www.wikidata.uk-ua.nina.az
U Vikipediyi ye statti pro inshi znachennya cogo termina Modul U matematici absolyutne znachennya abo modul dijsnogo chisla x displaystyle x ce nevid yemne znachennya x displaystyle x bez vrahuvannya jogo znaku Poznachayetsya x displaystyle x Grafik modulya funkciyi dlya dijsnih chisel Absolyutne znachennya chisla mozhe rozglyadatisya yak jogo vidstan vid nulya A same x x displaystyle x x yaksho x displaystyle x dodatne ta x x displaystyle x x yaksho x displaystyle x vid yemne znachennya u comu vipadku x displaystyle x dodatne a takozh 0 0 displaystyle 0 0 Napriklad absolyutne znachennya chisla 3 dorivnyuye 3 a absolyutne znachennya chisla 3 displaystyle 3 takozh dorivnyuye 3 displaystyle 3 Absolyutne znachennya chisla takozh mozhna rozglyadati yak vidstan vid nulya Uzagalnennya absolyutnogo znachennya dlya dijsnih chisel zustrichayetsya u riznomanitnih galuzyah matematiki Napriklad absolyutne znachennya viznachayetsya dlya kompleksnih chisel kvaternioniv uporyadkovanih kilec poliv i vektornih prostoriv Modul tisno pov yazanij z ponyattyam velichini vidstani i normi v riznih matematichnih i fizichnih kontekstah Zmist 1 Terminologiya ta poznachennya 2 Viznachennya ta vlastivosti 2 1 Chisla 2 2 Kompleksni chisla 2 3 Dovedennya kompleksnoyi nerivnosti trikutnika 3 Funkciya absolyutnogo znachennya 3 1 Zv yazok iz funkciyeyu sign 3 2 Pohidna 3 3 Pervisna 4 Vidstan 5 Uzagalnennya 5 1 Uporyadkovani kilcya 5 2 Polya 5 3 Vektorni prostori 5 4 Algebra kompozicij 6 Primitki 7 Literatura 8 Zovnishni posilannya 9 Div takozhTerminologiya ta poznachennya RedaguvatiU 1806 roci Zhan Robert Argan en uviv termin modul sho poznachaye francuzku odinicyu vimiru zokrema dlya kompleksnogo absolyutnogo znachennya 1 2 i v 1886 roci cej termin buv zapozichenij u anglijsku movu yak latinskij ekvivalent modulya 1 U comu sensi termin absolyutne znachennya vikoristovuvavsya z 1806 roku francuzkoyu movoyu 3 i z 1857 roku anglijskoyu movoyu 4 Poznachennya x displaystyle x nbsp z vikoristannyam vertikalnih risok bulo vvedeno Karlom Vejyershtrassom u 1841 roci 5 Inshi nazvi dlya absolyutnogo znachennya vklyuchayut chislove znachennya 1 i velichinu 1 U movah programuvannya ta obchislyuvalnih programnih paketah absolyutne znachennya x displaystyle x nbsp zazvichaj poznachayetsya a b s x displaystyle rm abs x nbsp abo za dopomogoyu inshih podibnih viraziv Poznachennya vertikalnih risok takozh vikoristovuyetsya v ryadi inshih matematichnih kontekstiv napriklad pri zastosuvanni do mnozhini vono oznachaye jogo potuzhnist stosovno matrici vono poznachaye yiyi viznachnik Vertikalni riski poznachayut absolyutne znachennya lishe dlya algebrayichnih ob yektiv dlya yakih viznacheno ponyattya absolyutnogo znachennya osoblivo dlya elementa normovanoyi algebri z dilennyam napriklad dlya dijsnogo chisla kompleksnogo chisla abo kvaterniona Tisno pov yazanim ale inshim ponyattyam ye vikoristannya vertikalnih risok dlya evklidovoyi normi 6 abo dlya prostoru neperervnih funkcij 7 vektora v R n displaystyle mathbb R n nbsp hocha podvijni vertikalni riski z nizhnim indeksom znizu 2 displaystyle cdot 2 nbsp abo displaystyle cdot infty nbsp ye bilsh poshirenoyu i mensh neodnoznachnoyu formoyu zapisu Viznachennya ta vlastivosti RedaguvatiChisla Redaguvati Dlya bud yakogo dijsnogo chisla x displaystyle x nbsp absolyutne znachennya abo modul poznachayetsya x displaystyle x nbsp i viznachayetsya yak 8 x x pri x 0 x pri x lt 0 displaystyle begin aligned x begin cases x amp text pri x geq 0 x amp text pri x lt 0 end cases end aligned nbsp Takim chinom absolyutne znachennya chisla x displaystyle x nbsp abo dodatnye abo nul ale nikoli ne ye vid yemnim Yaksho chislo x displaystyle x nbsp vid yemne x lt 0 displaystyle x lt 0 nbsp to jogo modul zavzhdi dodatnij x x gt 0 displaystyle x x gt 0 nbsp V analitichnij geometriyi absolyutne znachennya dijsnogo chisla ce vidstan vid cogo chisla do nulya uzdovzh dijsnoyi pryamoyi a v bilsh zagalnomu sensi absolyutne znachennya riznici dvoh dijsnih chisel ce vidstan mizh nimi Dijsno ponyattya abstraktnoyi funkciyi vidstani v matematici mozhna rozglyadati yak uzagalnennya absolyutnogo znachennya riznici div Vidstan nizhche Oskilki simvol kvadratnogo korenya predstavlyaye soboyu yedinij nevid yemnij kvadratnij korin vid chisla bilshogo za 0 abo 0 to ce oznachaye sho x x 2 displaystyle begin aligned x sqrt x 2 end aligned nbsp ekvivalentno navedenomu vishe oznachennyu i mozhe vikoristovuvatisya yak alternativne oznachennya absolyutnogo znachennya dlya dijsnih chisel 9 Absolyutne znachennya maye chotiri nastupni fundamentalni vlastivosti a displaystyle a nbsp i b displaystyle b nbsp dijsni chisla yaki vikoristovuyutsya dlya uzagalnennya danogo ponyattya dlya inshih oblastyah a 0 displaystyle a geq 0 nbsp nevid yemnist a 0 a 0 displaystyle a 0 iff a 0 nbsp dodatna viznachenist a b a b displaystyle ab a b nbsp multiplikativnist a b a b displaystyle a b leq a b nbsp napivaditivnist en zokrema nerivnist trikutnikaNevid yemnist dodatna viznachenist ta multiplikativnist ochevidni z oznachennya Shob pobachiti sho maye misce napivaditivnist spochatku zauvazhimo sho odna z dvoh alternativ viboru dlya s displaystyle s nbsp yak 1 displaystyle 1 nbsp abo 1 displaystyle 1 nbsp garantuye sho s a b a b 0 displaystyle s cdot a b a b geq 0 nbsp Teper oskilki 1 x x displaystyle 1 cdot x leq x nbsp ta 1 x x displaystyle 1 cdot x leq x nbsp to zalezhno vid znachennya s displaystyle s nbsp dlya vsih dijsnih x displaystyle x nbsp vikonuyetsya umova s x x displaystyle s cdot x leq x nbsp Otzhe a b s a b s a s b a b displaystyle a b s cdot a b s cdot a s cdot b leq a b nbsp sho j potribno bulo pokazati Dlya uzagalnennya cih argumentiv na vipadok kompleksnih chisel div Dovedennya nerivnosti trikutnika dlya kompleksnih chisel Nizhche navedeno deyaki vlastivosti modulya yaki ye naslidkami sho viplivayut iz oznachennya abo z vishezaznachenih chotiroh vlastivostej a a displaystyle big a big a nbsp idempotentnist absolyutne znachennya absolyutnogo znachennya ye absolyutnim znachennyam a a displaystyle a a nbsp parnist simetrichnist grafika en a b 0 a b displaystyle a b 0 iff a b nbsp totozhnist nerozriznih en ekvivalent dodatno viznachenosti a b a c c b displaystyle a b leq a c c b nbsp nerivnist trikutnika ekvivalentna napivaditivnosti a b a b displaystyle left frac a b right frac a b nbsp yaksho b 0 displaystyle b neq 0 nbsp zberezhennya dilennya ekvivalentno multiplikativnosti a b a b displaystyle a b geq big a b big nbsp obernena nerivnist trikutnika ekvivalentna napivaditivnosti Dvi inshi korisni vlastivosti shodo nerivnostej a b b a b displaystyle begin aligned a leq b iff b leq a leq b end aligned nbsp a b a b abo a b displaystyle begin aligned a geq b iff a leq b text abo a geq b end aligned nbsp Dani vlastivosti mozhut vikoristovuvatisya dlya rozv yazuvannya nerivnostej pov yazanih iz absolyutnim znachennyam x displaystyle x nbsp Napriklad x 3 9 9 x 3 9 6 x 12 displaystyle begin aligned x 3 leq 9 amp iff 9 leq x 3 leq 9 amp iff 6 leq x leq 12 end aligned nbsp Absolyutne znachennya yak vidstan vid nulya vikoristovuyetsya dlya viznachennya absolyutnoyi riznici en mizh dovilnimi dijsnimi chislami ye standartnoyu metrikoyu na mnozhini dijsnih chisel Kompleksni chisla Redaguvati Oskilki mnozhina kompleksnih chisel ne ye vporyadkovanoyu oznachennya navedene vishe dlya dijsnogo absolyutnogo znachennya ne mozhna bezposeredno vikoristovuvati u vipadku kompleksnih chisel Odnak geometrichne tlumachennya absolyutnogo znachennya dijsnogo chisla yak jogo vidstani vid 0 mozhna uzagalniti Absolyutne znachennya kompleksnogo chisla viznachayetsya evklidovoyu vidstannyu vid jogo vidpovidnoyi tochki v kompleksnij ploshini do pochatku koordinat Cyu vidstan mozhna obchisliti vikoristovuyuchi teoremu Pifagora dlya bud yakogo kompleksnogo chisla z x i y displaystyle begin aligned z x iy end aligned nbsp de x displaystyle x nbsp i y displaystyle y nbsp dijsni chisla absolyutne znachennya abo modul chisla z displaystyle z nbsp poznachayetsya z displaystyle z nbsp i viznachayetsya yak 10 z R e z 2 I m z 2 x 2 y 2 displaystyle begin aligned z sqrt rm Re z 2 rm Im z 2 sqrt x 2 y 2 end aligned nbsp de R e z x displaystyle rm Re z x nbsp i I m z y displaystyle rm Im z y nbsp poznachayut dijsnu ta uyavnu chastini chisla z displaystyle z nbsp vidpovidno Yaksho uyavna chastina y displaystyle y nbsp dorivnyuye nulyu to ce oznachennya zbigayetsya z oznachennyam absolyutnogo znachennya dijsnogo chisla x displaystyle x nbsp Yaksho kompleksne chislo z displaystyle z nbsp zadano u polyarnih koordinatah z r e i 8 displaystyle begin aligned z r rm e i theta end aligned nbsp de r R e z 2 I m z 2 0 displaystyle r sqrt rm Re z 2 rm Im z 2 geq 0 nbsp i 8 a r g z displaystyle theta rm arg z nbsp argument en abo faza chisla z displaystyle z nbsp to jogo absolyutne znachennya dorivnyuye z r displaystyle begin aligned z r end aligned nbsp Oskilki dobutok bud yakogo kompleksnogo chisla z displaystyle z nbsp ta jogo kompleksno spryazhenogo z x i y displaystyle bar z x iy nbsp z tim zhe absolyutnim znachennyam ce zavzhdi nevid yemne dijsne chislo x 2 y 2 displaystyle x 2 y 2 nbsp to absolyutne znachennya kompleksnogo chisla mozhna zruchno viraziti yak z z z displaystyle begin aligned z sqrt z cdot bar z end aligned nbsp sho nagaduye alternativne oznachennya dlya dijsnih chisel x x x displaystyle x sqrt x cdot x nbsp nbsp Absolyutnim znachennyam kompleksnogo chisla z displaystyle z nbsp ye vidstan r displaystyle r nbsp vid chisla z displaystyle z nbsp do pochatku koordinat Z risunku takozh vidno sho chisla z displaystyle z nbsp ta z displaystyle bar z nbsp mayut rivni absolyutni znachennya Dlya kompleksnogo absolyutnogo znachennya takozh vikonuyutsya chotiri osnovni vlastivosti sho navedeni vishe dlya dijsnogo absolyutnogo znachennya Movoyu teoriyi grup vlastivist multiplikativnosti mozhna perefrazuvati nastupnim chinom absolyutne znachennya ce grupovij gomomorfizm z multiplikativnoyi grupi en kompleksnih chisel v grupu z mnozhennyam dodatnih dijsnih chisel 11 Vazhlivo sho vlastivist napivaditivnosti en nerivnist trikutnika uzagalnyuyetsya na bud yakij skinchennij nabir z n displaystyle n nbsp kompleksnih chisel z k k 1 n displaystyle z k k 1 n nbsp nastupnim chinom k 1 n k 1 n z k displaystyle begin aligned left sum k 1 n right leq sum k 1 n z k quad quad end aligned nbsp Cya nerivnist zastosovuyetsya takozh u vipadku neskinchennih indeksovanih naboriv za umovi sho neskinchennij ryad k 1 z k displaystyle sum limits k 1 infty z k nbsp ye absolyutno zbizhnim Yaksho integral Lebega rozglyadati yak neperervnij analog pidsumovuvannya to dana nerivnist analogichno vikonuyetsya dlya kompleksnoznachnih vimirnih funkcij f R C displaystyle f colon mathbb R rightarrow mathbb C nbsp pri integruvanni nad vimirnoyu pidmnozhinoyu E displaystyle E nbsp E f d x E f d x displaystyle begin aligned left int E f operatorname d x right leq int E f operatorname d x quad quad end aligned nbsp Ce vklyuchaye funkciyi integrovani za Rimanom na vidrizku a b displaystyle a b nbsp yak chastkovij vipadok Dovedennya kompleksnoyi nerivnosti trikutnika Redaguvati Nerivnist trikutnika sho viznachena spivvidnoshennyam displaystyle nbsp mozhna dovesti vikoristavshi tri prosti vlastivosti kompleksnih chisel A same dlya kozhnogo kompleksnogo chisla z C displaystyle z in mathbb C nbsp i isnuye c C displaystyle c in mathbb C nbsp take sho c 1 displaystyle c 1 nbsp i z c z displaystyle z c cdot z nbsp ii R e z z displaystyle mathrm Re z leq z nbsp Takozh dlya indeksovanogo naboru kompleksnih chisel w k k 1 n displaystyle w k k 1 n nbsp k w k k Re w k i k Im w k displaystyle sum k w k sum k operatorname Re w k i sum k operatorname Im w k nbsp Zokrema iii yaksho k w k R displaystyle sum k w k in mathbb R nbsp to k w k k Re w k displaystyle sum k w k sum k operatorname Re w k nbsp Dovedennya displaystyle nbsp Oberemo c C displaystyle c in mathbb C nbsp take sho c 1 displaystyle c 1 nbsp ta k z k c k z k displaystyle sum k z k c big sum k z k big nbsp pidsumovuvannya po k 1 n displaystyle k 1 dots n nbsp Todi nastupni obchislennya privodyat do bazhanoyi nerivnosti k z k i c k z k k c z k i i i k Re c z k i i k c z k k c z k k z k displaystyle begin aligned left sum k z k right amp overset i c left sum k z k right sum k cz k overset iii sum k operatorname Re cz k overset ii leq sum k cz k amp sum k c z k sum k z k end aligned nbsp Z danogo dovedennya viplivaye sho rivnist displaystyle nbsp vikonuyetsya totozhno v tomu vipadku yaksho vsi c z k displaystyle cz k nbsp ce nevid yemni dijsni chisla sho v svoyu chergu vikonuyetsya totozhno yaksho vsi nenulovi z k displaystyle z k nbsp mayut odin i toj samij argument en tobto z k a k z displaystyle z k a k zeta nbsp dlya kompleksnoyi konstanti z displaystyle zeta nbsp i dijsnih konstant a k 0 displaystyle a k geq 0 nbsp 1 k n displaystyle 1 leq k leq n nbsp Oskilki funkciya f displaystyle f nbsp ye vimirnoyu to f displaystyle f nbsp ye takozh vimirnoyu funkciyeyu to dovedennya nerivnosti displaystyle nbsp provoditsya analogichno lishe zaminyuyuchi k displaystyle sum k cdot nbsp na E d x displaystyle int E cdot operatorname d x nbsp ta z k displaystyle z k nbsp na f x displaystyle f x nbsp 12 Funkciya absolyutnogo znachennya RedaguvatiFunkciya dijsnogo absolyutnogo znachennya ye neperervnoyu u vsih tochkah Vona diferencijovana u vsih tochkah za vinyatkom x 0 displaystyle x 0 nbsp Vona ye monotonno spadnoyu na intervali 0 displaystyle infty 0 nbsp i monotonno zrostayuchoyu na intervali 0 displaystyle 0 infty nbsp Oskilki dijsne chislo i jogo protilezhne mayut odnakovi absolyutni znachennya to vona ye parnoyu funkciyeyu a otzhe ne maye obernenoyi Funkciya dijsnogo absolyutnogo znachennya ye kuskovo linijnoyu ta opukloyu Dijsna ta kompleksna funkciyi absolyutnogo znachennya ye idempotentnimi nbsp Grafiki kompoziciyi funkciyi absolyutnogo znachennya ta kubichnoyi funkciyi u riznomu poryadku Zv yazok iz funkciyeyu sign Redaguvati Funkciya modulya dijsnogo chisla vkazuye na jogo znachennya nezalezhno vid jogo znaka todi yak funkciya sign viznachaye znak chisla nezalezhno vid jogo znachennya Nastupni spividnoshennya pokazuyut zv yazok mizh cimi dvoma funkciyami x x sgn x abo x sgn x x displaystyle begin aligned x x operatorname sgn x quad text abo quad x operatorname sgn x x end aligned nbsp a takozh pri x 0 displaystyle x neq 0 nbsp sgn x x x x x displaystyle operatorname sgn x frac x x frac x x nbsp Pohidna Redaguvati Funkciya absolyutnogo znachennya maye pohidnu dlya kozhnogo x 0 displaystyle x neq 0 nbsp ale ne ye diferencijovnoyu pri x 0 displaystyle x 0 nbsp Pohidna funkciyi dlya x 0 displaystyle x neq 0 nbsp zadayetsya kuskovo staloyu funkciyeyu en 13 14 d x d x x x 1 pri x gt 0 1 pri x lt 0 displaystyle begin aligned frac rm d x rm d x frac x x begin cases 1 amp text pri x gt 0 1 amp text pri x lt 0 end cases end aligned nbsp Subdiferencial funkciyi x displaystyle x nbsp u tochci x 0 displaystyle x 0 nbsp ce chislovij promizhok 1 1 displaystyle 1 1 nbsp 15 Kompleksna funkciya absolyutnogo znachennya ye neperervnoyu u vsih tochkah ale vona nide ne ye kompleksno diferencijovnoyu oskilki ne vikonuyutsya umovi Koshi Rimana 13 Druga pohidna funkciyi x displaystyle x nbsp vidnosno x displaystyle x nbsp dorivnyuye nulyu u vsih tochka krim nulya de vona ne isnuye Drugu pohidnu yak uzagalnenu funkciyu en mozhna rozglyadati yak dvokratnu delta funkciyu Diraka Pervisna Redaguvati Pervisnoyu neviznachenim integralom funkciyi dijsnogo absolyutnogo znachennya ye x d x x x 2 C displaystyle begin aligned int x rm d x frac x x 2 C end aligned nbsp de C displaystyle C nbsp dovilna konstanta integruvannya Ce ne ye kompleksnoyu pervisnoyu en oskilki taki pervisni mozhut isnuvati tilki dlya kompleksno diferencijovanih golomorfnih funkcij a kompleksna funkciyi absolyutnogo znachennya ne ye takoyu Vidstan RedaguvatiDiv takozh Metrichnij prostirAbsolyutne znachennya tisno pov yazane z ponyattyam vidstani Yak zaznachalosya vishe modul dijsnogo abo kompleksnogo chisla ce vidstan vid danogo chisla do pochatku koordinat vzdovzh pryamoyi dijsnih chisel dlya dijsnih chisel abo v kompleksnij ploshini dlya kompleksnih chisel i u zagalnomu vipadku absolyutne znachennya riznici dvoh dijsnih chi kompleksnih chisel ce vidstan mizh nimi Zvichajna evklidova vidstan mizh dvoma tochkami A a 1 a 2 a n displaystyle A a 1 a 2 dots a n nbsp ta B b 1 b 2 b n displaystyle B b 1 b 2 dots b n nbsp u evklidovomu n displaystyle n nbsp vimirnomu prostori viznachayetsya yak i 1 n a i b i 2 displaystyle begin aligned sqrt sum i 1 n a i b i 2 end aligned nbsp Ce mozhna rozglyadati yak uzagalnennya oskilki a 1 displaystyle a 1 nbsp ta b 1 displaystyle b 1 nbsp ye dijsnimi chislami tobto v odnovimirnomu prostori vidpovidno do alternativnogo oznachennya modulya a 1 b 1 a 1 b 1 2 i 1 1 a i b i 2 displaystyle begin aligned a 1 b 1 sqrt a 1 b 1 2 sqrt sum i 1 1 a i b i 2 end aligned nbsp a dlya kompleksnih chisel a a 1 i a 2 displaystyle a a 1 ia 2 nbsp ta b b 1 i b 2 displaystyle b b 1 ib 2 nbsp tobto u dvovimirnomu prostori modul viznachayetsya nastupnim chinom a b a 1 i a 2 b 1 i b 2 a 1 b 1 i a 2 b 2 a 1 b 1 2 i a 2 b 2 2 i 1 2 a i b i 2 displaystyle begin aligned a b amp a 1 ia 2 b 1 ib 2 a 1 b 1 i a 2 b 2 amp sqrt a 1 b 1 2 i a 2 b 2 2 sqrt sum i 1 2 a i b i 2 end aligned nbsp Use visheskazane svidchit pro te sho absolyutna znachennya vidstan dlya dijsnih ta kompleksnih chisel uzgodzhuyetsya z standartnoyu evklidovoyu vidstannyu yaku voni nasliduyut u rezultati yih rozglyadu yak odno ta dvovimirni evklidovi prostori vidpovidno Taki vlastivosti absolyutnogo znachennya riznici dvoh dijsnih abo kompleksnih chisel yak nevid yemnist totozhnist nerozriznih simetrichnist i nerivnist trikutnika yaki buli navedeni vishe mozhut sluguvati pidstavoyu dlya bilsh zagalnogo ponyattya funkciyi vidstani nastupnim chinom Dijsnoznachna funkciya d displaystyle d nbsp na mnozhini X X displaystyle X times X nbsp nazivayetsya metrikoyu abo funkciyeyu vidstani na mnozhini X displaystyle X nbsp yaksho vona zadovolnyaye nastupni chotiri aksiomi 16 d a b 0 displaystyle d a b geq 0 nbsp nevid yemnistd a b 0 a b displaystyle d a b 0 iff a b nbsp totozhnist nerozriznihd a b d b a displaystyle d a b d b a nbsp simetrichnistd a b d a c d c b displaystyle d a b leq d a c d c b nbsp nerivnist trikutnikaUzagalnennya RedaguvatiUporyadkovani kilcya Redaguvati Navedene vishe oznachennya absolyutnogo znachennya dlya dijsnih chisel mozhna uzagalniti dlya bud yakogo vporyadkovanogo kilcya Tobto yaksho a displaystyle a nbsp element uporyadkovanogo kilcya R displaystyle R nbsp to absolyutne znachennya elementa a displaystyle a nbsp poznachayetsya yak a displaystyle a nbsp viznachayetsya nastupnim chinom 17 a a pri a 0 a pri a lt 0 displaystyle begin aligned a begin cases a amp text pri a geq 0 a amp text pri a lt 0 end cases end aligned nbsp de a displaystyle a nbsp protilezhnij element do elementu a displaystyle a nbsp 0 displaystyle 0 nbsp aditivnij protilezhnij element a znaki lt displaystyle lt nbsp ta displaystyle geq nbsp mayut zvichajne znachennya shodo vporyadkuvannya u kilci Polya Redaguvati Osnovna stattya Absolyutne znachennya algebra Chotiri osnovni vlastivosti absolyutnogo znachennya dlya dijsnih chisel mozhut buti vikoristani dlya uzagalnennya ponyattya modulya na vipadok dovilnogo polya nastupnim chinom Dijsnoznachna funkciya v displaystyle v nbsp nad polem F displaystyle mathbb F nbsp nazivayetsya absolyutnim znachennyam takozh modulem velichinoyu znachennyam abo ocinkoyu 18 yaksho vona zadovolnyaye nastupni chotiri aksiomi v a 0 displaystyle v a geq 0 nbsp nevid yemnistv a 0 a 0 displaystyle v a 0 iff a mathbf 0 nbsp dodatna viznachenistv a b v a v b displaystyle v ab v a v b nbsp multiplikativnistv a b v a v b displaystyle v a b leq v a v b nbsp napivaditivnist abo nerivnist trikutnikaDe 0 displaystyle textbf 0 nbsp poznachaye nul element en polya F displaystyle mathbb F nbsp Z aksiom dodatno viznachenosti ta multiplikativnosti viplivaye sho funkciya v 1 1 displaystyle v bf 1 1 nbsp de 1 displaystyle bf 1 nbsp poznachaye odinichnij element polya F displaystyle mathbb F nbsp Vishezaznacheni dijsni ta kompleksni absolyutni znachennya ye prikladami absolyutnih znachen dlya dovilnogo polya Yaksho funkciya v displaystyle v nbsp absolyutne znachennya nad polem F displaystyle mathbb F nbsp to funkciya d displaystyle d nbsp na F F displaystyle mathbb F times mathbb F nbsp viznachena yak d a b v a b displaystyle d a b v a b nbsp ye metrikoyu ta nastupni umovi ekvivalentni d zadovolnyaye ultrametrichnu nerivnist d x y max d x z d y z displaystyle d x y leq max d x z d y z nbsp dlya usih x y z na F v k 1 n 1 n N displaystyle big v Big textstyle sum k 1 n mathbf 1 Big n in mathbb N big nbsp obmezhena na R v k 1 n 1 1 displaystyle v Big textstyle sum k 1 n mathbf 1 Big leq 1 nbsp dlya vsih n N displaystyle n in mathbb N nbsp v a 1 v 1 a 1 displaystyle v a leq 1 Rightarrow v 1 a leq 1 nbsp dlya vsih a F displaystyle a in F nbsp v a b m a x v a v b displaystyle v a b leq mathrm max v a v b nbsp dlya vsih a b F displaystyle a b in F nbsp Absolyutne znachennya yaka zadovolnyaye bud yaku tut usi z vishezaznachenih umov nazivayetsya nearhimedovim v protivnomu vipadku vono vvazhayetsya arhimedovim 19 Vektorni prostori Redaguvati Osnovna stattya Norma matematika Znovu zh taki osnovni vlastivosti absolyutnogo znachennya dlya dijsnih chisel mozhna vikoristati z neznachnoyu modifikaciyeyu dlya uzagalnennya ponyattya na vipadok dovilnogo vektornogo prostoru Dijsnoznachna funkciyi na vektornomu prostori V displaystyle V nbsp nad polem F displaystyle mathbb F nbsp poznachayetsya yak displaystyle cdot nbsp nazivayetsya absolyutnim znachennyam ale yak pravilo yiyi nazivayut normoyu yaksho vona zadovolnyaye nastupni aksiomi Dlya bud yakih a F displaystyle a in mathbb F nbsp ta v u V displaystyle textbf v textbf u in V nbsp v 0 displaystyle mathbf v geq 0 nbsp nevid yemnist v 0 v 0 displaystyle mathbf v 0 iff mathbf v 0 nbsp dodatna viznachenist a v a v displaystyle a mathbf v a mathbf v nbsp dodatna odnoridnist abo dodatna v u v u displaystyle mathbf v mathbf u leq mathbf v mathbf u nbsp napivaditivnist abo nerivnist trikutnikaNormu vektora takozh nazivayut jogo dovzhinoyu chi velichinoyu U vipadku evklidovogo prostoru R n displaystyle mathbb R n nbsp funkciya viznachena yak x 1 x 2 x n i 1 n x i 2 displaystyle begin aligned x 1 x 2 dots x n sqrt sum i 1 n x i 2 end aligned nbsp ye normoyu yaku nazivayetsya evklidovoyu normoyu Yaksho dijsni chisla R displaystyle mathbb R nbsp rozglyadati yak odnovimirnij vektornij prostir R 1 displaystyle mathbb R 1 nbsp absolyutne znachennya ye normoyu a takozh p displaystyle p nbsp normoyu div prostir L p displaystyle L p nbsp dlya bud yakogo p displaystyle p nbsp Naspravdi absolyutne znachennya ye yedinoyu normoyu na vektornomu prostori R 1 displaystyle mathbb R 1 nbsp u tomu sensi sho dlya bud yakoyi normi displaystyle cdot nbsp na odnovimirnomu vektornomu prostori R 1 displaystyle mathbb R 1 nbsp x 1 x displaystyle x 1 x nbsp Kompleksne absolyutne znachennya ce osoblivij vipadok normi u peredgilbertovomu prostori Vono spivpadaye z evklidovoyu normoyu yaksho kompleksnu ploshinu ototozhnyuvati z dvovimirnoyu evklidovoyu ploshinoyu R 2 displaystyle mathbb R 2 nbsp Algebra kompozicij Redaguvati Golovna stattya Algebra kompozicijBud yaka algebra kompozicij A displaystyle A nbsp dopuskaye involyuciyu x x displaystyle x to x nbsp yaka nazivayetsya spryazhennyam Dobutok v algebri A displaystyle A nbsp elementa x displaystyle x nbsp i jogo spryazhenogo x displaystyle x nbsp zapisuyetsya yak N x x x displaystyle N x xx nbsp i nazivayetsya normoyu elementa x displaystyle x nbsp Dijsni chisla R displaystyle mathbb R nbsp kompleksni chisla C displaystyle mathbb C nbsp ta kvaternioni H displaystyle mathbb H nbsp ce kompozicijni algebri z normami zadanimi viznachenimi kvadratichnimi formami en Absolyutne znachennya v cih algebrah z dilennyam viznachayetsya kvadratnim korenem normi algebri kompoziciyi U zagalnomu vipadku algebri kompoziciyi mozhe mati kvadratichnu formu yaka ye neviznachenoyu ta maye nul vektori en Odnak yak i u vipadku algebr z dilennyam yaksho element x displaystyle x nbsp maye nenulovu normu to x displaystyle x nbsp maye obernennij element sho zadayetsya spivvidnoshennyam x N x displaystyle x N x nbsp Primitki Redaguvati a b v g Oxford English Dictionary Draft Revision June 2008 Nahin O Connor and Robertson Arhivovano 9 serpnya 2007 u Wayback Machine and functions Wolfram com Arhivovano 10 travnya 2020 u Wayback Machine for the French sense see Littre 1877 Lazare Nicolas M Carnot Memoire sur la relation qui existe entre les distances respectives de cinq point quelconques pris dans l espace p 105 at Google Books Arhivovano 7 travnya 2020 u Wayback Machine James Mill Peirce A Text book of Analytic Geometry at Internet Archive The oldest citation in the 2nd edition of the Oxford English Dictionary is from 1907 The term absolute value is also used in contrast to relative value Nicholas J Higham Handbook of writing for the mathematical sciences SIAM ISBN 0 89871 420 6 p 25 Spivak Michael 1965 Calculus on Manifolds Boulder CO Westview s 1 ISBN 0805390219 Munkres James 1991 Analysis on Manifolds Boulder CO Westview s 4 ISBN 0201510359 Mendelson p 2 Arhivovano 8 travnya 2020 u Wayback Machine Stewart James B 2001 Calculus concepts and contexts Australia Brooks Cole ISBN 0 534 37718 1 p A5 Gonzalez Mario O 1992 Classical Complex Analysis CRC Press s 19 ISBN 9780824784157 Arhiv originalu za 11 travnya 2020 Procitovano 24 travnya 2020 Lorenz Falko 2008 Algebra Vol II Fields with structure algebras and advanced topics Universitext New York Springer s 39 ISBN 978 0 387 72487 4 MR 2371763 doi 10 1007 978 0 387 72488 1 Rudin Walter 1976 Principles of Mathematical Analysis New York McGraw Hill s 325 ISBN 0 07 054235 X a b Weisstein Eric W Absolute Value From MathWorld A Wolfram Web Resource Arhiv originalu za 13 travnya 2020 Procitovano 24 travnya 2020 Bartel and Sherbert p 163 Peter Wriggers Panagiotis Panatiotopoulos eds New Developments in Contact Problems 1999 ISBN 3 211 83154 1 p 31 32 Arhivovano 11 travnya 2020 u Wayback Machine Ci aksiomi ne ye minimalnimi napriklad nevid yemnist mozhe buti otrimana z inshih troh aksiom 0 d a a d a b d b a 2 d a b displaystyle 0 d a a leq d a b d b a 2d a b nbsp Mac Lane p 264 Arhivovano 11 travnya 2020 u Wayback Machine Shechter p 260 Arhivovano 8 travnya 2020 u Wayback Machine This meaning of valuation is rare Usually a valuation is the logarithm of the inverse of an absolute value Shechter pp 260 261 Arhivovano 8 travnya 2020 u Wayback Machine Literatura RedaguvatiBartle Sherbert Introduction to real analysis 4th ed John Wiley and Sons 2011 ISBN 978 0 471 43331 6 Nahin Paul J An Imaginary Tale Princeton University Press tverda obkladinka 1998 ISBN 0 691 02795 1 Mac Lane Saunders Garrett Birkhoff Algebra American Mathematical Soc 1999 ISBN 978 0 8218 1646 2 Mendelson Elliott Schaum s Outline of Beginning Calculus McGraw Hill Professional 2008 ISBN 978 0 07 148754 2 O Connor J J and Robertson E F Jean Robert Argand Arhivovano 13 serpnya 2020 u Wayback Machine Schechter Eric Handbook of Analysis and Its Foundations pp 259 263 Absolute Values Academic Press 1997 ISBN 0 12 622760 8 Zovnishni posilannya RedaguvatiHazewinkel Michiel en ed 2001 1994 Absolute value Encyclopedia of Mathematics Springer Science Business Media B V Kluwer Academic Publishers ISBN 978 1 55608 010 4 absolute value Arhivovano 11 bereznya 2020 u Wayback Machine na PlanetMath Weisstein Eric W en Absolute Value Arhivovano 13 travnya 2020 u Wayback Machine MathWorld Div takozh RedaguvatiAbsolyutni velichini u statistici Absolyutne znachennya algebra Metrichnij prostir Norma matematika Otrimano z https uk wikipedia org w index php title Modul matematika amp oldid 39733795