnih dijsnih x y ta s xy y 0 pri x y 0 s Cim obgruntovuyetsya sho g s 0 0 dlya dijsnih s gt 0 Prote v kompleksnij oblasti vse trohi inakshe Tilki yaksho a dijsna chastina s ye dodatnoyu ta b znachennya uv berutsya z lishe kincevogo naboru gilok to voni garantovano shodyatsya do nulya oskilki u v 0 s tak samo i dlya g u v g b vikonuyetsya na odinichnij gilci i tomu g s 0 0 dlya s z dodatnoyu dijsnoyu chastinoyu ye neperevnoyu mezheyu Take prodovzhennya v zhodnomu razi ne ye analitichnim Algebrayichni spivvidnoshennya red Usi algebrayichni spivvidnoshennya ta diferencialni rivnyannya yaki sposterigayutsya za dopomogoyu dijsnoyi g s z zberigayutsya i dlya yiyi golomorfnogo analoga Ce ye naslidkom teoremi pro totozhnist 8 yaka vkazuye sho rivnyannya mizh golomorfnimi funkciyami chinnimi na dijsnomu intervali zberigayutsya skriz Zokrema u vidpovidnih gilkah zberigayutsya rekurentni spivvidnoshennya 9 ta g s z z zs 1 e z 10 zberigayutsya na vidpovidnih gilkah Integralne zobrazhennya red Ostannye spivvidnoshennya govorit nam sho dlya fiksovanogo znachennya s g ye pervisnoyu golomorfnoyi funkciyi zs 1 e z Otzhe 11 dlya bud yakih kompleksnih u v 0 uvts 1e tdt g s v g s u displaystyle int u v t s 1 e t rm d t gamma s v gamma s u nbsp maye misce do tih pir poki shlyah integruvannya cilkom lezhit v oblasti pidintegralnoyi gilki Yaksho dodatkovo dijsna chastina s ye dodatnoyu to zastosovuyetsya mezha g s u 0 pri u 0 ostatochno prihodyachi do kompleksnogo integralnogo viznachennya g g s z 0zts 1e tdt ℜ s gt 0 displaystyle gamma s z int 0 z t s 1 e t rm d t Re s gt 0 nbsp 12 Bud yakij shlyah integruvannya yakij mistit 0 tilki v jogo pochatku a v inshomu vipadku obmezhuyetsya oblastyu pidintegralnoyi gilki ye spravedlivim napriklad pryama liniya sho z yednuye 0 i z Dijsni znachennya red Vrahovuyuchi integralne podannya golovnoyi gilki g dlya bud yakogo pozitivnogo dijsnogo s x vikonuyetsya take rivnyannya 13 G s 0 ts 1e tdt limx g s x displaystyle Gamma s int 0 infty t s 1 e t rm d t lim x rightarrow infty gamma s x nbsp Kompleksna s red Cej rezultat poshiryuyetsya na komleksnu s Pripustimo spochatku 1 Re s 2 nf 1 lt a lt b Potim g s b g s a ab ts 1 e tdt abtℜs 1e tdt abte tdt displaystyle gamma s b gamma s a leq int a b t s 1 e t rm d t int a b t Re s 1 e t rm d t leq int a b te t rm d t nbsp de zs z ℜse ℑsarg z displaystyle z s z Re s e Im s arg z nbsp 14 buv vikoristanij poseredini Oskilki kincevij integral staye dovilno malim tilki yaksho a dosit velikij g s x rivnomirno shoditsya dlya x na promizhku 1 Re s 2 vidnoshennyu do golomorfnoyi funkciyi yaka povinna dorivnyuvati G s za teoremoyu pro totozhnist 15 Beruchi mezhu v rekurentnomu spivvidnoshenni g s x s 1 g s 1 x xs 1 e x i vidznachayuchi sho lim xn e x 0 pri x i vsih n bachimo sho g s x takozh shoditsya za mezheyu promizhku do funkciyi yaka vidpovidaye rekurentnomu vidnoshennyu G funkciyi Z cogo sliduye G s limx g s x displaystyle Gamma s lim x rightarrow infty gamma s x nbsp dlya vsih kompleksnih s nedodatnih cilih chisel x dijsne ta g osnovna Porozhnya zbizhnist red Nehaj u z promizhku arg z lt d lt p 2 z deyakimi fiksovanimi d a 0 g ye osnovnoyu galuzzyu v comu sektori bachimo sho G s g s u G s g s u g s u g s u displaystyle Gamma s gamma s u Gamma s gamma s u gamma s u gamma s u nbsp Yak vidno vishe persha riznicya mozhe buti dovilno mala yaksho u ye dostatno velikim Druga riznicya dozvolyaye zrobiti nastupnu ocinku g s u g s u u u zs 1e z dz u u z ℜs 1e ℑsarg ze ℜzdz displaystyle gamma s u gamma s u leq int u u z s 1 e z rm d z int u u z Re s 1 e Im s arg z e Re z rm d z nbsp de mi vikoristali integralne zobrazhennya g ta formulu pro zs Yaksho mi integruyemo vzdovzh dugi z radiusom R u navkolo 0 sho zv yazuye u i u todi ostannij integral dorivnyuye R arg u Rℜs 1eℑs arg u e Rcos arg u dRℜseℑsde Rcos d M Rcos d ℜse Rcos d displaystyle leq R arg u R Re s 1 e Im s arg u e R cos arg u leq delta R Re s e Im s delta e R cos delta M R cos delta Re s e R cos delta nbsp de M d cos d Re s eIm sd ye postijnoyu nezalezhnoyu u abo R Znovu posilayuchis na povedinku xn e x dlya velikogo x mi bachimo sho ostannij viraz nablizhayetsya do 0 oskilki R zbilshuyetsya do Otzhe mayemo G s lim z g s z arg z lt p 2 ϵ displaystyle Gamma s lim z rightarrow infty gamma s z quad arg z lt pi 2 epsilon nbsp yaksho s ne ye nevid yemnim cilim chislom 0 lt e lt p 2 ye dovilno malim ale fiksovanim a g poznachaye osnovnu gilku v cij oblasti Zagalne zobrazhennya red g s z displaystyle gamma s z nbsp is Cila funkciya v z dlya fiksovanogo dodatnogo integrala s Bagatoznachna golomorfna funkciya v z dlya fiksovanogo ne cilogo s z tochkoyu rozgaluzhennya v z 0 Na kozhnij gilci meromorfna funkciya v s dlya fiksovanogo z 0 z prostimi polyusami v nedodatnih cilih h Verhnya nepovna gamma funkciya red Sho stosuyetsya Verhnoyi nepovnoyi gamma funkciyi golomorfne rozshirennya po vidnoshennyu do z abo s zadayetsya G s z G s g s z displaystyle Gamma s z Gamma s gamma s z nbsp 16 v tochkah s z de prava chastina isnuye Oskilki g displaystyle gamma nbsp bagatoznachna te same dlya G displaystyle Gamma nbsp ale obmezhennya do osnovnih znachen daye lishe odnoznachnu osnovnu gilku G displaystyle Gamma nbsp Koli s ye ne dodatnim cilim chislom u vishezgadanomu rivnyanni to ni odna chastina riznici ne viznachena a obmezhennya procesu rozvinene dlya s 0 zapovnyuye vidsutni znachennya Kompleksnij analiz garantuye golomorfnist oskilki G s z displaystyle Gamma s z nbsp viyavlyayetsya obmezhena v susidi cogo obmezhennya dlya fiksovanogo z 17 Shob viznachiti mezhu potuzhnij ryad g displaystyle gamma nbsp pri z 0 viyavlyayetsya korisnim Zaminivshi e x displaystyle e x nbsp svoyim poslidovnim ryadkom u integralnomu viznachenni g displaystyle gamma nbsp oderzhuyemo pripuskayemo x s dodatni dijsni chisla v danij moment g s x 0xts 1e td t 0x k 0 1 kts k 1k d t k 0 1 kxs kk s k xs k 0 x kk s k displaystyle gamma s x int 0 x t s 1 e t operatorname d t int 0 x sum k 0 infty 1 k frac t s k 1 k operatorname d t sum k 0 infty 1 k frac x s k k s k x s sum k 0 infty frac x k k s k nbsp abo g s x k 0 x kk G s s k displaystyle gamma s x sum k 0 infty frac x k k Gamma s s k nbsp 18 yakij yak serijne predstavlennya vsiyeyi funkciyi g displaystyle gamma nbsp zbigayetsya dlya vsogo kompleksu x a ves kompleks s ne ye ne dodatnim cilim chislom Z jogo obmezhennyam do spravzhnih znachen seriya dozvolyaye robiti rozshirennya g s z 1s 1s zs k 0 z kk s k zs 1s zs k 1 z kk s k ℜ s gt 1 s 0 displaystyle gamma s z frac 1 s frac 1 s z s sum k 0 infty frac z k k s k frac z s 1 s z s sum k 1 infty frac z k k s k quad Re s gt 1 s neq 0 nbsp De s 0 zs 1s ln z G s 1s 1s g O s 1s g displaystyle frac z s 1 s rightarrow ln z quad Gamma s frac 1 s frac 1 s gamma O s frac 1 s rightarrow gamma nbsp g displaystyle gamma nbsp Stala Ejlera Maskeroni otzhe G 0 z lims 0 G s 1s g s z 1s g ln z k 1 z kk k displaystyle Gamma 0 z lim s rightarrow 0 left Gamma s tfrac 1 s gamma s z tfrac 1 s right gamma ln z sum k 1 infty frac z k k k nbsp ye granichnoyu funkciyeyu verhnoyi nepovnoyi gamma funkciyi yak s 0 takozh vidomoyu yak E1 z displaystyle E 1 z nbsp 2 Za dopomogoyu rekurentnogo spivvidnoshennya z cogo rezultatu mozhna vivesti znachennya G n z displaystyle Gamma n z nbsp dlya naturalnih chisel n 3 G n z 1n e zzn k 0n 1 1 k n k 1 zk 1 nG 0 z displaystyle Gamma n z frac 1 n left frac e z z n sum k 0 n 1 1 k n k 1 z k 1 n Gamma 0 z right nbsp tomu verhnya nepovna gamma funkciya viyavlyayetsya isnuyuchoyu i golomorfnoyu yak dlya z tak i dlya s dlya vsih s i z 0 G s z displaystyle Gamma s z nbsp is Cila funkciya v z dlya fiksovanogo dodatnogo integrala s G s displaystyle Gamma s nbsp dlya s z dodatnoyi dijsnoyu chastinoyu z 0 granicya koli si zi s 0 displaystyle s i z i rightarrow s 0 nbsp ale ce bezperervne prodovzhennya a ne analitichne ne trimayetsya dlya dijsnogo s lt 0 Bagatoznachna golomorfna funkciya v z dlya fiksovanogo s s ne nul i ne dodatnij integral z tochkoyu rozgaluzhennya v z 0 Na kozhnij gilci cila funkciya v s dlya fiksovanogo z 0 Specialni znachennya red G s s 1 displaystyle Gamma s s 1 nbsp yaksho s dodatne cile G s x s 1 e x k 0s 1xkk displaystyle Gamma s x s 1 e x sum k 0 s 1 frac x k k nbsp yaksho s dodatne cile 4 G s 0 G s ℜ s gt 0 displaystyle Gamma s 0 Gamma s Re s gt 0 nbsp G 1 x e x displaystyle Gamma 1 x e x nbsp g 1 x 1 e x displaystyle gamma 1 x 1 e x nbsp G 0 x Ei x displaystyle Gamma 0 x operatorname Ei x nbsp for x gt 0 displaystyle x gt 0 nbsp G s x xsE1 s x displaystyle Gamma s x x s operatorname E 1 s x nbsp G 12 x perfc x displaystyle Gamma left tfrac 1 2 x right sqrt pi operatorname erfc left sqrt x right nbsp g 12 x perf x displaystyle gamma left tfrac 1 2 x right sqrt pi operatorname erf left sqrt x right nbsp Tut Ei displaystyle operatorname Ei nbsp ce integralna pokaznikova funkciya En displaystyle operatorname E n nbsp ce uzagalnena integralno pokaznikova funkciya erf displaystyle operatorname erf nbsp ce funkciya pomilok i erfc displaystyle operatorname erfc nbsp ce dopovnyuyucha funkciya pomilok erfc x 1 erf x displaystyle operatorname erfc x 1 operatorname erf x nbsp Asimptotichna povedinka red g s x xs 1s displaystyle frac gamma s x x s rightarrow frac 1 s nbsp yaksho x 0 displaystyle x rightarrow 0 nbsp G s x xs 1s displaystyle frac Gamma s x x s rightarrow frac 1 s nbsp yaksho x 0 displaystyle x rightarrow 0 nbsp and ℜ s lt 0 displaystyle Re s lt 0 nbsp dlya dijsnih s pomilka G s x xs s znahoditsya na pryadku O xmin s 1 0 if s 1 ta O ln x yaksho s 1 g s x G s displaystyle gamma s x rightarrow Gamma s nbsp koli x displaystyle x rightarrow infty nbsp G s x xs 1e x 1 displaystyle frac Gamma s x x s 1 e x rightarrow 1 nbsp koli x displaystyle x rightarrow infty nbsp G s z zs 1e z k 0G s G s k z k displaystyle Gamma s z sim z s 1 e z sum k 0 frac Gamma s Gamma s k z k nbsp yak asimptotichnij rozklad pri z displaystyle z to infty nbsp ta arg z lt 32p displaystyle left arg z right lt tfrac 3 2 pi nbsp 5 Ocinochni formuli red Nizhnyu nepovnu gamma funkciyu mozhna ociniti za dopomogoyu rozshirennya potuzhnosti ryadka 19 g s z k 0 zse zzks s 1 s k displaystyle gamma s z sum k 0 infty frac z s e z z k s s 1 s k nbsp Alternativne rozshirennya ce g s z k 0 1 kk zs ks k zssM s s 1 z displaystyle gamma s z sum k 0 infty frac 1 k k frac z s k s k frac z s s M s s 1 z nbsp de M ce virodzhena gipergeometrichna funkciya Kummera Zv yazok z virodzhenoyu gipergeometrichnoyu funkciyeyu Kummera red Koli dijsna chastina z dodatna g s z s 1zse zM 1 s 1 z displaystyle gamma s z s 1 z s e z M 1 s 1 z nbsp de M 1 s 1 z 1 z s 1 z2 s 1 s 2 z3 s 1 s 2 s 3 displaystyle M 1 s 1 z 1 frac z s 1 frac z 2 s 1 s 2 frac z 3 s 1 s 2 s 3 cdots nbsp maye neskinchennij radius zbizhnosti Znovu zh taki z virodzhenimi gipergeometrichnimi funkciyami i vikoristannyam totozhnosti Kummera G s z e zU 1 s 1 s z zse zG 1 s 0 e uus z u du e zzsU 1 1 s z e z 0 e u z u s 1du e zzs 0 e zu 1 u s 1du displaystyle begin aligned Gamma s z amp e z U 1 s 1 s z frac z s e z Gamma 1 s int 0 infty frac e u u s z u rm d u amp e z z s U 1 1 s z e z int 0 infty e u z u s 1 rm d u e z z s int 0 infty e zu 1 u s 1 rm d u end aligned nbsp Dlya faktichnogo obchislennya chislovih znachen lancyugovij drib Gausa zabezpechuye korisne rozshirennya g s z zse zs szs 1 zs 2 s 1 zs 3 2zs 4 s 2 zs 5 3zs 6 displaystyle gamma s z cfrac z s e z s cfrac sz s 1 cfrac z s 2 cfrac s 1 z s 3 cfrac 2z s 4 cfrac s 2 z s 5 cfrac 3z s 6 ddots nbsp Cej neperervnij drib zbigayetsya dlya vsih kompleksnih z todi i tilki todi koli s ye dodatnim cilim chislom Verhnya nepovna gamma funkciya maye neperervnij drib G s z zse zz 1 s1 1z 2 s1 2z 3 s1 displaystyle Gamma s z cfrac z s e z z cfrac 1 s 1 cfrac 1 z cfrac 2 s 1 cfrac 2 z cfrac 3 s 1 ddots nbsp 6 ta G s z zse z1 z s s 13 z s 2 s 2 5 z s 3 s 3 7 z s 4 s 4 9 z s displaystyle Gamma s z cfrac z s e z 1 z s cfrac s 1 3 z s cfrac 2 s 2 5 z s cfrac 3 s 3 7 z s cfrac 4 s 4 9 z s ddots nbsp dzherelo Teorema mnozhennya red Isnuye nastupna teorema mnozhennya G s z 1ts i 0 1 1t ii G s i tz G s tz tz se tz i 1 1t 1 iiLi 1 s i tz displaystyle begin aligned Gamma s z amp frac 1 t s sum i 0 infty frac left 1 frac 1 t right i i Gamma s i tz amp Gamma s tz tz s e tz sum i 1 infty frac left frac 1 t 1 right i i L i 1 s i tz end aligned nbsp Regulyarizovani gamma funkciyi ta vipadkovi velichini Puassona red Dvi pov yazani funkciyi ce regulyarizovani gamma funkciyi P s x g s x G s displaystyle P s x frac gamma s x Gamma s nbsp Q s x G s x G s 1 P s x displaystyle Q s x frac Gamma s x Gamma s 1 P s x nbsp P s x displaystyle P s x nbsp ce funkciyi rozpodilu jmovirnostej dlya vipadkovih zminnih gamma funkciyi z parametrom formi s displaystyle s nbsp ta koeficiyentom masshtabu 1 Koli s displaystyle s nbsp cile Q s l displaystyle Q s lambda nbsp ye sukupnoyu funkciyeyu rozpodilu dlya zminnih Puassona Yaksho X displaystyle X nbsp ye Poi l displaystyle rm Poi lambda nbsp vipadkovoyu velichinoyu todi Pr X lt s i lt se llii G s l G s Q s l displaystyle Pr X lt s sum i lt s e lambda frac lambda i i frac Gamma s lambda Gamma s Q s lambda nbsp Cya formula mozhe buti otrimana shlyahom povtornogo integruvannya chastinami Pohidni red Pohidna verhnoyi nepovnoyi gamma funkciyi G s x displaystyle Gamma s x nbsp po vidnoshennyu do x dobre vidoma Vona zadayetsya vid yemnim pidsumkom vid jogo integralnogo viznachennya vid ocinyuvanogo na nizhnij mezhi G s x x xs 1e x displaystyle frac partial Gamma s x partial x x s 1 e x nbsp Pohidna po vidnoshennyu do yiyi pershogo argumentu s displaystyle s nbsp zadana yak 7 G s x s ln xG s x xT 3 s x displaystyle frac partial Gamma s x partial s ln x Gamma s x x T 3 s x nbsp i druga pohidna yak 2G s x s2 ln2 xG s x 2x ln xT 3 s x T 4 s x displaystyle frac partial 2 Gamma s x partial s 2 ln 2 x Gamma s x 2x ln x T 3 s x T 4 s x nbsp de funkciya T m s x displaystyle T m s x nbsp ye osoblivim vipadkom G funkciyi Mejyera T m s x Gm 1 mm 0 0 0 0s 1 1 1 x displaystyle T m s x G m 1 m m 0 left left begin matrix 0 0 dots 0 s 1 1 dots 1 end matrix right x right nbsp Cej konkretnij okremij vipadok maye vlasni vlastivosti vnutrishnogo zakrittya tomu vin mozhe vikoristovuvatisya dlya virazu vsih poslidovnih pohidnih V zagalnomu mG s x sm lnm xG s x mx n 0m 1Pnm 1lnm n 1 xT 3 n s x displaystyle frac partial m Gamma s x partial s m ln m x Gamma s x mx sum n 0 m 1 P n m 1 ln m n 1 x T 3 n s x nbsp de Pjn displaystyle P j n nbsp ce perestanovka viznachena simvolom Pohgamera Pjn nj j n n j displaystyle P j n left begin array l n j end array right j frac n n j nbsp Usi taki pohidni mozhut buti sformovani poslidovno z T m s x s ln x T m s x m 1 T m 1 s x displaystyle frac partial T m s x partial s ln x T m s x m 1 T m 1 s x nbsp ta T m s x x 1x T m 1 s x T m s x displaystyle frac partial T m s x partial x frac 1 x T m 1 s x T m s x nbsp Cya funkciya T m s x displaystyle T m s x nbsp mozhe buti obchislena z predstavlennya yiyi seriyi dijsnoyi dlya z lt 1 displaystyle z lt 1 nbsp T m s z 1 m 1 m 2 dm 2dtm 2 G s t zt 1 t 0 n 0 1 nzs 1 nn s n m 1 displaystyle T m s z frac 1 m 1 m 2 frac rm d m 2 rm d t m 2 left Gamma s t z t 1 right Big t 0 sum n 0 infty frac 1 n z s 1 n n s n m 1 nbsp z umovoyu sho s ce ne vid yemne cile chislo chi nul U takomu vipadku treba vikoristovuvati obmezhennya Rezultati dlya z 1 displaystyle z geq 1 nbsp mozhna otrimati za dopomogoyu analitichnogo prodovzhennya Deyaki osoblivi vipadki ciyeyi funkciyi mozhut buti sprosheni Napriklad T 2 s x G s x x displaystyle T 2 s x Gamma s x x nbsp xT 3 1 x E1 x displaystyle x T 3 1 x rm E 1 x nbsp de E1 x displaystyle rm E 1 x nbsp ce Integralna pokaznikova funkciya Ci pohidni ta funkciya T m s x displaystyle T m s x nbsp dayut tochni rozv yazannya dlya ryadu integraliv shlyahom povtornogo diferenciyuvannya integralnogo viznachennya verhnoyi nepovnoyi gamma funkciyi Do prikladu x ts 1lnm tetdt m sm x ts 1etdt m smG s x displaystyle int x infty frac t s 1 ln m t e t rm d t frac partial m partial s m int x infty frac t s 1 e t rm d t frac partial m partial s m Gamma s x nbsp Cya formula mozhe buti dali napovnena abo uzagalnena na velicheznij klas peretvorennya Laplasa ta peretvorennya Mellina U poyednanni z sistemoyu komp yuternoyi algebri ekspluataciya specialnih funkcij zabezpechuye potuzhnij metod virishennya pevnih integraliv zokrema tih sho zustrichayutsya u praktichnih inzhenernih zastosuvannyah Neviznacheni i viznacheni integrali red Nastupni neviznacheni integrali legko otrimati pri vikoristanni integruvannya chastinami xb 1g s x dx 1b xbg s x G s b x displaystyle int x b 1 gamma s x mathrm d x frac 1 b left x b gamma s x Gamma s b x right nbsp xb 1G s x dx 1b xbG s x G s b x displaystyle int x b 1 Gamma s x mathrm d x frac 1 b left x b Gamma s x Gamma s b x right nbsp Nizhnya i verhnya nepovna gamma funkciya poyednuyutsya cherez peretvorennya Fur ye g s2 z2p z2p s2e 2pikzdz G 1 s2 k2p k2p 1 s2 displaystyle int infty infty frac gamma left frac s 2 z 2 pi right z 2 pi frac s 2 e 2 pi ikz mathrm d z frac Gamma left frac 1 s 2 k 2 pi right k 2 pi frac 1 s 2 nbsp Ce viplivaye napriklad z vidpovidnoyu specializaciyeyu vid Gradshteyn ta Ryzhik 2015 7 642 Primitki red DLMF Incomplete Gamma functions analytic continuation DLMF Incomplete Gamma functions Special Values 8 4 4 DLMF Incomplete Gamma functions Special Values 8 4 15 Weisstein Eric W Incomplete Gamma Function angl na sajti Wolfram MathWorld equation 2 DLMF Incomplete Gamma functions 8 11 i Abramowitz and Stegun p 263 6 5 31 K O Geddes M L Glasser R A Moore and T C Scott Evaluation of Classes of Definite Integrals Involving Elementary Functions via Differentiation of Special Functions AAECC Applicable Algebra in Engineering Communication and Computing vol 1 1990 pp 149 165 1 nedostupne posilannya Div takozh red Algebrayichna funkciya Analitichna funkciya Aparatna funkciya Bagatoznachna funkciya Vektor funkciya Vipadkova funkciya Virobnicha funkciya Gamma funkciya Garmonichna funkciya Stepeneva funkciya Transcendentna funkciya Delta funkciya Drobovo linijna funkciya Eksponencijna funkciya Linijna funkciya Logarifmichna funkciya Matematichna funkciya Monotonna funkciya Neparna funkciya Neperervna funkciya Uzagalnena funkciya Funkciya rozpodilu jmovirnostej Obernena funkciya Odnoznachna funkciya Parna funkciya Periodichna funkciya Propozicijna funkciya Racionalna funkciya Rozrivna funkciya Skladena funkciya Hvilova funkciya Cila funkciya Golomorfna funkciyaDzherela red people math sfu ca Incomplete Gamma function 6 5 Allasia Giampietro Besenghi Renata 1986 Numerical calculation of incomplete gamma functions by the trapezoidal rule Numer Math 50 4 doi 10 1007 BF0139666 Amore Paolo 2005 Asymptotic and exact series representations for the incomplete Gamma function Europhys Lett 71 1 doi 10 1209 epl i2005 10066 6 MR 2170316 G Arfken and H Weber Mathematical Methods for Physicists Harcourt Academic Press 2000 See Chapter 10 DiDonato Armido R Morris Jr Alfred H Dec 1986 Computation of the incomplete gamma function ratios and their inverse ACM Transactions on Mathematical Software 12 4 doi 10 1145 22721 23109 Barakat Richard 1961 Evaluation of the Incomplete Gamma Function of Imaginary Argument by Chebyshev Polynomials Math Comp 15 73 doi 10 1090 s0025 5718 1961 0128058 1 MR 0128058 Carsky Petr Polasek Martin 1998 Incomplete Gamma F m x functions for real and complex arguments J Comput Phys 143 1 doi 10 1006 jcph 1998 5975 MR 1624704 Chaudhry M Aslam Zubair S M 1995 On the decomposition of generalized incomplete Gamma functions with applications to Fourier transforms J Comput Appl Math 59 101 doi 10 1016 0377 0427 94 00026 w MR 1346414 DiDonato Armido R Morris Jr Alfred H Sep 1987 ALGORITHM 654 FORTRAN subroutines for computing the incomplete gamma function ratios and their inverse ACM Transactions on Mathematical Software 13 3 doi 10 1145 29380 214348 See also www netlib org toms 654 Fruchtl H Otto P 1994 A new algorithm for the evaluation of the incomplete Gamma Function on vector computers ACM Trans Math Softw 20 4 doi 10 1145 198429 198432 Gautschi Walter 1998 The incomplete gamma function since Tricomi Atti Convegni Lincei 147 MR 1737497 Gautschi Walter 1999 A Note on the recursive calculation of Incomplete Gamma Functions ACM Trans Math Softw 25 1 doi 10 1145 305658 305717 MR 1697463 Gradshteyn Izrail Solomonovich Ryzhik Iosif Moiseevich Geronimus Yuri Veniaminovich Tseytlin author first5 Alan Michail Yulyevich Jeffrey 2015 8 35 U Zwillinger Daniel Moll Victor Hugo red Table of Integrals Series and Products English vid 8 Academic Press Inc ISBN 978 0 12 384933 5 LCCN 2014010276 Jones William B Thron W J 1985 On the computation of incomplete gamma functions in the complex domain J Comp Appl Math 12 13 doi 10 1016 0377 0427 85 90034 2 MR 0793971 Mathar Richard J 2004 Numerical representation of the incomplete gamma function of complex valued argument Numerical Algorithms 36 3 doi 10 1023 B NUMA 0000040063 91709 5 MR 2091195 Miller Allen R Moskowitz Ira S 1998 On certain Generalized incomplete Gamma functions J Comput Appl Math 91 2 doi 10 1016 s0377 0427 98 00031 4 Paris R B 2002 A uniform asymptotic expansion for the incomplete gamma function J Comput Appl Math 148 2 doi 10 1016 S0377 0427 02 00553 8 MR 1936142 Press WH Teukolsky SA Vetterling WT Flannery BP 2007 Section 6 2 Incomplete Gamma Function and Error Function Numerical Recipes The Art of Scientific Computing vid 3 New York Cambridge University Press ISBN 978 0 521 88068 8 Takenaga Roy 1966 On the Evaluation of the Incomplete Gamma Function Math Comp 20 96 doi 10 1090 S0025 5718 1966 0203911 3 MR 0203911 Temme Nico 1975 Uniform Asymptotic Expansions of the Incomplete Gamma Functions and the Incomplete Beta Function Math Comp 29 132 doi 10 1090 S0025 5718 1975 0387674 2 MR 0387674 Terras Riho 1979 The determination of incomplete Gamma Functions through analytic integration J Comp Phys 31 doi 10 1016 0021 9991 79 90066 4 MR 0531128 Tricomi Francesco G 1950 Sulla funzione gamma incompleta Ann Mat Pura Appl 31 doi 10 1007 BF02428264 MR 0047834 Tricomi F G 1950 Asymptotische Eigenschaften der unvollst Gammafunktion Math Zeitsch 53 2 doi 10 1007 bf01162409 MR 0045253 van Deun Joris Cools Ronald 2006 A stable recurrence for the incomplete gamma function with imaginary second argument Numer Math 104 doi 10 1007 s00211 006 0026 1 MR 2249673 Winitzki Serge 2003 Computing the incomplete gamma function to arbitrary precision Lect Not Comp Sci 2667 doi 10 1007 3 540 44839 x 83 MR 2110953 Weisstein Eric W Incomplete Gamma Function angl na sajti Wolfram MathWorld Otrimano z https uk wikipedia org w index php title Nepovna gamma funkciya amp oldid 42121025 Pohidni