www.wikidata.uk-ua.nina.az
U Vikipediyi ye statti pro inshi znachennya cogo termina Granicya matematika Granicya funkciyi v tochci granichnij dlya oblasti viznachennya funkciyi nazivayetsya take chislo do yakogo znachennya danoyi funkciyi pryamuye pri spryamuvanni yiyi argumentu do ciyeyi tochki Odne z osnovopolozhnih ponyat matematichnogo analizu x displaystyle x sin x x displaystyle frac sin x x 1 0 841471 0 1 0 998334 0 01 0 999983 Hocha funkciya sin x x displaystyle frac sin x x v nuli ne viznachena prote koli x displaystyle x nablizhayetsya do nulya yiyi znachennya staye yak zavgodno blizkim do 1 Inshimi slovami granicya ciyeyi funkciyi v nuli dorivnyuye 1 Zmist 1 Istoriya 2 Oznachennya 2 1 Oznachennya za Koshi 2 2 Oznachennya za Gejne 3 Odnostoronni granici 3 1 Prikladi 3 1 1 Vidsutnist odnostoronnih granic 3 1 2 Nerivnist odnostoronnih granic 3 1 3 Isnuvannya granici lishe v odnij tochci 3 1 4 Isnuvannya granici v zlichennij kilkosti tochok 4 Granici pov yazani z neskinchennistyu 4 1 Granicya v neskinchennosti 4 1 1 Granicya v neskinchennosti za Koshi 4 1 2 Granicya v neskinchennosti za Gejne 4 2 Neskinchenni granici 5 Vlastivosti 5 1 Granicya kompoziciyi funkcij 5 2 Pravilo Lopitalya 6 Osnovni prikladi granic funkcij v tochci 6 1 Racionalni funkciyi 6 2 Trigonometrichni funkciyi 6 3 Eksponencialni funkciyi 6 4 Logarifmichni funkciyi 7 Uzagalnennya na metrichni prostori 8 Uzagalnennya na topologichni prostori 9 Div takozh 10 Dzherela 11 VinoskiIstoriya RedaguvatiNezvazhayuchi na te sho matematichnij analiz rozvivavsya u 17 mu ta 18 mu stolittyah suchasna ideya granici funkciyi pohodit vid Bernard Bolcano yakij u 1817 roci vviv osnovi tehniki epsilon delta dlya viznachennya neperervnih funkcij Prote jogo roboti za zhittya ne buli vidomimi 1 U svoyij knizi Cours d analyse 1821 roku Ogyusten Luyi Koshi obmirkovuvav zminni velichini neskinchenno mali ta granici viznachiv neperervnist y f x displaystyle y f x nbsp skazavshi sho neskinchenno mala zmina x obov yazkovo prizvodit do neskinchenno maloyi zmini u pri comu vikoristovuvav stroge viznachennya epsilon delta v dovedennyah 2 U 1861 roci Vejyershtras vpershe vviv viznachennya granici v poznachennyah epsilon delta u tomu viglyadi yakij zazvichaj zapisuyut sogodni 3 Vin takozh vviv poznachennya lim displaystyle lim nbsp ta lim x x 0 displaystyle text lim x to x 0 nbsp 4 Suchasne poznachennya z rozmishennyam strilki znizu lim x x 0 displaystyle lim limits x to x 0 nbsp vviv Godfri Garold Gardi u svoyij knizi Kurs chistoyi matematiki v 1908 roci 5 Oznachennya RedaguvatiIsnuye kilka rivnosilnih viznachen granici funkciyi v tochci sered nih ye sformulovani Koshi ta Gejne Nehaj A R displaystyle A subset mathbb R nbsp prichomu A displaystyle A neq emptyset nbsp i x 0 displaystyle x 0 nbsp granichna tochka mnozhini A displaystyle A nbsp U podalshomu budemo rozglyadati funkciyi f A R displaystyle f A to mathbb R nbsp Cherez B x 0 d displaystyle B x 0 delta nbsp poznachimo d displaystyle delta nbsp okil tochki x 0 displaystyle x 0 nbsp B x 0 d x 0 d x 0 d displaystyle B x 0 delta x 0 delta x 0 delta nbsp Oznachennya za Koshi Redaguvati Chislo a displaystyle a nbsp nazivayetsya graniceyu funkciyi f displaystyle f nbsp v tochci x 0 displaystyle x 0 nbsp yaksho e gt 0 d d e gt 0 x A B x 0 d x 0 f x a lt e displaystyle forall varepsilon gt 0 quad exists delta delta varepsilon gt 0 quad forall x in A cap B x 0 delta setminus x 0 f x a lt varepsilon nbsp Poznachennya a lim x x 0 f x displaystyle a lim x to x 0 f x nbsp abo f x a displaystyle f x to a nbsp pri x x 0 displaystyle x to x 0 nbsp Pid e displaystyle varepsilon nbsp i d displaystyle delta nbsp mozhna rozumiti yak pohibku ta vidstan vidpovidno Faktichno Koshi vikoristovuvav e displaystyle varepsilon nbsp yak poznachennya dlya pohibki u deyakih svoyih robotah 2 a u svoyemu viznachenni neperervnosti vin vikoristovuvav neskinchenno malu a displaystyle alpha nbsp a ne e displaystyle varepsilon nbsp chi d displaystyle delta nbsp U cih poznachennyah pohibka e displaystyle varepsilon nbsp obchislennya znachennya granici zmenshuyetsya pri zmenshenni vidstani d displaystyle delta nbsp do granichnoyi tochki Oznachennya za Gejne Redaguvati Chislo p displaystyle p nbsp nazivayetsya graniceyu funkciyi f displaystyle f nbsp v tochci x 0 displaystyle x 0 nbsp yaksho dlya dovilnoyi poslidovnosti x n n 1 A displaystyle left x n right n 1 infty subset A nbsp x n x 0 displaystyle x n neq x 0 nbsp pri n N displaystyle n in mathbb N nbsp sho zbigayetsya do chisla x 0 displaystyle x 0 nbsp vidpovidna poslidovnist znachen funkciyi f x n n 1 displaystyle left f left x n right right n 1 infty nbsp zbizhna i maye graniceyu odne i tezh same chislo p displaystyle p nbsp Odnostoronni granici RedaguvatiDokladnishe Odnostoronnya granicya nbsp Odnostoronni granici ne rivni Otzhe granici pri x x0 ne isnuye Odnostoronnya granicya ce granicya funkciyi odniyeyi zminnoyi v deyakij tochci koli argument pryamuye do znachennya argumentu u cij tochci okremo zi storoni bilshih argumentiv pravostoronnya granicya abo zi storoni menshih argumentiv livostoronnya granicya Oznachennya pravostoronnoyi granici Nehaj A R displaystyle A subset mathbb R nbsp i x 0 displaystyle x 0 nbsp granichna tochka mnozhini A displaystyle A nbsp taki sho g gt 0 x 0 x 0 g A displaystyle exists gamma gt 0 x 0 x 0 gamma subset A nbsp Chislo p displaystyle p nbsp nazivayetsya pravostoronnoyu graniceyu funkciyi f displaystyle f nbsp v tochci x 0 displaystyle x 0 nbsp yaksho e gt 0 d gt 0 x x 0 x 0 d f x p lt e displaystyle forall varepsilon gt 0 exists delta gt 0 forall x in x 0 x 0 delta f x p lt varepsilon nbsp Pravostoronnyu granicyu prijnyato poznachati nastupnim chinom lim x x 0 f x lim x x 0 0 f x lim x x 0 f x lim x x 0 f x displaystyle lim limits x to x 0 f x lim limits x to x 0 0 f x lim x downarrow x 0 f x lim x searrow x 0 f x nbsp Oznachennya livostoronnoyi granici Nehaj A R displaystyle A subset mathbb R nbsp i x 0 displaystyle x 0 nbsp granichna tochka mnozhini A displaystyle A nbsp taki sho g gt 0 x 0 g x 0 A displaystyle exists gamma gt 0 x 0 gamma x 0 subset A nbsp Chislo p displaystyle p nbsp nazivayetsya livostoronnoyu graniceyu funkciyi f displaystyle f nbsp v tochci x 0 displaystyle x 0 nbsp yaksho e gt 0 d gt 0 x x 0 d x 0 f x p lt e displaystyle forall varepsilon gt 0 exists delta gt 0 forall x in x 0 delta x 0 f x p lt varepsilon nbsp Dlya livostoronnoyi granici prijnyati taki poznachennya lim x x 0 f x lim x x 0 0 f x lim x x 0 f x lim x x 0 f x displaystyle lim limits x to x 0 f x lim limits x to x 0 0 f x lim x uparrow x 0 f x lim x nearrow x 0 f x nbsp Vikoristovuyutsya takozh nastupni skorochennya f x 0 displaystyle f left x 0 right nbsp i f x 0 0 displaystyle f left x 0 0 right nbsp dlya pravoyi granici f x 0 displaystyle f left x 0 right nbsp i f x 0 0 displaystyle f left x 0 0 right nbsp dlya livoyi granici Yaksho obidvi odnostoronni granici isnuyut v tochci x 0 displaystyle x 0 nbsp ta rivni v nij to mozhna pokazati sho lim x x 0 f x lim x x 0 f x lim x x 0 f x displaystyle lim limits x to x 0 f x lim limits x to x 0 f x lim limits x to x 0 f x nbsp Yaksho odnostoronni granici isnuyut v tochci x 0 displaystyle x 0 nbsp ale ne rivni to granici v tochci x 0 displaystyle x 0 nbsp ne isnuye Yaksho bud yaka odnostoronnya granicya ne isnuye to i granici takozh ne isnuye Prikladi Redaguvati Vidsutnist odnostoronnih granic Redaguvati nbsp Funkciya bez granici v tochci suttyevogo rozrivuFunkciya f x sin 5 x 1 x lt 1 0 x 1 0 1 x 1 x gt 1 displaystyle f x begin cases sin frac 5 x 1 amp x lt 1 0 amp x 1 frac 0 1 x 1 amp x gt 1 end cases nbsp ne maye granici v tochci x 0 1 displaystyle x 0 1 nbsp livostoronnya granicya ne isnuye cherez kolivalnij harakter funkciyi sinusa a pravostoronnya granicya ne isnuye cherez asimptotichnu povedinku obernenoyi funkciyi ale maye granicyu i kozhnij inshij tochci Funkciya Dirihle D x 1 x Q 0 x R Q displaystyle D x begin cases 1 amp x in mathbb Q 0 amp x in mathbb R setminus mathbb Q end cases nbsp ne maye granici v zhodnij tochci dijsnoyi pryamoyi Nerivnist odnostoronnih granic Redaguvati Funkciya f x 1 x lt 0 2 x 0 displaystyle f x begin cases 1 amp x lt 0 2 amp x geqslant 0 end cases nbsp maye granicyu dlya kozhnoyi nenulovoyi tochki x dorivnyuye 1 dlya vid yemnogo x i dorivnyuye 2 dlya dodatnogo x Odnak granici pri x 0 ne isnuye livostoronnya granicya dorivnyuye 1 a pravostoronnya 2 Isnuvannya granici lishe v odnij tochci Redaguvati Obidvi funkciyi f x x x Q 0 x R Q displaystyle f x begin cases x amp x in mathbb Q 0 amp x in mathbb R setminus mathbb Q end cases nbsp ta f x x x Q 0 x R Q displaystyle f x begin cases x amp x in mathbb Q 0 amp x in mathbb R setminus mathbb Q end cases nbsp mayut granicyu v tochci x 0 i vona dorivnyuye 0 V inshih tochka granici ne isnuye Isnuvannya granici v zlichennij kilkosti tochok Redaguvati Funkciya f x sin x x R Q 1 x Q displaystyle f x begin cases sin x amp x in mathbb R setminus mathbb Q 1 amp x in mathbb Q end cases nbsp maye granicyu v bud yakij tochci x p 2 2 p n displaystyle x frac pi 2 2 pi n nbsp de n Z displaystyle n in mathbb Z nbsp Granici pov yazani z neskinchennistyu RedaguvatiGranicya v neskinchennosti Redaguvati nbsp Granicya ciyeyi funkciyi pri x displaystyle x to infty nbsp isnuye Granicya funkciyi v neskinchennosti viznachaye povedinku znachen funkciyi koli modul yiyi argumenta staye neskinchenno velikim Isnuyut rizni oznachennya takih granic ale voni rivgosilni mizh soboyu Granicya v neskinchennosti za Koshi Redaguvati Nehaj A R displaystyle A subset mathbb R nbsp A displaystyle A nbsp neobmezhena zverhu mnozhina f A R displaystyle f A to mathbb R nbsp Chislo a displaystyle a nbsp nazivayetsya graniceyu funkciyi f displaystyle f nbsp pri x displaystyle x to infty nbsp yaksho e gt 0 d d e R x A d f x a lt e displaystyle forall varepsilon gt 0 exists delta delta varepsilon in mathbb R forall x in A cap delta infty f x a lt varepsilon nbsp Poznachennya a lim x f x displaystyle a lim x to infty f x nbsp abo f x a displaystyle f x to a nbsp pri x displaystyle x to infty nbsp Nehaj A R displaystyle A subset mathbb R nbsp A displaystyle A nbsp neobmezhena znizu mnozhina f A R displaystyle f A to mathbb R nbsp Chislo a displaystyle a nbsp nazivayetsya graniceyu funkciyi f displaystyle f nbsp pri x displaystyle x to infty nbsp yaksho e gt 0 d d e R x A d f x a lt e displaystyle forall varepsilon gt 0 exists delta delta varepsilon in mathbb R forall x in A cap infty delta f x a lt varepsilon nbsp Poznachennya a lim x f x displaystyle a lim x to infty f x nbsp abo f x a displaystyle f x to a nbsp pri x displaystyle x to infty nbsp Granicya v neskinchennosti za Gejne Redaguvati Nehaj A R displaystyle A subset mathbb R nbsp A displaystyle A nbsp neobmezhena zverhu mnozhina f A R displaystyle f A to mathbb R nbsp Chislo p displaystyle p nbsp nazivayetsya graniceyu funkciyi f displaystyle f nbsp pri x displaystyle x to infty nbsp yaksho dlya dovilnoyi poslidovnosti x n n 1 A displaystyle left x n right n 1 infty subset A nbsp yaka pryamuye do displaystyle infty nbsp pri n displaystyle n to infty nbsp vidpovidna poslidovnist znachen funkciyi f x n n 1 displaystyle left f left x n right right n 1 infty nbsp zbizhna i maye graniceyu odne i tezh same chislo p displaystyle p nbsp Nehaj A R displaystyle A subset mathbb R nbsp A displaystyle A nbsp neobmezhena znizu mnozhina f A R displaystyle f A to mathbb R nbsp Chislo p displaystyle p nbsp nazivayetsya graniceyu funkciyi f displaystyle f nbsp pri x displaystyle x to infty nbsp yaksho dlya dovilnoyi poslidovnosti x n n 1 A displaystyle left x n right n 1 infty subset A nbsp yaka pryamuye do displaystyle infty nbsp pri n displaystyle n to infty nbsp vidpovidna poslidovnist znachen funkciyi f x n n 1 displaystyle left f left x n right right n 1 infty nbsp zbizhna i maye graniceyu odne i tezh same chislo p displaystyle p nbsp Neskinchenni granici Redaguvati Dlya funkciyi znachennya yakoyi zrostayut abo spadayut bezmezhno tobto funkciya rozhoditsya zvichajna granicya ne isnuye U comu vipadku mozhna vvesti granici z neskinchennimi znachennyami Nehaj A R displaystyle A subset mathbb R nbsp x 0 displaystyle x 0 nbsp granichna tochka mnozhini A displaystyle A nbsp i f A R displaystyle f A to mathbb R nbsp Kazhut sho f displaystyle f nbsp pryamuye do plyus neskinchennosti v tochci x 0 displaystyle x 0 nbsp yaksho C R d d C gt 0 x A B x 0 d x 0 f x gt C displaystyle forall C in mathbb R exists delta delta C gt 0 forall x in A cap B x 0 delta setminus x 0 f x gt C nbsp Poznachennya lim x x 0 f x displaystyle lim x to x 0 f x infty nbsp abo f x displaystyle f x to infty nbsp pri x x 0 displaystyle x to x 0 nbsp Kazhut sho f displaystyle f nbsp pryamuye do minus neskinchennosti v tochci x 0 displaystyle x 0 nbsp yaksho C R d d C gt 0 x A B x 0 d x 0 f x lt C displaystyle forall C in mathbb R exists delta delta C gt 0 forall x in A cap B x 0 delta setminus x 0 f x lt C nbsp Poznachennya lim x x 0 f x displaystyle lim x to x 0 f x infty nbsp abo f x displaystyle f x to infty nbsp pri x x 0 displaystyle x to x 0 nbsp Mozhna poyednuvati ideyi dekilkoh oznachen granic v tochci za Koshi prirodnim chinom shob otrimati viznachennya dlya riznih kombinacij napriklad lim x f x lim x a f x displaystyle lim x to infty f x infty lim x to a f x infty nbsp Tak samo mozhna poyednuvati oznachennya za Gejne Priklad lim x 0 ln x displaystyle lim x to 0 ln x infty nbsp Vlastivosti RedaguvatiNehaj A R displaystyle A subset mathbb R nbsp a displaystyle a nbsp granichna tochka A displaystyle A nbsp zadani funkciyi f g A R displaystyle f g A to mathbb R nbsp ta isnuyut granici lim x x 0 f x displaystyle lim x to x 0 f x nbsp lim x x 0 g x displaystyle lim x to x 0 g x nbsp Todi pri takih umovah granicya funkciyi v tochci maye nastupni vlastivosti Yaksho lim x x 0 f x a 1 displaystyle lim x to x 0 f x a 1 nbsp i lim x x 0 f x a 2 displaystyle lim x to x 0 f x a 2 nbsp to a 1 a 2 displaystyle a 1 a 2 nbsp Yaksho lim x x 0 f x a displaystyle lim x to x 0 f x a nbsp i b R a lt b displaystyle b in mathbb R a lt b nbsp to d gt 0 x A B x 0 d x 0 f x lt b displaystyle exists delta gt 0 forall x in A cap B x 0 delta setminus x 0 f x lt b nbsp Yaksho x A f x g x displaystyle forall x in A f x leqslant g x nbsp to lim x x 0 f x lim x x 0 g x displaystyle lim x to x 0 f x leqslant lim x to x 0 g x nbsp Teorema pro arifmetichni diyi C R lim x x 0 C f x C lim x x 0 f x displaystyle forall C in mathbb R lim x to x 0 Cf x C lim x to x 0 f x nbsp lim x x 0 f x g x lim x x 0 f x lim x x 0 g x displaystyle lim x to x 0 f x g x lim x to x 0 f x lim x to x 0 g x nbsp lim x x 0 f x g x lim x x 0 f x lim x x 0 g x displaystyle lim x to x 0 f x g x lim x to x 0 f x cdot lim x to x 0 g x nbsp Yaksho dodatkovo lim x x 0 g x 0 displaystyle lim x to x 0 g x neq 0 nbsp to lim x x 0 f x g x lim x x 0 f x lim x x 0 g x displaystyle lim x to x 0 frac f x g x frac lim limits x to x 0 f x lim limits x to x 0 g x nbsp lim x x 0 f x g x lim x x 0 f x lim x x 0 g x displaystyle lim x to x 0 left f x g x right left lim x to x 0 f x right lim limits x to x 0 g x nbsp yaksho prava chastina mozhliva Teorema pro arifmetichni diyi takozh dijsna dlya odnostoronnih granic u tomu chisli koli granicya dorivnyuye displaystyle infty nbsp abo displaystyle infty nbsp U kozhnij rivnosti vishe koli odna z granic pravoruch dorivnyuye displaystyle infty nbsp abo displaystyle infty nbsp granicya livoruch inodi vse she mozhe viznachatisya nastupnimi pravilami q yaksho q q yaksho q gt 0 q yaksho q lt 0 q 0 yaksho q i q q 0 yaksho q lt 0 q yaksho q gt 0 q 0 yaksho 0 lt q lt 1 q yaksho q gt 1 q yaksho 0 lt q lt 1 q 0 yaksho q gt 1Granicya kompoziciyi funkcij Redaguvati U zagalnomu vid togo sho lim y b f y c displaystyle lim y to b f y c nbsp ta lim x a g x b displaystyle lim x to a g x b nbsp ne viplivaye sho lim x a f g x c displaystyle lim x to a f g x c nbsp de f A R displaystyle f A to mathbb R nbsp i g B R displaystyle g B to mathbb R nbsp b granichna tochka mnozhini A a granichna tochka mnozhini B Ce pravilo lancyuga diye yaksho vikonuyetsya odna z nastupnih dodatkovih umov f b c displaystyle f b c nbsp tobto f neperervna v b d gt 0 x B B a d g x b gt 0 displaystyle exists delta gt 0 forall x in B cap B a delta g x b gt 0 nbsp tobto g ne prijmaye znachennya b poblizu a Dlya prikladu rozglyanemo taku funkciyu yaka porushuye obidvi umovi f x g x 0 x 0 1 x 0 displaystyle f x g x begin cases 0 amp x neq 0 1 amp x 0 end cases nbsp Oskilki tochka 0 ye rozrivom yakij mozhna usunuti to lim x a f x 0 displaystyle lim x to a f x 0 nbsp dlya vsih a R displaystyle a in mathbb R nbsp Takim chinom nayivne pravilo lancyuga peredbachaye sho granicya f f x displaystyle f f x nbsp dorivnyuye 0 Odnak f f x 1 x 0 0 x 0 displaystyle f f x begin cases 1 amp x neq 0 0 amp x 0 end cases nbsp i tomu lim x a f f x 1 displaystyle lim x to a f f x 1 nbsp dlya vsih a R displaystyle a in mathbb R nbsp Pravilo Lopitalya Redaguvati Dokladnishe Pravilo LopitalyaCe pravilo vikoristovuye pohidni shob rozkriti neviznachenosti viglyadu 0 0 abo i zastosovuyetsya lishe do takih vipadkiv Nehaj f x i g x viznacheni na vidkritomu intervali I sho mistit granichnu tochku c yaki zadovolnyayut nastupni umovi lim x c f x lim x c g x 0 displaystyle lim x to c f x lim x to c g x 0 nbsp abo lim x c f x lim x c g x displaystyle lim x to c f x pm lim x to c g x pm infty nbsp f displaystyle f nbsp i g displaystyle g nbsp diferencijovni na I c displaystyle I setminus c nbsp g x 0 displaystyle g prime x neq 0 nbsp dlya vsih x I c displaystyle x in I setminus c nbsp lim x c f x g x displaystyle lim x to c frac f prime x g prime x nbsp isnuye Todi lim x c f x g x lim x c f x g x displaystyle lim x to c frac f x g x lim x to c frac f prime x g prime x nbsp Napriklad lim x 0 sin 2 x sin 3 x lim x 0 2 cos 2 x 3 cos 3 x 2 1 3 1 2 3 displaystyle lim x to 0 frac sin 2x sin 3x lim x to 0 frac 2 cos 2x 3 cos 3x frac 2 cdot 1 3 cdot 1 frac 2 3 nbsp Osnovni prikladi granic funkcij v tochci RedaguvatiDokladnishe Spisok granicRacionalni funkciyi Redaguvati Dlya cilogo nevid yemnogo chisla n displaystyle n nbsp ta konstant a 1 a 2 a 3 a n displaystyle a 1 a 2 a 3 ldots a n nbsp i b 1 b 2 b 3 b n displaystyle b 1 b 2 b 3 ldots b n nbsp lim x a 1 x n a 2 x n 1 a 3 x n 2 a n b 1 x n b 2 x n 1 b 3 x n 2 b n a 1 b 1 displaystyle lim x to infty frac a 1 x n a 2 x n 1 a 3 x n 2 a n b 1 x n b 2 x n 1 b 3 x n 2 b n frac a 1 b 1 nbsp Ce mozhna dovesti podilivshi yak chiselnik tak i znamennik na x n displaystyle x n nbsp Yaksho chiselnik ye polinomom bilshogo stepenya nizh znamennik to u comu vipadku racionalna funkciya pryamuye do displaystyle infty nbsp Yaksho znamennik bilshogo stepenya nizh chiselnik to granicya dorivnyuye 0 Trigonometrichni funkciyi Redaguvati lim x 0 sin x x 1 displaystyle lim x to 0 frac sin x x 1 nbsp persha chudova granicya lim x 0 1 cos x x 0 displaystyle lim x to 0 frac 1 cos x x 0 nbsp Eksponencialni funkciyi Redaguvati lim x 0 1 x 1 x lim r 1 1 r r e displaystyle lim x to 0 1 x frac 1 x lim r to infty left 1 frac 1 r right r e nbsp druga chudova granicya lim x 0 e x 1 x 1 displaystyle lim x to 0 frac e x 1 x 1 nbsp lim x 0 e a x 1 b x a b displaystyle lim x to 0 frac e ax 1 bx frac a b nbsp lim x 0 c a x 1 b x a b ln c displaystyle lim x to 0 frac c ax 1 bx frac a b ln c nbsp lim x 0 x x 1 displaystyle lim x to 0 x x 1 nbsp Logarifmichni funkciyi Redaguvati lim x 0 ln 1 x x 1 displaystyle lim x to 0 frac ln 1 x x 1 nbsp lim x 0 ln 1 a x b x a b displaystyle lim x to 0 frac ln 1 ax bx frac a b nbsp lim x 0 log c 1 a x b x a b ln c displaystyle lim x to 0 frac log c 1 ax bx frac a b ln c nbsp Uzagalnennya na metrichni prostori RedaguvatiNehaj X r displaystyle X rho nbsp Y s displaystyle Y sigma nbsp metrichni prostori A X displaystyle A subset X nbsp x 0 displaystyle x 0 nbsp granichna tochka mnozhini A displaystyle A nbsp Element a Y displaystyle a in Y nbsp nazivayetsya graniceyu funkciyi f A Y displaystyle f A to Y nbsp v tochci x 0 displaystyle x 0 nbsp yaksho e gt 0 d d e gt 0 x A x x 0 r x x 0 lt d s f x a lt e displaystyle forall varepsilon gt 0 exists delta delta varepsilon gt 0 forall x in A x neq x 0 rho x x 0 lt delta sigma f x a lt varepsilon nbsp Takozh mozhna dati inshe ekvivalente oznachennya granici v tochci dlya metrichnih prostoriv analogichne do oznachennya za Gejne rozglyanutogo vishe Element p Y displaystyle p in Y nbsp nazivayetsya graniceyu funkciyi f A Y displaystyle f A to Y nbsp v tochci x 0 displaystyle x 0 nbsp dlya dovilnoyi poslidovnosti x n n 1 A displaystyle left x n right n 1 infty subset A nbsp x n x 0 displaystyle x n neq x 0 nbsp pri n N displaystyle n in mathbb N nbsp sho zbigayetsya do elementa x 0 X displaystyle x 0 in X nbsp vidpovidna poslidovnist znachen funkciyi f x n n 1 displaystyle left f left x n right right n 1 infty nbsp zbizhna i maye graniceyu odin i toj samij element p displaystyle p nbsp Najbilsh vazhlivimi ye nastupni vipadki X Y R displaystyle X Y mathbb R nbsp f A R displaystyle f A to mathbb R nbsp dijsna funkciya viznachena na mnozhini A displaystyle A nbsp dijsnih chisel X R n Y R displaystyle X mathbb R n Y mathbb R nbsp f A R displaystyle f A to mathbb R nbsp dijsna funkciya n zminnih X R n Y R m displaystyle X mathbb R n Y mathbb R m nbsp f A R displaystyle f A to mathbb R nbsp vektorna funkciya n zminnih X r displaystyle X rho nbsp metrichnij prostir Y R displaystyle Y mathbb R nbsp f A R displaystyle f A to mathbb R nbsp dijsna funkciya yaka zadana na mnozhini A displaystyle A nbsp metrichnogo prostoru Uzagalnennya na topologichni prostori RedaguvatiNehaj X t X displaystyle X tau X nbsp topologichnij prostir Y t Y displaystyle Y tau Y nbsp gausdorfiv topologichnij prostir A X displaystyle A subset X nbsp x 0 displaystyle x 0 nbsp granichna tochka mnozhini A displaystyle A nbsp Element a Y displaystyle a in Y nbsp nazivayetsya graniceyu funkciyi f A Y displaystyle f A to Y nbsp v tochci x 0 displaystyle x 0 nbsp yaksho V a t Y a V a U x 0 t X x 0 U x 0 f U x 0 A x 0 V a displaystyle forall V a in tau Y a in V a exists U x 0 in tau X x 0 in U x 0 f U x 0 cap A setminus x 0 subset V a nbsp Oznachennya analogichne do Gejne vzhe bude chastkovim vipadkom viznachinogo vishe a ne rivnosilnim jomu Vimoga shob prostir Y buv gausdorfovim mozhe buti poslablena do pripushennya sho Y ye prosto topologichnim prostorom ale todi granicya funkciyi mozhe ne buti yedinoyu Tomu vzhe ne mozhna bude govoriti pro granicyu funkciyi v tochci a skorishe pro mnozhinu granic u tochci Div takozh RedaguvatiGranicya poslidovnosti Verhnya i nizhnya granici Povtorna granicya Uzagalnena poslidovnist Stiskna teorema obchislennya granici shlyahom obmezhennya funkciyi mizh dvoma inshimi funkciyami Notaciya Landau notaciyi sho opisuyut asimptotichnu povedinku funkcij Asimptotichna rivnistDzherela RedaguvatiGrigorij Mihajlovich Fihtengolc Kurs diferencialnogo ta integralnogo chislennya 2023 1100 s ukr Dorogovcev A Ya Matematichnij analiz Pidruchnik U dvoh chastinah Chastina 1 Kiyiv Libid 1993 320 s ISBN 5 325 00380 1 Dorogovcev A Ya Matematichnij analiz Pidruchnik U dvoh chastinah Chastina 2 Kiyiv Libid 1994 304 s ISBN 5 325 00351 X Zavalo S T 1972 Elementi analizu Algebra mnogochleniv Kiyiv Radyanska shkola s 462 ukr M O Dzedzinskij Matematichnij Analiz dlya studentiv Listochok Ponyattya granici funkciyi Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 207 594 s Sutherland W A 1975 Introduction to Metric and Topological Spaces Oxford Oxford University Press ISBN 0 19 853161 3 Vinoski Redaguvati Felscher Walter 2000 Bolzano Cauchy Epsilon Delta American Mathematical Monthly 107 9 844 862 JSTOR 2695743 doi 10 2307 2695743 a b Grabiner Judith V 1983 Who Gave You the Epsilon Cauchy and the Origins of Rigorous Calculus American Mathematical Monthly 90 3 185 194 JSTOR 2975545 doi 10 2307 2975545 nayavna v Who Gave You the Epsilon Arhivovano 2012 10 04 u Wayback Machine ISBN 978 0 88385 569 0 ss 5 13 Takozh dostupna na storinci http www maa org pubs Calc articles ma002 pdf Sinkevich G I 2017 Historia epsylontyki Antiquitates Mathematicae Cornell University 10 arXiv 1502 06942 doi 10 14708 am v10i0 805 Burton David M 1997 The History of Mathematics An introduction vid Third New York McGraw Hill s 558 559 ISBN 978 0 07 009465 9 Miller Jeff 1 grudnya 2004 Earliest Uses of Symbols of Calculus Procitovano 18 grudnya 2008 Otrimano z https uk wikipedia org w index php title Granicya funkciyi v tochci amp oldid 38689130