www.wikidata.uk-ua.nina.az
Analiti chna geome triya rozdil geometriyi v yakomu vlastivosti geometrichnih ob yektiv tochok linij poverhon ustanovlyuyut zasobami algebri za dopomogoyu metodu koordinat tobto shlyahom doslidzhennya vlastivostej rivnyan yaki i viznachayut ci ob yekti Osnovni polozhennya analitichnoyi geometriyi vpershe sformulyuvav filosof i matematik Rene Dekart 1637 roku Gotfrid Vilgelm Lejbnic Isaak Nyuton i Leonard Ejler nadali analitichnij geometriyi suchasnoyi strukturi Zmist 1 Istoriya 1 1 Starodavnya Greciya 1 2 Zahidna Yevropa 2 Koordinati 2 1 Dekartovi koordinati na ploshini abo v prostori 2 2 Polyarni koordinati na ploshini 2 3 Cilindrichni koordinati u prostori 2 4 Sferichni koordinati u prostori 3 Osnovi 4 Vidstan i kut 5 Peretvorennya 6 Znahodzhennya peretiniv geometrichnih ob yektiv 6 1 Znahodzhennya nuliv funkciyi 7 Div takozh 8 Literatura 9 Primitki 10 PosilannyaIstoriya RedaguvatiStarodavnya Greciya Redaguvati Greckij matematik Menehm rozv yazuvav zadachi i dovodiv teoremi vikoristovuyuchi metodi yaki duzhe podibni do vikoristannya koordinat i inodi vislovlyuvalasya dumka sho same vin zapochatkuvav analitichnu geometriyu 1 Apollonij Perzkij v knizi On Determinate Section rozv yazuye zadachi u sposib yakij bi mozhna bulo nazvati analitichnoyu geometriyeyu dlya odnogo vimiru de vin znahodit tochki na pryamij yaki spivvidnosyatsya iz inshimi 2 U roboti Conics Apollonij dali rozvinuv metod tak sho vin she bilshe nagaduye analitichnu geometriyu Tak sho inodi vvazhayut sho jogo robota poperedila roboti Dekarta priblizno na 1800 rokiv Jogo zastosuvannya pryamih vidliku diametra i dotichnoyi istotno ne vidriznyayetsya vid suchasnogo vikoristannya koordinatnoyi sistemi vidliku de vidstani vimiryani zdovzh diametru vid tochki dotiku ye abscisami a vidrizki paralelni dotichnij i podileni mizh vissyu i krivoyu ye ordinatami Dali vin pobuduvav vidnoshennya mizh abscisami i vidpovidnimi ordinatami yaki ye ekvivalentnimi teoretichnim rivnyannyam krivih Odnak hocha Apollonij vpritul nablizivsya do ponyat analitichnoyi geometriyi vin ne zmig ce dovesti do logichnogo zavershennya oskilki vin ne brav do uvagi vid yemni velichini i kozhnogo razu jogo sistema koordinat bula priv yazana do danoyi krivoyi Takim chinom rivnyannya viznachalisya krivimi a ne krivi rivnyannyami Koordinati zminni i rivnyannya buli dopomizhnimi ponyattyami yaki zastosovuvalisya do pevnoyi okremoyi geometrichnoyi situaciyi 3 Zahidna Yevropa Redaguvati Stvorennya analitichnoyi geometriyi zazvichaj pripisuyut Rene Dekartu yakij viklav yiyi osnovi v La Geometrie Geometriya odnogo z troh dodatkiv opublikovanih v 1637 roci razom zi svoyim traktatom Mirkuvannya pro metod Spochatku robota ne bula dobre prijnyata ale pislya perevedennya latinskoyu ta dodavannya komentariv van Shotena v 1649 traktat Dekarta otrimav nalezhne viznannya Koordinati RedaguvatiDokladnishe Sistema koordinat Ilyustraciya dekartovoyi sistemi koordinat Chotiri vidmicheni tochki poznacheni yih koordinatami 2 3 zelenim 3 1 chervonim 1 5 2 5 sinim i pochatok koordinat 0 0 purpurovim V analitichnij geometriyi dvovimirnij prostir zadayetsya sistemoyu koordinat v yakij kozhna tochka maye paru koordinat u formi dijsnih chisel Analogichnim chinom Evklidiv prostir predstavleno koordinatami de kozhna tochka maye tri koordinati Znachennya koordinat zalezhit vid viboru tochki pochatkovogo vidliku Isnuye velika kilkist riznih sistem koordinat ale najbilsh zagalnimi ye nastupni 4 Dekartovi koordinati na ploshini abo v prostori Redaguvati Dokladnishe Dekartova sistema koordinatNajbilsh poshirenoyu sistemoyu koordinat yaku vikoristovuyut ye Dekartova sistema koordinat v yakij kozhna tochka maye x koordinatu yaka zadaye yiyi gorizontalnu poziciyi ta y koordinatu yaka zadaye yiyi vertikalnu poziciyu Voni yak pravilo zapisuyutsya yak vporyadkovana para x y Cyu sistemu mozhna vikoristovuvati i dlya trivimirnoyi geometriyi de kozhna tochka v Evklidovomu prostori predstavlyayetsya vporyadkovanoyu trijkoyu koordinat x y z Polyarni koordinati na ploshini Redaguvati Dokladnishe Polyarna sistema koordinatU polyarnij sistemi koordinat kozhna tochka na ploshini predstavlena yiyi vidstannyu r vid pochatku koordinat i yiyi kutom 8 vid polyarnoyi osi Cilindrichni koordinati u prostori Redaguvati Dokladnishe Cilindrichna sistema koordinatU cilindrichnih koordinatah kozhna tochka prostoru zadayetsya yiyi visotoyu z radiusom r vid osi z ta kutom 8 vidnosno yiyi proyekciyi na ploshinu xy po vidnoshennyu do gorizontalnoyi osi Sferichni koordinati u prostori Redaguvati Dokladnishe Sferichna sistema koordinatU sferichnih koordinatah kozhna tochka v prostori predstavlena yiyi vidstannyu r vid pochatku vidliku kutom 8 yiyi proyekciyi na xy ploshinu po vidnoshennyu do gorizontalnoyi osi i kutom f yaku vona utvoryuye iz vissyu z Nazvi kutiv u fizici yak pravilo mozhut buti oberneni navpaki 4 Osnovi RedaguvatiHarakternoyu osoblivistyu analitichnoyi geometriyi ye viznachennya geometrichnih figur rivnyannyami Nehaj na ploshini z osyami koordinat OX i OY pryamokutna dekartova sistema koordinat mayemo liniyu l Yaksho vzdovzh l peresuvati tochku M to koordinati x y ciyeyi tochki budut zminyuvatis ale mizh nimi isnuvatime pevna zalezhnist yaku mozhna zapisati u viglyadi rivnyannya f x y 0 displaystyle f x y 0 de f x y displaystyle f x y ye matematichnij viraz sho mistit zminni x i y abo odnu z nih Napriklad z pryamokutnogo trikutnika OMP vivodimo sho rivnyannya kola K radiusa g z centrom v pochatku koordinat 0 ye x 2 y 2 r 2 0 displaystyle x 2 y 2 r 2 0 Rozglyanemo she pryamu AV Yaksho M ye dovilna yiyi tochka i OA a OB b to PA a x Z podibnosti pryamokutnih trikutnikiv MPA i BOA mayemo y a x b a displaystyle frac y a x frac b a Zvidsi distayemo rivnyannya pryamoyi AV b x a y a b 0 displaystyle bx ay ab 0 V analitichnij geometriyi prijmayut sho rivnyannya viznachaye geometrichnu figuru yak mnozhinu tochok koordinati h ta u yakih spravdzhuyut ce rivnyannya Inakshe kazhuchi rivnyannya rozglyadayut yak zasib dlya podilu tochok ploshini na 2 klasi do 1 go nalezhat tochki koordinati yakih spravdzhuyut dane rivnyannya ci tochki utvoryuyut viznachenu rivnyannyam figuru do 2 go vsi inshi tochki ploshini Yaksho rivnyannya algebrayichne to vono viznachaye liniyu dijsnu chi uyavnu div nizhche yaku nazivayut algebrayichnoyu a stepin rivnyannya poryadkom ciyeyi liniyi Poryadok algebrayichnoyi liniyi ne zalezhit vid togo yak rozmisheni vidnosno neyi osi koordinat Pryami i tilki pryami ye liniyami 1 go poryadku konichni pererizi tobto liniyi sho utvoryuyutsya pri peretini konusa ploshinoyu i tilki voni ye liniyami 2 go poryadku Analogichno rivnyannya f x y z 0 displaystyle f x y z 0 de x y z displaystyle x y z dekartovi koordinati tochki u prostori viznachaye prostorovu figuru zokrema algebrayichnu poverhnyu n go poryadku yaksho vono ye algebrayichnim rivnyannyam n go stepenya V suchasnih kursah analitichnoyi geometriyi vivchayutsya tilki liniyi i poverhni 1 go ta 2 go poryadkiv Zastosuvannya v analitichnij geometriyi algebrayichnih metodiv privelo do ponyattya uyavnoyi figuri Sukupnist dvoh chisel x y displaystyle x y z yakih prinajmni odne uyavne mozhna rozglyadati yak uyavnu tochku Yaksho rivnyannya napriklad x 2 y 2 1 0 displaystyle x 2 y 2 1 0 spravdzhuyut lishe koordinati uyavnih tochok to vvazhayut sho vono viznachaye uyavnu figuru Hoch ponyattyam neskinchenno viddalenih i uyavnih tochok ne vidpovidayut zhodni realni obrazi prote zaprovadzhennya yih dozvolilo glibshe doslidzhuvati vlastivosti figur V suchasnih kursah analitichnoyi geometriyi shiroko vikoristovuyetsya aparat vektornogo chislennya Vidstan i kut RedaguvatiDokladnishe Vidstan ta Kut Formula vidstani na ploshini sliduye iz teoremi Pifagora V analitichnij geometriyi geometrichni ponyattya taki yak miri vidstani i kuta viznachayut za dopomogoyu formul Ci viznachennya uzgodzheni iz Evklidovoyu geometriyeyu yaka ye v osnovi nih Napriklad pri vikoristanni Dekartovih koordinat na ploshini vidstan mizh dvoma tochkami x1 y1 i x2 y2 viznachayetsya formuloyu d x 2 x 1 2 y 2 y 1 2 displaystyle d sqrt x 2 x 1 2 y 2 y 1 2 yaku mozhna rozglyadati yak she odnu versiyu teoremi Pifagora Analogichno kut yakij pryama utvoryuye iz gorizontallyu mozhna viznachiti za dopomogoyu formuli 8 a r c t g m displaystyle theta mathrm arctg m de m ce nahil kutovij koeficiyent pryamoyi V troh vimirah vidstan viznachayetsya za dopomogoyu uzagalnenoyi teoremi Pifagora d x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 displaystyle d sqrt x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 a kut mizh dvoma vektorami zadayetsya skalyarnim dobutkom Skalyarnij dobutok dvoh Evklidovih vektoriv A i B viznachayetsya yak 5 A B d e f A B cos 8 displaystyle mathbf A cdot mathbf B stackrel mathrm def mathbf A mathbf B cos theta de 8 ce kut mizh A i B Peretvorennya Redaguvati a y f x x b y f x 3 c y f x 3 d y 1 2 f x Peretvorennya zastosovuyutsya do pochatkovoyi funkciyi z metoyu peretvoriti yiyi na novu funkciyu iz podibnimi harakteristikami Grafik funkciyi R x y displaystyle R x y zminyuyetsya za dopomogoyu standartnih peretvoren nastupnim chinom Zmina x x na x h displaystyle x h peremishaye grafik pravoruch na h h odinic Zmina y y na y k displaystyle y k peremishaye grafik vgoru na k k odinic Zmina x x na x b displaystyle x b roztyaguye grafik funkciyi po gorizontali na velichinu koeficiyenta b displaystyle b vvazhayemo sho x x bulo rozshireno Zmina y y na y a displaystyle y a roztyaguye grafik vertikalno Zmina x x na x cos A y sin A displaystyle x cos A y sin A i zmina y y na x sin A y cos A displaystyle x sin A y cos A obertaye grafik na kut A A Isnuyut i inshi standartni peretvorennya yaki yak pravilo ne vivchayutsya v ramkah elementarnoyi analitichnoyi geometriyi oskilki peretvorennya zminyuyut formu ob yektiv u takij sposib yakij ne rozglyadayetsya chasto Napriklad takim peretvorennyam ye peretvorennya skosu Napriklad pochatkova funkciya y 1 x displaystyle y 1 x maye gorizontalnu i vertikalnu asimptotu i zajmaye pershij i drugij kvadrant i vsi formi yiyi peretvorennya mayut gorizontalnu i vertikalnu asimptotu i zajmayut abo 1 j i 3 j abo 2 j i 4 j kvadrant V zagalnomu vipadku yaksho dana funkciya y f x y f x to yiyi mozhna transformuvati u viglyad y a f b x k h displaystyle y af b x k h V novij peretvorenij funkciyi a a ce koeficiyent vertikalnogo roztyaguvannya funkciyi yaksho vin bilshij za 1 abo vertikalnogo stiskannya yaksho vin menshij za 1 a dlya vid yemnih znachen a a funkciya bude vidobrazhena po osi x x Koeficiyent b displaystyle b stiskaye grafik funkciyi po gorizontali yaksho vin bilshij za 1 i roztyaguye funkciyu gorizontalno yaksho vin menshij za 1 i tak samo yak a a vidobrazhaye funkciyu po osi y y koli vin vid yemnij Znachennya k k i h h zadayut peremishennya h h vertikalne i k k gorizontalne Dodatni znachennya h h i k k oznachayut sho funkciya peremishuyetsya v dodatnomu napryamku vidpovidnoyi osi a vid yemne znachennya sho vona peremishuyetsya v storonu vid yemnogo napryamku Peretvorennya mozhna zastosuvati do bud yakogo geometrichnogo rivnyannya ne zalezhno vid togo chi zadaye ce rivnyannya funkciyu chi ni Znahodzhennya peretiniv geometrichnih ob yektiv RedaguvatiDokladnishe Peretin evklidova geometriya Dlya dvoh geometrichnih ob yekta P i Q yaki predstavleni rivnyannyami P x y displaystyle P x y i Q x y displaystyle Q x y peretinom ye nabir vsih takih tochok x y displaystyle x y yaki vidpovidayut dvom rivnyannyam odnochasno Napriklad P P mozhe buti kolom iz radiusom 1 i z centrom v koordinatah 0 0 displaystyle 0 0 P x y x 2 y 2 1 displaystyle P x y x 2 y 2 1 a Q displaystyle Q mozhe buti kolom iz radiusom 1 i centrom v 1 0 Q x y x 1 2 y 2 1 displaystyle 1 0 Q x y x 1 2 y 2 1 Peretinom cih kil ye mnozhina tochok pri yakij obidva rivnyannya vikonuyutsya Chi tochka z koordinatami 0 0 displaystyle 0 0 robit obidva ci rivnyannya virnimi Pidstavivshi 0 0 displaystyle 0 0 dlya x y displaystyle x y rivnyannya dlya Q displaystyle Q bude nastupnim 0 1 2 0 2 1 displaystyle 0 1 2 0 2 1 abo 1 2 1 displaystyle 1 2 1 sho ye virnim tozh 0 0 displaystyle 0 0 vidpovidaye rivnyannyu Q displaystyle Q Z inshogo boku vikoristavshi 0 0 displaystyle 0 0 dlya x y displaystyle x y v rivnyanni P P otrimayemo 0 2 0 2 1 displaystyle 0 2 0 2 1 abo 0 1 displaystyle 0 1 sho ye hibnim 0 0 displaystyle 0 0 ne nalezhit P P to zh cya tochka ne ye peretinom Peretin figur P P i Q displaystyle Q mozhna znajti rozv yazavshi odnochasni rivnyannya x 2 y 2 1 displaystyle x 2 y 2 1 x 1 2 y 2 1 displaystyle x 1 2 y 2 1 Tradicijnimi metodami poshuku peretiniv za dopomogoyu takih rivnyan ye zamina i skorochennya Metod zamini metod pidstanovki Neobhidno rozv yazati rivnyannya vidnosno y y spochatku virazimo jogo cherez x x a potim pidstavlyayemo otrimanij viraz dlya y y v druge rivnyannya x 2 y 2 1 displaystyle x 2 y 2 1 y 2 1 x 2 displaystyle y 2 1 x 2 Potim pislya pidstanovki otrimanogo znachennya dlya y 2 displaystyle y 2 v inshe rivnyannya mayemo rozv yazok dlya x x x 1 2 1 x 2 1 displaystyle x 1 2 1 x 2 1 x 2 2 x 1 1 x 2 1 displaystyle x 2 2x 1 1 x 2 1 2 x 1 displaystyle 2x 1 x 1 2 displaystyle x 1 2 Potim pidstavimo ce znachennya dlya x x v odne iz pochatkovih rivnyan i otrimayemo rozv yazok dlya y y 1 2 2 y 2 1 displaystyle 1 2 2 y 2 1 y 2 3 4 displaystyle y 2 3 4 y 3 2 displaystyle y frac pm sqrt 3 2 Tozh nash peretin mistit dvi tochki 1 2 3 2 i 1 2 3 2 displaystyle left 1 2 frac sqrt 3 2 right text i left 1 2 frac sqrt 3 2 right Metod skorochennya Neobhidno dodati abo vidnyati odne rivnyannya iz kratnim mnozhnikom do inshogo takim chinom sho odna iz zminnih bude skorochena Dlya nashogo prikladu yaksho vidnyati pershe rivnyannya iz drugogo otrimayemo x 1 2 x 2 0 displaystyle x 1 2 x 2 0 Vhodzhennya y 2 displaystyle y 2 v pershomu rivnyanni vidnimayetsya vid y 2 displaystyle y 2 v drugomu rivnyanni pislya chogo vhodzhennya zminnoyi y y v rivnyanni ne zalishayetsya Zminna y y bula skorochena Rozv yazuyemo otrimane rivnyannya vidnosno x x tak samo yak u poperednomu metodi iz zaminoyu x 2 2 x 1 1 x 2 1 displaystyle x 2 2x 1 1 x 2 1 2 x 1 displaystyle 2x 1 x 1 2 displaystyle x 1 2 Potim pidstavlyayemo otrimane znachennya dlya x x v odne iz pochatkovih rivnyan i rozv yazuyemo jogo vidnosno y y 1 2 2 y 2 1 displaystyle 1 2 2 y 2 1 y 2 3 4 displaystyle y 2 3 4 y 3 2 displaystyle y frac pm sqrt 3 2 Tozh nash peretin mistit dvi tochki 1 2 3 2 i 1 2 3 2 displaystyle left 1 2 frac sqrt 3 2 right text i left 1 2 frac sqrt 3 2 right U vipadku iz konichnimi pererizami peretin mozhe mistiti do 4 tochok Znahodzhennya nuliv funkciyi Redaguvati Dokladnishe Nul funkciyiShe odnim tipom peretiniv yaki chasto neobhidno znajti dlya virishennya zadach ye peretin geometrichnih ob yektiv iz koordinatnimi osyami x x i y y Napriklad dlya rivnyannya pryamoyi y m x b displaystyle y mx b parametr b displaystyle b viznachaye tochku v yakij pryama peretinaye vis y y Tochka peretinu bude mati koordinati 0 b displaystyle 0 b Div takozh RedaguvatiObchislyuvalna geometriyaLiteratura RedaguvatiAnalitichna geometriya Arhivovano 7 sichnya 2017 u Wayback Machine URE Analitichna geometriya pidruch dlya stud vish tehn navch zakl B V Grinov I K Kirichenko H Gimnaziya 2008 340 s Bilousova V P ta in Analitichna geometriya K 1957 B M Bokalo Navchalno metodichnij posibnik z analitichnoyi geometriyi Lviv Vidavnichij centr LNU im I Franka 2008 262 s ukr Linijna algebra ta analitichna geometriya navch posib O M Ribicka D M Bilonoga P I Kalenyuk M vo osviti i nauki molodi ta sportu Ukrayini Nac un t Lviv politehnika L Vid vo Lviv politehniki 2011 124 s il Bibliogr s 116 10 nazv ISBN 978 617 607 142 6 1 Osnovi analitichnoyi geometriyi ta linijnoyi algebri Navch posib dlya stud vish navch zakl B V Kovalchuk B M Trish Lviv nac un t im I Franka L 2002 279 c Bibliogr 7 nazv Privalov I I Analiticheskaya geometriya Izd 22 M 1957 ros Delone B N Rajkov D A Analiticheskaya geometriya t 1 2 M L 1948 49 ros Primitki Redaguvati Boyer Carl B 1991 The Age of Plato and Aristotle A History of Mathematics vid Second John Wiley amp Sons Inc s 94 95 ISBN 0 471 54397 7 Menaechmus apparently derived these properties of the conic sections and others as well Since this material has a strong resemblance to the use of coordinates as illustrated above it has sometimes been maintained that Menaechmus had analytic geometry Such a judgment is warranted only in part for certainly Menaechmus was unaware that any equation in two unknown quantities determines a curve In fact the general concept of an equation in unknown quantities was alien to Greek thought It was shortcomings in algebraic notations that more than anything else operated against the Greek achievement of a full fledged coordinate geometry Boyer Carl B 1991 Apollonius of Perga A History of Mathematics vid Second John Wiley amp Sons Inc s 142 ISBN 0 471 54397 7 The Apollonian treatise On Determinate Section dealt with what might be called an analytic geometry of one dimension It considered the following general problem using the typical Greek algebraic analysis in geometric form Given four points A B C D on a straight line determine a fifth point P on it such that the rectangle on AP and CP is in a given ratio to the rectangle on BP and DP Here too the problem reduces easily to the solution of a quadratic and as in other cases Apollonius treated the question exhaustively including the limits of possibility and the number of solutions Boyer Carl B 1991 Apollonius of Perga A History of Mathematics vid Second John Wiley amp Sons Inc s 156 ISBN 0 471 54397 7 The method of Apollonius in the Conics in many respects are so similar to the modern approach that his work sometimes is judged to be an analytic geometry anticipating that of Descartes by 1800 years a b Stewart James 2008 Calculus Early Transcendentals 6th ed Brooks Cole Cengage Learning ISBN 978 0 495 01166 8 M R Spiegel S Lipschutz D Spellman 2009 Vector Analysis Schaum s Outlines vid 2nd McGraw Hill ISBN 978 0 07 161545 7 Posilannya RedaguvatiANALITI ChNA GEOME TRIYa Arhivovano 21 kvitnya 2016 u Wayback Machine ESU Otrimano z https uk wikipedia org w index php title Analitichna geometriya amp oldid 39652124