www.wikidata.uk-ua.nina.az
Teore ma Pifago ra Pitago ra 1 odna iz zasadnichih teorem evklidovoyi geometriyi yaka vstanovlyuye spivvidnoshennya mizh storonami pryamokutnogo trikutnika Uvazhayetsya sho yiyi doviv greckij matematik Pifagor na chiyu chest yiyi j nazvano ye j inshi versiyi zokrema dumka sho cyu teoremu v zagalnomu viglyadi bulo sformulovano matematikom pifagorijcem Gippasom Teorema Pifagora a 2 b 2 c 2 displaystyle a 2 b 2 c 2 Animacijne dovedennya teoremi Pifagora Zmist 1 Teorema 2 Istoriya 3 Dovedennya 3 1 Algebrayichne dovedennya 3 2 Za podibnistyu trikutnikiv 3 3 Dovedennya Evklida 3 4 Vikoristovuyuchi diferenciali 4 Zastosuvannya i naslidki teoremi 4 1 Pifagorovi trijki 4 2 Nespivmirni dovzhini 4 3 Evklidova vidstan u riznih koordinatnih sistemah 4 4 Trigonometrichna totozhnist Pifagora 5 Uzagalnennya 5 1 Podibni geometrichni figuri na troh storonah 5 2 Teorema kosinusiv 5 3 Dovilnij trikutnik 5 4 Dovilni trikutniki cherez paralelogrami 5 5 Kompleksni chisla 5 6 Stereometriya 5 7 Vektornij prostir 5 8 Neevklidova geometriya 5 8 1 Sferichna geometriya 5 8 2 Giperbolichna geometriya 5 9 Diferencialna geometriya 5 10 Vektornij dobutok 6 Div takozh 7 Primitki 8 Literatura 9 PosilannyaTeorema RedaguvatiTeorema zvuchit tak U pryamokutnomu trikutniku plosha kvadrata pobudovanogo na gipotenuzi dorivnyuye sumi plosh kvadrativ pobudovanih na katetah Poznachivshi dovzhinu gipotenuzi trikutnika yak c displaystyle c a dovzhini katetiv yak a displaystyle a ta b displaystyle b otrimayemo taki formuli a 2 b 2 c 2 displaystyle a 2 b 2 c 2 a 2 b 2 c displaystyle sqrt a 2 b 2 c Otzhe teorema Pifagora vstanovlyuye spivvidnoshennya yake daye zmogu viznachiti dovzhinu storoni pryamokutnogo trikutnika znayuchi dovzhini dvoh inshih Vidpovidno v algebrayichnij interpretaciyi teoremu mozhna sformulyuvati tak U pryamokutnomu trikutniku suma kvadrativ katetiv dorivnyuye kvadratu gipotenuzi Teorema Pifagora ye okremim vipadkom teoremi kosinusiv yaka viznachaye spivvidnoshennya mizh storonami dovilnogo trikutnika Dovedeno takozh zvorotne tverdzhennya nazivayut takozh zvorotnoyu do teoremi Pifagora Dlya bud yakih troh dodatnih chisel a b i c dlya yakih vikonuyetsya rivnyannya a b c isnuye pryamokutnij trikutnik z katetami a ta b i gipotenuzoyu c Istoriya Redaguvati Vizualne dovedennya dlya trikutnika 3 4 5 z knigi Chu Pej 500 200 do n e Istoriyu teoremi mozhna rozdiliti na chotiri chastini znannya pro Pifagorovi chisla znannya pro vidnoshennya storin u pryamokutnomu trikutniku znannya pro vidnoshennya sumizhnih kutiv i dovedennya teoremi Megalitichni sporudi blizko 2500 do n e v Yegipti ta Pivnichnij Yevropi mistyat pryamokutni trikutniki zi storonami z cilih chisel 2 Bartel van der Varden visloviv gipotezu sho v ti chasi Pifagorovi chisla buli znajdeni algebrayichno 3 Napisanij mizh 2000 ta 1876 do n e papirus chasiv Serednogo Yegipetskogo carstva Berlin 6619 mistit zadachu rozv yazkom yakoyi ye chisla Pifagora Napisana pid chas pravlinnya Hamurapi Velikogo mizh 1790 i 1750 do n e vavilonska tablichka Plimpton 322 mistit bagato zapisiv tisno pov yazanih z chislami Pifagora U sutrah Budhayani en yaki datuyutsya za riznimi versiyami 8 im chi 2 im stolittyam do n e v Indiyi mistyatsya Pifagorovi chisla vivedeni algebrayichno formulyuvannya teoremi Pifagora ta geometrichne dovedennya dlya rivnobedrenogo pryamokutnogo trikutnika U sutrah Apastambi blizko 600 do n e mistitsya chislove dovedennya teoremi Pifagora z vikoristannyam obchislennya ploshi Van der Varden uvazhaye sho vono bulo zasnovane na tradiciyah poperednikiv Zgidno z Albertom Burkom ce originalne dovedennya teoremi i vin pripuskaye sho Pifagor vidvidav Arakonam i skopiyuvav jogo Pifagor roki zhittya yakogo zazvichaj prijmayut za 569 475 do n e vikoristovuye algebrayichni metodi rozrahunku pifagorovih trijok zgidno z Proklovimi komentaryami do Evklida Prokl odnak zhiv mizh 410 i 485 rokami n e Zgidno z Tomasom Gizom nemaye niyakih vkazivok na avtorstvo teoremi protyagom p yati stolit pislya Pifagora Odnak taki avtori yak Plutarh abo Ciceron pripisali teoremu Pifagoru u takij sposib nibi avtorstvo bulo shiroko vidome i bezsumnivne 4 Blizko 400 do n e zgidno z Proklom Platon dav metod rozrahunku pifagorovih trijok sho poyednuvav algebru ta geometriyu Blizko 300 do n e v Nachalah Evklida mayemo najdavnishe aksiomatichne dovedennya yake zbereglosya do nashih dniv Napisana des mizh 500 do n e i 200 do n e kitajska matematichna kniga Chu Pej kit 周髀算经 daye vizualne dovedennya teoremi Pifagora yaka v Kitayi nazivayetsya teorema Gugu kit 勾股定理 dlya trikutnika iz storonami 3 4 5 Pid chas pravlinnya dinastiyi Han z 202 do n e do 220 n e Pifagorovi trijki z yavlyayutsya v knizi Matematika v dev yati knigah razom iz zgadkoyu pro pryamokutni trikutniki 5 Vpershe zafiksovano vikoristannya teoremi v Kitayi de vona vidoma yak teorema Gugu kit 勾股定理 ta v Indiyi de vona vidoma yak teorema Baskara Bagato diskutuyetsya chi bula teorema Pifagora vidkrita odin raz chi bagato raziv Boyer 1991 r uvazhaye sho znannya viyavleni v Shulba Sutrah mozhut buti mesopotamskogo pohodzhennya 6 Dovedennya RedaguvatiAlgebrayichne dovedennya Redaguvati Kvadrati utvoryuyutsya z chotiroh pryamokutnih trikutnikivVidomo ponad sto doveden teoremi Pifagora Tut predstavleno dovedennya zasnovane na teoremi isnuvannya ploshi figuri Roztashuyemo chotiri odnakovi pryamokutni trikutniki tak yak ce zobrazheno na risunku Chotirikutnik zi storonami c displaystyle c ye kvadratom oskilki suma dvoh gostrih kutiv 90 displaystyle 90 circ a rozgornutij kut 180 displaystyle 180 circ Plosha vsiyeyi figuri rivna z odnoyi storoni ploshi kvadrata zi storonoyu a b displaystyle a b a z inshoyi sumi plosh chotiroh trikutnikiv i vnutrishnogo kvadrata a b 2 4 a b 2 c 2 displaystyle a b 2 4 cdot frac ab 2 c 2 a 2 2 a b b 2 2 a b c 2 displaystyle a 2 2ab b 2 2ab c 2 c 2 a 2 b 2 displaystyle c 2 a 2 b 2 Sho i neobhidno bulo dovesti Za podibnistyu trikutnikiv Redaguvati Vikoristannya podibnih trikutnikivNehaj A B C displaystyle ABC pryamokutnij trikutnik v yakomu kut C displaystyle C pryamij yak pokazano na risunku Provedemo visotu z tochki C displaystyle C i nazvemo H displaystyle H tochku peretinu zi storonoyu A B displaystyle AB Utvorenij trikutnik A C H displaystyle ACH podibnij do trikutnika A B C displaystyle ABC oskilki voni obidva pryamokutni za viznachennyam visoti i v nih spilnij kut A displaystyle A ochevidno tretij kut bude v cih trikutnikiv takozh odnakovij Analogichno trikutnik C B H displaystyle CBH takozh podibnij do trikutnika A B C displaystyle ABC Z podibnosti trikutnikiv Yaksho B C a A C b A B c displaystyle BC a AC b AB c todi a c H B a displaystyle frac a c frac HB a ta b c A H b displaystyle frac b c frac AH b Ce mozhna zapisati u viglyadi a 2 c H B displaystyle a 2 c times HB ta b 2 c A H displaystyle b 2 c times AH Yaksho dodati ci dvi rivnosti otrimayemo a 2 b 2 c H B c A H c H B A H c 2 displaystyle a 2 b 2 c times HB c times AH c times HB AH c 2 Inshimi slovami teorema Pifagora a 2 b 2 c 2 displaystyle a 2 b 2 c 2 Dovedennya Evklida Redaguvati Dovedennya EvklidaV Evklidovih Nachalah teorema Pifagora dovedena metodom paralelogramiv Nehaj A displaystyle A B displaystyle B C displaystyle C vershini pryamokutnogo trikutnika z pryamim kutom A displaystyle A Opustimo perpendikulyar z tochki A displaystyle A na storonu protilezhnu do gipotenuzi v kvadrati pobudovanomu na nij Liniya dilit kvadrat na dva pryamokutniki kozhen z yakih maye taku samu ploshu sho j kvadrati pobudovani na katetah Golovna ideya pri dovedenni polyagaye v tomu sho verhni kvadrati peretvoryuyutsya na paralelogrami takoyi samoyi ploshi a todi povertayutsya i peretvoryuyutsya na pryamokutniki v nizhnomu kvadrati i znovu pri nezminnij ploshi Dlya formalnogo dovedennya nam neobhidni chotiri elementarni lemi Yaksho dvi storoni odnogo trikutnika i kut mizh nimi dorivnyuyut vidpovidno dvom storonam ta kutu mizh nim inshogo trikutnika to taki trikutniki rivni storona kut storona Plosha trikutnika dorivnyuye polovini ploshi paralelograma sho maye taku samu osnovu i taku samu visotu Plosha pryamokutnika dorivnyuye dobutku dvoh sumizhnih storin Plosha kvadrata dorivnyuye dobutku dvoh jogo storin viplivaye z tretoyi lemi Todi kozhen verhnij kvadrat pov yazanij z trikutnikom kongruentnim z inshim trikutnikom yakij pov yazanij povorotom z odnim iz dvoh pryamokutnikiv sho utvoryuyut nizhnij kvadrat 7 Perejdemo do dovedennya Nehaj A C B displaystyle ACB pryamokutnij trikutnik z pryamim kutom C A B displaystyle CAB Na kozhnij storoni B C displaystyle BC A B displaystyle AB i C A displaystyle CA pobuduyemo kvadrati C B D E displaystyle CBDE B A G F displaystyle BAGF ta A C I H displaystyle ACIH v takomu zh poryadku Pobudova kvadrativ tut zhe vimagaye poperednoyi teoremi Evklida i zalezhit vid postulatu paralelnosti 8 Z tochki A displaystyle A provodimo pryamu paralelnu do B D displaystyle BD i C E displaystyle CE Vona perpendikulyarno peretne vidrizki B C displaystyle BC ta D E displaystyle DE v tochkah K displaystyle K ta L displaystyle L vidpovidno Provedemo vidrizki C F displaystyle CF i A D displaystyle AD otrimayemo trikutniki B C F displaystyle BCF i B D A displaystyle BDA Kuti C A B displaystyle CAB i B A G displaystyle BAG pryami vidpovidno tochki C displaystyle C A displaystyle A i G displaystyle G kolinearni Tak samo B displaystyle B A displaystyle A i H displaystyle H Kuti C B D displaystyle CBD i F B A displaystyle FBA obidva pryami todi kut A B D displaystyle ABD dorivnyuye kutu F B C displaystyle FBC oskilki obidva ye sumoyu pryamogo kuta ta kuta A B C displaystyle ABC Trikutniki A B D displaystyle ABD ta F B C displaystyle FBC rivni za dvoma storonami ta kutom mizh nimi Oskilki tochki A displaystyle A K displaystyle K i L displaystyle L kolinearni plosha pryamokutnika B D L K displaystyle BDLK dorivnyuye dvom plosham trikutnika A B D displaystyle ABD B D L K B A G F A B 2 displaystyle BDLK BAGF AB 2 Analogichno mirkuyuchi otrimayemo C K L E A C I H A C 2 displaystyle CKLE ACIH AC 2 Z odnogo boku plosha C B D E displaystyle CBDE dorivnyuye sumi plosh pryamokutnikiv B D L K displaystyle BDLK ta C K L E displaystyle CKLE a z inshogo boku ce plosha kvadrata B C 2 displaystyle BC 2 abo A B 2 A C 2 B C 2 displaystyle AB 2 AC 2 BC 2 Pifagorovi shtani zhartivliva nazva cogo dokazu dzherelo Vikoristovuyuchi diferenciali Redaguvati Vikoristannya diferencialivDo teoremi Pifagora mozhna prijti rozglyadom zalezhnosti velichini gipotenuzi vid prirostu storoni div malyunok pravoruch zastosuvavshi nevelike obchislennya U rezultati prirostu storoni a displaystyle a z podibnih trikutnikiv dlya neskinchenno malih prirostiv d a d c c a displaystyle frac da dc frac c a Zastosuyemo rozdilennya zminnih c d c a d a displaystyle c dc a da Integruyuchi otrimayemo c 2 a 2 c o n s t displaystyle c 2 a 2 mathrm const Yaksho a 0 displaystyle a 0 todi c b displaystyle c b tozh konstanta b 2 displaystyle b 2 Todi a 2 b 2 c 2 displaystyle a 2 b 2 c 2 Yak mozhna pobachiti kvadrati otrimano zavdyaki proporciyi mizh prirostami ta storonami todi yak suma ye rezultatom nezalezhnogo vnesku prirostiv storin sho ne ochevidno z geometrichnih doveden U cih rivnyannyah d a textstyle operatorname d a i d c displaystyle operatorname d c vidpovidno neskinchenno mali prirosti storin a displaystyle a i c displaystyle c Ale zamist nih mi vikoristovuyemo D a displaystyle Delta a i D c displaystyle Delta c todi granicya yihnogo vidnoshennya yaksho voni pryamuyut do nulya dorivnyuye d a d c textstyle operatorname d a over operatorname d c pohidnij i takozh dorivnyuye c a textstyle c a vidnoshennyu dovzhin storin trikutnikiv v rezultati chogo otrimuyemo diferencialne rivnyannya Zastosuvannya i naslidki teoremi RedaguvatiPifagorovi trijki Redaguvati Dokladnishe Chisla PifagoraPifagorovi trijki ce tri naturalni chisla a displaystyle a b displaystyle b ta c displaystyle c taki sho vikonuyetsya rivnist a 2 b 2 c 2 displaystyle a 2 b 2 c 2 Inshimi slovami Pifagorovi trijki ce storoni pryamokutnogo trikutnika yaksho vsi voni ye cilimi Na megalitichnih sporudah v pivnichnij Yevropi ye svidchennya sho vidomosti pro taki trijki buli vidomi do vinajdennya pisemnosti Taki trijki zazvichaj zapisuyut u viglyadi a b c displaystyle a b c Deyaki najvidomishi prikladi 3 4 5 ta 5 12 13 Primitivnimi Pifagorovimi chislami nazivayut taki a displaystyle a b displaystyle b ta c displaystyle c yaki ye vzayemno prostimi najbilshij spilnij dilnik a displaystyle a b displaystyle b ta c displaystyle c dorivnyuye 1 Nizhche navedeno perelik primitivnih Pifagorovih chisel menshih vid 100 3 4 5 5 12 13 7 24 25 8 15 17 9 40 41 11 60 61 12 35 37 13 84 85 16 63 65 20 21 29 28 45 53 33 56 65 36 77 85 39 80 89 48 55 73 65 72 97 Najkrashe zapam yatovuyutsya taki Pifagorovi chisla menshi vid 100 3 4 5 6 8 10 9 12 15 12 16 20 15 20 25 18 24 30 21 28 35 24 32 40 27 36 45 30 40 50 33 44 55 36 48 60 39 52 65 42 56 70 45 60 75 48 64 80 51 68 85 54 72 90 57 76 95 60 80 100 Ci trijki utvoryuyutsya mnozhennyam pershoyi trijki chisel 3 4 5 na chisla 2 3 4 5 tosho Nespivmirni dovzhini Redaguvati Pobudova vidrizkiv z dovzhinami vidnoshennya mizh yakimi dorivnyuye kvadratnomu korenyu z dodatnogo cilogo chislaOdnim z naslidkiv teoremi Pifagora ye te sho vidrizki na liniyi dovzhina yakih ye nespivmirnoyu tobto spivvidnoshennya mizh yakimi daye irracionalne chislo mozhut buti pobudovani za dopomogoyu linijki ta cirkulya Teorema Pifagora daye zmogu pobuduvati nespivmirni dovzhini cherez te sho gipotenuza trikutnika pov yazana z jogo storonam cherez korin kvadratnij Malyunok sprava demonstruye yak pobuduvati vidrizki dovzhina yakih u spivvidnoshenni daye korin kvadratnij bud yakogo cilogo chisla Kozhen trikutnik maye storonu poznachenu 1 dovzhina yakoyi ye vibrana odinicya vimiryuvannya Na kozhnomu pryamokutnomu trikutniku zavdyaki teoremi Pifagora otrimuyemo dovzhinu gipotenuzi virazhenu u vibranih odinicyah Yaksho gipotenuza pov yazana z odiniceyu vimiryuvannya cherez kvadratnij korin z dodatnim cilim chislom sho ne ye pidnesennyam do kvadrata todi mi otrimuyemo realizaciyu nespivmirnosti dlya ciyeyi odinici Napriklad 2 displaystyle sqrt 2 3 displaystyle sqrt 3 5 displaystyle sqrt 5 Nespivmirni velichini konfliktuyut z koncepciyeyu shkoli Pifagora pro te sho vsi chisla ye cilimi Shkola Pifagora davala sobi radu z drobami porivnyuyuchi kratni chisla yaki mali spilnij dilnik 9 Zgidno z odniyeyu legendoyu Gippasa z Metapontu blizko 470 do n e vtopili v mori cherez te sho vin rozkazuvav pro isnuvannya irracionalnih chi nespivmirnih velichin 10 11 Evklidova vidstan u riznih koordinatnih sistemah Redaguvati Vidstan mizh dvoma tochkami s displaystyle s r 1 8 1 displaystyle r 1 theta 1 ta r 2 8 2 displaystyle r 2 theta 2 v polyarnih koordinatah obchislyuyemo za teoremoyu kosinusiv Vnutrishnij kut D 8 8 1 8 2 displaystyle Delta theta theta 1 theta 2 Formulu vidstani mizh tochkami v dekartovij sistemi koordinat otrimuyemo z teoremi Pifagora 12 Yaksho mayemo tochki na ploshini x 1 y 1 displaystyle x 1 y 1 i x 2 y 2 displaystyle x 2 y 2 to vidstan mizh nimi yaka takozh nazivayetsya Evklidova vidstan mozhna obchisliti tak x 1 x 2 2 y 1 y 2 2 displaystyle sqrt x 1 x 2 2 y 1 y 2 2 Abo uzagalnyuyuchi dlya n vimirnogo Evklidovogo prostoru dlya vidstani mizh dvoma tochkami A a 1 a 2 a n displaystyle A a 1 a 2 dots a n ta B b 1 b 2 b n displaystyle B b 1 b 2 dots b n mozhna sformulyuvati zagalnishij vipadok teoremi Pifagora a 1 b 1 2 a 2 b 2 2 a n b n 2 i 1 n a i b i 2 displaystyle sqrt a 1 b 1 2 a 2 b 2 2 cdots a n b n 2 sqrt sum i 1 n a i b i 2 Yaksho ne mozhna vikoristati Dekartovi koordinati napriklad u vipadku polyarnih koordinat abo v zagalnishomu vipadku yaksho treba vikoristati krivolinijni koordinati formuli dlya rozrahunku Evklidovoyi vidstani skladnishi nizh teorema Pifagora ale mozhut buti vivedeni z yiyi dopomogoyu Tipovij priklad koli formula vidstani mizh dvoma tochkami privedena do krivolinijnih koordinat mozhna pobachiti pri zastosuvanni polinoma Lezhandra u fizici Ci formuli mozhna znajti vikoristovuyuchi Teoremu Pifagora razom iz formulami zv yazku krivolinijnih koordinat z dekartovimi Napriklad polyarni koordinati r 8 displaystyle r theta mozhna zapisati tak x r cos 8 y r sin 8 displaystyle x r cos theta y r sin theta Todi vidstan s displaystyle s mizh dvoma tochkami r 1 8 1 displaystyle r 1 theta 1 ta r 2 8 2 displaystyle r 2 theta 2 dorivnyuye s 2 x 1 x 2 2 y 1 y 2 2 r 1 cos 8 1 r 2 cos 8 2 2 r 1 sin 8 1 r 2 sin 8 2 2 displaystyle s 2 x 1 x 2 2 y 1 y 2 2 r 1 cos theta 1 r 2 cos theta 2 2 r 1 sin theta 1 r 2 sin theta 2 2 Yaksho pidnesti do stepenya j ob yednati zminni otrimayemo formulu dlya viznachennya vidstani mizh tochkami u polyarnih koordinatah s 2 r 1 2 r 2 2 2 r 1 r 2 cos 8 1 cos 8 2 sin 8 1 sin 8 2 r 1 2 r 2 2 2 r 1 r 2 cos 8 1 8 2 r 1 2 r 2 2 2 r 1 r 2 cos D 8 displaystyle begin aligned s 2 amp r 1 2 r 2 2 2r 1 r 2 left cos theta 1 cos theta 2 sin theta 1 sin theta 2 right amp r 1 2 r 2 2 2r 1 r 2 cos left theta 1 theta 2 right amp r 1 2 r 2 2 2r 1 r 2 cos Delta theta end aligned vikoristovuyuchi formuli peretvorennya dobutkiv funkcij Cyu formulu sho ye teoremoyu kosinusiv inodi nazivayut uzagalnenoyu teoremoyu Pifagora 13 Yaksho rezultatnu formulu vikoristati dlya vipadku koli radiusi znahodyatsya pid pryamim kutom kut mizh nimi dorivnyuye D 8 p 2 displaystyle Delta theta pi 2 todi znovu otrimayemo teoremu Pifagora s 2 r 1 2 r 2 2 displaystyle s 2 r 1 2 r 2 2 Teorema Pifagora spravedliva dlya pryamokutnih trikutnikiv prote ye chastkovim vipadkom zagalnishoyi teoremi kosinusiv yaka spravedliva dlya bud yakogo trikutnika Trigonometrichna totozhnist Pifagora Redaguvati Dokladnishe Trigonometrichna totozhnist Pifagora Podibni pryamokutni trikutniki pokazuyut sinus i kosinus kuta 8Dlya pryamokutnogo trikutnika iz storonami a b ta gipotenuzoyu c zapishemo trigonometrichni viznachennya sinusa i kosinusa kuta 8 displaystyle theta mizh storonoyu a displaystyle a ta gipotenuzoyu sin 8 b c cos 8 a c displaystyle sin theta frac b c quad cos theta frac a c zvidsi viplivaye sho cos 2 8 sin 2 8 a 2 b 2 c 2 1 displaystyle cos 2 theta sin 2 theta frac a 2 b 2 c 2 1 de v ostannomu kroci dovedennya zastosovuyemo teoremu Pifagora Cyu zalezhnist mizh sinusom i kosinusom inodi nazivayut fundamentalnoyu trigonometrichnoyu totozhnistyu Pifagora 14 U podibnih trikutnikiv spivvidnoshennya mizh storonami rivne nezalezhno vid rozmiriv trikutnika a zalezhit tilki vid kutiv Vidpovidno na risunku zobrazheno trikutnik z gipotenuzoyu yaka dorivnyuye odinici storona protilezhna do kuta dorivnyuye sin 8 displaystyle sin theta i prilegla storona cos 8 displaystyle cos theta v odinicyah gipotenuzi Uzagalnennya RedaguvatiPodibni geometrichni figuri na troh storonah Redaguvati Uzagalnennya dlya podibnih trikutnikiv plosha zelenih figur A B dorivnyuye ploshi sinih C Teorema Pifagora z vikoristannyam podibnih pryamokutnih trikutnikivUzagalnennya teoremi Pifagora robiv Evklid u svoyij praci Nachala rozshirivshi ploshi kvadrativ na storonah do plosh podibnih geometrichnih figur 15 Yaksho pobuduvati podibni geometrichni figuri div Evklidova geometriya na storonah pryamokutnogo trikutnika todi suma dvoh menshih figur bude dorivnyuvati ploshi bilshoyi figuri Golovna ideya cogo uzagalnennya polyagaye v tomu sho plosha podibnoyi geometrichnoyi figuri proporcijna do kvadrata bud yakogo svogo linijnogo rozmiru i zokrema do kvadrata dovzhini bud yakoyi storoni Otzhe dlya podibnih figur z ploshami A B i C sho pobudovani na storonah z dovzhinoyu a displaystyle a b displaystyle b i c displaystyle c mayemoA a 2 B b 2 C c 2 displaystyle frac A a 2 frac B b 2 frac C c 2 A B a 2 c 2 C b 2 c 2 C displaystyle Rightarrow A B frac a 2 c 2 C frac b 2 c 2 C Ale za teoremoyu Pifagora a 2 b 2 c 2 displaystyle a 2 b 2 c 2 todi A B C I navpaki yaksho mi zmozhemo dovesti sho A B C displaystyle A B C dlya troh podibnih geometrichnih figur bez vikoristannya teoremi Pifagora todi mi zmozhemo dovesti samu teoremu ruhayuchis u zvorotnomu napryamku Napriklad startovij centralnij trikutnik mozhe buti povtorno vikoristanij yak trikutnik C displaystyle C na gipotenuzi i dva podibni pryamokutni trikutniki A displaystyle A i B displaystyle B pobudovani na dvoh inshih storonah yaki utvoryuyutsya v rezultati podilu centralnogo trikutnika jogo visotoyu Suma plosh dvoh menshih trikutnikiv todi ochevidno dorivnyuye ploshi tretogo otzhe A B C displaystyle A B C i vikonuyuchi poperednye dovedennya v zvorotnomu poryadku otrimayemo teoremu Pifagora a 2 b 2 c 2 displaystyle a 2 b 2 c 2 Teorema kosinusiv Redaguvati Dokladnishe Teorema kosinusivTeorema Pifagora ce okremij vipadok zagalnishoyi teoremi kosinusiv yaka pov yazuye dovzhini storin v dovilnomu trikutniku 16 a 2 b 2 2 a b cos 8 c 2 displaystyle a 2 b 2 2ab cos theta c 2 dd de 8 displaystyle theta kut mizh storonami a displaystyle a i b displaystyle b Yaksho 8 displaystyle theta dorivnyuye 90 displaystyle 90 circ to cos 8 0 displaystyle cos theta 0 i formula sproshuyetsya do zvichajnoyi teoremi Pifagora Dovilnij trikutnik Redaguvati Uzagalnennya teoremi Pifagora vid Sabita ibn Kurra 17 Nizhnij risunok vidbittya trikutnika ABD verhnij z metoyu utvoriti trikutnik DBA podibnij do trikutnika ABC verhnij Dlya vibranogo kuta dovilnogo trikutnika iz storonami a displaystyle a b displaystyle b c displaystyle c vpishemo rivnobedrenij trikutnik tak shob rivni kuti pri jogo osnovi 8 displaystyle theta dorivnyuvali vibranomu kutu Pripustimo sho vibranij kut 8 displaystyle theta protilezhnij do storoni poznachenoyi c displaystyle c Unaslidok mi otrimali trikutnik ABD z kutom 8 displaystyle theta sho protilezhnij storoni a displaystyle a ta storonoyu r displaystyle r Drugij trikutnik utvoryuyetsya kutom 8 displaystyle theta sho protilezhnij do storoni b displaystyle b ta storonoyu z dovzhinoyu s displaystyle s yak pokazano na risunku Sabit ibn Kurra 18 stverdzhuvav sho storoni v cih troh trikutnikah pov yazani tak 19 20 a 2 b 2 c r s displaystyle a 2 b 2 c r s Koli kut 8 displaystyle theta nablizhayetsya do p 2 displaystyle pi 2 osnova rivnobedrenogo trikutnika zmenshuyetsya i dvi storoni r displaystyle r i s displaystyle s perekrivayut odna odnu vse menshe i menshe Koli 8 p 2 displaystyle theta pi 2 ADB peretvoryuyetsya v pryamokutnij trikutnik r s c displaystyle r s c i otrimuyemo pochatkovu teoremu Pifagora Rozglyanemo odne z doveden Trikutnik A B C displaystyle ABC maye taki sami kuti yak i trikutnik A B D displaystyle ABD ale v zvorotnomu poryadku Dva trikutniki mayut spilnij kut u vershini B displaystyle B obidva mayut kut 8 displaystyle theta i takozh mayut odnakovij tretij kut za sumoyu kutiv trikutnika Vidpovidno A B C displaystyle ABC podibnij do vidobrazhennya A B D displaystyle ABD trikutnika D B A displaystyle DBA yak zobrazheno na nizhnomu risunku Zapishemo spivvidnoshennya mizh storonami protilezhnimi i prileglimi do kuta 8 displaystyle theta c a a r displaystyle frac c a frac a r Tak samo vidobrazhennya inshogo trikutnika c b b s displaystyle frac c b frac b s Peremnozhimo drobi ta dodamo ci dva spivvidnoshennya c r c s a 2 b 2 displaystyle cr cs a 2 b 2 sho i treba bulo dovesti Dovilni trikutniki cherez paralelogrami Redaguvati Uzagalnennya dlya dovilnih trikutnikiv zelena plosha dorivnyuye sinij ploshi Pobudova dovedennya dlya uzagalnennya paralelogramivZrobimo podalshe uzagalnennya dlya ne pryamokutnih trikutnikiv vikoristovuyuchi paralelogrami na troh storonah zamist kvadrativ 21 a kvadrati ce zvichajno chastkovij vipadok Verhnij risunok demonstruye sho dlya gostrokutnogo trikutnika plosha paralelograma na dovshij storoni dorivnyuye sumi paralelogramiv na dvoh inshih storonah za umovi sho paralelogram na dovgij storoni pobudovano yak zobrazheno na risunku rozmiri vidznacheni strilkami odnakovi i viznachayut storoni nizhnogo paralelograma Cya zamina kvadrativ paralelogramami nese chitku shozhist z pochatkovoyu teoremoyu Pifagora vvazhayetsya sho ce sformulyuvav Papp z Aleksandriyi v 4 r n e 21 Nizhnij risunok pokazuye hid dovedennya Podivimos na livu storonu trikutnika Livij zelenij paralelogram maye taku samu ploshu yak liva chastina sinogo paralelograma tomu sho voni mayut taku samu osnovu b displaystyle b i visotu h displaystyle h Krim togo livij zelenij paralelogram maye taku samu ploshu yak livij zelenij paralelogram na verhnomu risunku tomu sho voni mayut taku samu osnovu verhnya liva storona trikutnika i taku samu visotu perpendikulyarnu do ciyeyi storoni trikutnika Analogichno rozmirkovuyuchi dlya pravoyi storoni trikutnika dovedemo sho nizhnij paralelogram maye taku samu ploshu yak dva zeleni paralelogrami Kompleksni chisla Redaguvati Dokladnishe Kompleksne chisloFormulu Pifagora vikoristovuyut shob znajti vidstan mizh dvoma tochkami v dekartovij koordinatnij sistemi i cya formula spravedliva dlya vsih dijsnih koordinat vidstan s displaystyle s mizh dvoma tochkami a b displaystyle a b i c d displaystyle c d dorivnyuye s a c 2 b d 2 displaystyle s sqrt a c 2 b d 2 Ne vinikaye problem z formuloyu yaksho do kompleksnih chisel stavitis yak do vektoriv z dijsnimi komponentami x i y x y displaystyle x iy x y Vidstan mizh kompleksnimi chislami z 1 x 1 y 1 i displaystyle z 1 x 1 y 1 i ta z 2 x 2 y 2 i displaystyle z 2 x 2 y 2 i predstavlyayetsya u formi teoremi Pifagora 22 z 1 z 2 x 1 x 2 2 y 1 y 2 2 displaystyle z 1 z 2 sqrt x 1 x 2 2 y 1 y 2 2 Napriklad vidstan s mizh 0 1 i displaystyle 0 1 cdot i ta 1 0 i displaystyle 1 0 cdot i rozrahovuyemo yak modul vektora 0 1 1 0 1 1 displaystyle 0 1 1 0 1 1 abo s 1 2 1 2 2 displaystyle s sqrt 1 2 1 2 sqrt 2 Odnak dlya operacij z vektorami z kompleksnimi koordinatami neobhidno provesti pevne vdoskonalennya formuli Pifagora Vidstan mizh tochkami z kompleksnimi koordinatami a b displaystyle a b i c d displaystyle c d a displaystyle a b displaystyle b c displaystyle c i d displaystyle d vsi kompleksni sformulyuyemo vikoristovuyuchi absolyutni velichini Vidstan s displaystyle s zasnovana na vektornij riznici a c b d displaystyle a c b d v takomu viglyadi 23 nehaj riznicya a c p i q displaystyle a c p iq de p displaystyle p dijsna chastina riznici i q displaystyle iq uyavna chastina de i 1 displaystyle i sqrt 1 Analogichno nehaj b d r i s displaystyle b d r is Todi s p i q p i q r i s r i s p i q p i q r i s r i s p 2 q 2 r 2 s 2 displaystyle begin aligned s amp sqrt p iq overline p iq r is overline r is amp sqrt p iq p iq r is r is amp sqrt p 2 q 2 r 2 s 2 end aligned de z displaystyle overline mathit z ce kompleksne spryazhene chislo dlya z displaystyle mathit z Napriklad vidstan mizh tochkami a b 0 1 displaystyle a b 0 1 ta c d i 0 displaystyle c d i 0 rozrahuyemo riznicyu a c b d i 1 displaystyle a c b d i 1 i v rezultati mi b otrimali 0 displaystyle 0 yakbi ne buli vikoristani kompleksni spryazheni Otzhe vikoristovuyuchi vdoskonalenu formulu otrimayemo s i i 1 1 i i 1 1 2 displaystyle s sqrt i cdot overline i 1 cdot overline 1 sqrt i cdot i 1 cdot 1 sqrt 2 Modul viznachenij tak p p p p 1 2 p 2 2 p n 2 displaystyle mathbf p sqrt mathbf p cdot overline p sqrt p 1 2 p 2 2 dots p n 2 ce ye Ermitiv skalyarnij dobutok 22 Stereometriya Redaguvati Dokladnishe Stereometriya Teorema Pifagora v trivimirnomu prostori pov yazuye diagonal AD z troma storonami Teorema Pifagora mozhe buti zastosovana dlya stereometriyi v takomu viglyadi Rozglyanemo pryamokutnij paralelepiped yak pokazano na risunku Znajdemo dovzhinu diagonali B D displaystyle BD za teoremoyu Pifagora B D 2 B C 2 C D 2 displaystyle overline BD 2 overline BC 2 overline CD 2 de tri storoni utvoryuyut pryamokutnij trikutnik Vikoristayemo gorizontalnu diagonal B D displaystyle BD i vertikalne rebro A B displaystyle AB shob znajti dovzhinu diagonali A D displaystyle AD dlya cogo znovu vikoristayemo teoremu Pifagora A D 2 A B 2 B D 2 displaystyle overline AD 2 overline AB 2 overline BD 2 abo yaksho vse zapisati odnim rivnyannyam A D 2 A B 2 B C 2 C D 2 displaystyle overline AD 2 overline AB 2 overline BC 2 overline CD 2 Cej rezultat ce trivimirnij viraz dlya viznachennya velichini vektora v displaystyle mathbf v diagonal A D displaystyle AD virazhenij cherez jogo perpendikulyarni skladovi v k displaystyle mathbf v k tri vzayemno perpendikulyarni storoni v 2 k 1 3 v k 2 displaystyle mathbf v 2 sum k 1 3 mathbf v k 2 Ce rivnyannya mozhna rozglyadati yak uzagalnennya teoremi Pifagora dlya bagatovimirnogo prostoru Prote rezultat naspravdi prosto kilkarazove zastosuvannya teoremi Pifagora do poslidovnosti pryamokutnih trikutnikiv u poslidovno perpendikulyarnih ploshinah Znachnim uzagalnennyam teoremi Pifagora dlya trivimirnogo prostoru ye teorema de Gua nazvana na chest Zhan Polya de Gua yaksho tetraedr maye pryamij kut yak u kuba todi kvadrat ploshi grani protilezhnoyi do pryamogo kuta dorivnyuye sumi kvadrativ plosh inshih troh granej Cej visnovok mozhe buti uzagalnenij dlya n vimirnoyi teoremi Pifagora 24 Vektornij prostir Redaguvati U vipadku ortogonalnoyi sistemi vektoriv v k displaystyle v k maye misce rivnist yaku tezh nazivayut teoremoyu Pifagora k 1 n v k 2 k 1 n v k 2 displaystyle sum k 1 n v k 2 left sum k 1 n v k right 2 Yaksho v k displaystyle v k ce proyekciyi vektora na koordinatni osi to cya formula zbigayetsya z vidstannyu Evklida i oznachaye sho dovzhina vektora rivna korenyu kvadratnomu sumi kvadrativ jogo komponentiv Analog ciyeyi rivnosti u vipadku neskinchennoyi sistemi vektoriv maye nazvu rivnosti Parsevalya Neevklidova geometriya Redaguvati Dokladnishe Neevklidova geometriyaTeorema Pifagora vivoditsya z aksiom evklidovoyi geometriyi i faktichno ne spravdzhuyetsya dlya neevklidovoyi geometriyi v tomu viglyadi v yakomu zapisana vishe 25 Tobto teorema Pifagora viyavlyayetsya svoyeridnim ekvivalentom do aksiomi paralelnosti Evklida 26 27 Inshimi slovami v neevklidovij geometriyi spivvidnoshennya mizh storonami trikutnika obov yazkovo bude u formi vidminnij vid Pifagora Napriklad v sferichnij geometriyi vsi tri storoni pryamokutnogo trikutnika skazhimo a displaystyle a b displaystyle b i c displaystyle c sho obmezhuye soboyu oktant vosmu chastinu odinichnoyi sferi mayut dovzhinu p 2 displaystyle pi 2 sho superechit teoremi Pifagora tomu sho a 2 b 2 c 2 displaystyle a 2 b 2 neq c 2 Rozglyanemo tut dva vipadki neevklidovoyi geometriyi sferichna i giperbolichna geometriyi v oboh vipadkah yak i dlya evklidovogo prostoru dlya ne pryamokutnih trikutnikiv rezultat sho zaminyuye teoremu Pifagora viplivaye z teoremi kosinusiv Prote teorema Pifagora zalishayetsya spravedlivoyu dlya giperbolichnoyi ta eliptichnoyi geometriyi yaksho vimogu pro pryamokutnist trikutnika zaminiti umovoyu sho suma dvoh kutiv trikutnika maye dorivnyuvati tretomu skazhimo A B C displaystyle A B C Todi spivvidnoshennya mizh storonami viglyadaye tak suma plosh kil z diametrami a displaystyle a i b displaystyle b dorivnyuye ploshi kola z diametrom c displaystyle c 28 Sferichna geometriya Redaguvati Dokladnishe Sferichna teorema Pifagora Sferichnij trikutnikDlya bud yakogo pryamokutnogo trikutnika na sferi radiusom R displaystyle R napriklad yaksho kut g v trikutniku pryamij iz storonami a displaystyle a b displaystyle b c displaystyle c spivvidnoshennya mizh storonami bude mati takij viglyad 29 cos c R cos a R cos b R displaystyle cos left frac c R right cos left frac a R right cos left frac b R right Cya rivnist mozhe buti vivedena yak osoblivij vipadok sferichnoyi teoremi kosinusiv yaka spravedliva dlya vsih sferichnih trikutnikiv cos c R cos a R cos b R sin a R sin b R cos g displaystyle cos left frac c R right cos left frac a R right cos left frac b R right sin left frac a R right sin left frac b R right cos gamma Zastosuyemo ryad Tejlora do funkciyi kosinusa cos x 1 x 2 2 displaystyle cos x approx 1 tfrac x 2 2 mozhna pokazati sho yaksho radius R displaystyle R nablizhayetsya do neskinchenosti a argumenti a R displaystyle tfrac a R b R displaystyle tfrac b R i c R displaystyle tfrac c R nablizhayutsya do nulya sferichne spivvidnoshennya mizh storonami v pryamokutnomu trikutniku nablizhayetsya do teoremi Pifagora Pidstavimo nablizheni znachennya dlya kozhnogo kosinusa 1 c R 2 1 a R 2 1 b R 2 h i g h e r o r d e r t e r m s displaystyle 1 left frac c R right 2 left 1 left frac a R right 2 right left 1 left frac b R right 2 right mathrm higher order terms de h i g h e r o r d e r t e r m s displaystyle mathrm higher order terms dodanki vishogo poryadku yakimi mozhna znehtuvati pri velikih znachennyah R displaystyle R Peremnozhimo virazi v duzhkah otrimayemo teoremu Pifagora dlya velikih radiusiv R displaystyle R c R 2 a R 2 b R 2 h i g h e r o r d e r t e r m s displaystyle left frac c R right 2 left frac a R right 2 left frac b R right 2 mathrm higher order terms Giperbolichna geometriya Redaguvati Dokladnishe Geometriya LobachevskogoDiv takozh Krivina Gausa Giperbolichnij trikutnikDlya pryamokutnogo trikutnika v giperbolichnij geometriyi iz storonami a displaystyle a b displaystyle b c displaystyle c yaksho storona c displaystyle c protilezhna do pryamogo kuta spivvidnoshennya mizh storonami bude take 30 ch c ch a ch b displaystyle operatorname ch c operatorname ch a operatorname ch b de ch displaystyle operatorname ch ce giperbolichnij kosinus Cya formula ye chastkovim vipadkom giperbolichnoyi teoremi kosinusiv yaka spravedliva dlya vsih trikutnikiv 31 ch c ch a ch b sh a sh b cos g displaystyle operatorname ch c operatorname ch a operatorname ch b operatorname sh a operatorname sh b cos gamma de g displaystyle gamma ce kut vershina yakogo protilezhna do storoni c displaystyle c Vikoristayemo ryadi Tejlora dlya giperbolichnogo kosinusa ch x 1 x 2 2 displaystyle operatorname ch x approx 1 tfrac x 2 2 mozhna dovesti sho yaksho giperbolichnij trikutnik zmenshuyetsya tobto koli a displaystyle a b displaystyle b i c displaystyle c nablizhayutsya do nulya to giperbolichni spivvidnoshennya v pryamokutnomu trikutniku nablizhayutsya do teoremi Pifagora Diferencialna geometriya Redaguvati Dokladnishe Diferencialna geometriya Vidstan mizh tochkami sho viddaleni odna vid odnoyi na neskinchenno malu velichinu v dekartovih ugori polyarnih koordinatah unizu zgidno z teoremoyu PifagoraU trivimirnomu prostori dlya dvoh tochok sho viddaleni odna vid odnoyi na neskinchenno malu viddal zapishemo teoremu Pifagora d s 2 d x 2 d y 2 d z 2 displaystyle ds 2 dx 2 dy 2 dz 2 de d s displaystyle ds ce vidstan mizh tochkami a d x displaystyle dx d y displaystyle dy d z displaystyle dz komponenti vektora sho z yednuye ci dvi tochki Takij prostir nazivayetsya evklidovim Prote uzagalnennya cogo virazu pridatne dlya zagalnih koordinat ne tilki Dekartovih i zagalnih prostoriv ne tilki Evklidovih maye viglyad 32 d s 2 i j n g i j d x i d x j displaystyle ds 2 sum i j n g ij dx i dx j de gij nazivayetsya metrichnim tenzorom Ce mozhe buti funkciya poziciyi Taki krivolinijni prostori vklyuchayut Rimanovu geometriyu yak zagalnij priklad Ce formulyuvannya takozh pidhodit dlya Evklidovogo prostoru pri zastosuvanni krivolinijnih koordinat Napriklad dlya polyarnih koordinat d s 2 d r 2 r 2 d 8 2 displaystyle ds 2 dr 2 r 2 d theta 2 Vektornij dobutok Redaguvati Dokladnishe Vektornij dobutok Plosha paralelograma yak modul vektornogo dobutku vektori a displaystyle mathbf a j b displaystyle mathbf b zadayut ploshinu a vektor a b displaystyle mathbf a times mathbf b perpendikulyarnij do ciyeyi ploshini Teorema Pifagora pov yazuye dva virazi velichini vektornogo dobutku Odin z pidhodiv do viznachennya vektornogo dobutku vimagaye shob vin zadovolnyav rivnyannya 33 a b 2 a 2 b 2 a b 2 displaystyle mathbf a times mathbf b 2 mathbf a 2 mathbf b 2 mathbf a cdot mathbf b 2 U cij formuli vikoristovuyetsya skalyarnij dobutok Prava storona rivnyannya nazivayetsya determinant Grama dlya a displaystyle mathbf a i b displaystyle mathbf b sho dorivnyuye ploshi paralelograma utvorenogo cimi dvoma vektorami Vihodyachi z ciyeyi vimogi a takozh vimogi pro perpendikulyarnist vektornogo dobutku do jogo skladovih a displaystyle mathbf a i b displaystyle mathbf b viplivaye sho za vinyatkom trivialnih vipadkiv z 0 ta 1 vimirnogo prostoru vektornij dobutok viznachenij tilki v troh ta semi vimirah 34 Vikoristayemo viznachennya kuta v n vimirnomu prostori 35 a b a b cos 8 displaystyle mathbf a cdot b ab cos theta cya vlastivist vektornogo dobutku daye jogo velichinu v takomu viglyadi a b 2 a 2 b 2 1 cos 2 8 displaystyle mathbf a times b 2 a 2 b 2 left 1 cos 2 theta right Cherez fundamentalnu trigonometrichnu totozhnist Pifagora 14 otrimuyemo inshu formu zapisu jogo velichini a b a b sin 8 displaystyle mathbf a times b ab sin theta Alternativnij pidhid do viznachennya vektornogo dobutku vikoristovuye viraz dlya jogo velichini Todi mirkuyuchi u zvorotnomu poryadku otrimuyemo zv yazok iz skalyarnim dobutkom a b 2 a 2 b 2 a b 2 displaystyle mathbf a times mathbf b 2 mathbf a 2 mathbf b 2 mathbf a cdot mathbf b 2 Div takozh Redaguvati Portal Matematika Chisla Pifagora Pryamokutnij trikutnik Trigonometrichna totozhnist Pifagora Teorema kosinusiv TrikutnikPrimitki Redaguvati 123 Bukvospoluchennya th u slovah greckogo pohodzhennya Ukrayinskij pravopis 2019 roku ukr 2019 Arhiv originalu za 17 veresnya 2019 Procitovano 21 sichnya 2021 Megalithic Monuments Arhiv originalu za 21 chervnya 2013 Procitovano 29 zhovtnya 2008 Van der Waerden 1983 Heath Vol I p 144 Swetz Boyer 1991 China and India See for example Mike May S J Pythagorean theorem by shear mapping Arhivovano 14 zhovtnya 2016 u Wayback Machine Saint Louis University website Java applet Jan Gullberg 1997 Mathematics from the birth of numbers W W Norton amp Company s 435 ISBN 039304002X Arhiv originalu za 3 lipnya 2014 Procitovano 1 kvitnya 2011 Shaughan Lavine 1994 Understanding the infinite Harvard University Press s 13 ISBN 0674920961 Arhiv originalu za 28 bereznya 2016 Procitovano 1 kvitnya 2011 Heath 1921 Vol I pp 65 Div James R Choike 1980 The pentagram and the discovery of an irrational number The College Mathematics Journal 11 312 316 A careful discussion of Hippasus contributions is found in Kurt Von Fritz Apr 1945 The Discovery of Incommensurability by Hippasus of Metapontum The Annals of Mathematics Second Series Annals of Mathematics 46 2 242 264 JSTOR 1969021 Jon Orwant Jarkko Hietaniemi John Macdonald 1999 Euclidean distance Mastering algorithms with Perl O Reilly Media Inc s 426 ISBN 1565923987 Arhiv originalu za 28 bereznya 2016 Procitovano 2 kvitnya 2011 Wentworth George 2009 Plane Trigonometry and Tables BiblioBazaar LLC s 116 ISBN 1 103 07998 0 Exercises page 116 Arhivovano 28 bereznya 2016 u Wayback Machine a b Lawrence S Leff 2005 PreCalculus the Easy Way vid 7th Barron s Educational Series s 296 ISBN 0764128922 Euclid s Elements Book VI Proposition VI 31 In right angled triangles the figure on the side subtending the right angle is equal to the similar and similarly described figures on the sides containing the right angle Lawrence S Leff 1 travnya 2005 cited work Barron s Educational Series s 326 ISBN 0764128922 Howard Whitley Eves 1983 4 8 generalization of Pythagorean theorem Great moments in mathematics before 1650 Mathematical Association of America s 41 ISBN 0883853108 Arhiv originalu za 8 lipnya 2014 Procitovano 14 kvitnya 2011 Tabit ibn Qorra full name Thabit ibn Qurra ibn Marwan Al Ṣabiʾ al Ḥarrani 826 901 AD was a physician living in Baghdad who wrote extensively on Euclid s Elements and other mathematical subjects Aydin Sayili Mar 1960 Thabit ibn Qurra s Generalization of the Pythagorean Theorem Isis 51 1 35 37 JSTOR 227603 doi 10 1086 348837 Judith D Sally Paul Sally 21 grudnya 2007 Exercise 2 10 ii Cited work s 62 ISBN 0821844032 Arhiv originalu za 28 kvitnya 2015 Procitovano 14 kvitnya 2011 a b For the details of such a construction see George Jennings 1997 Figure 1 32 The generalized Pythagorean theorem Modern geometry with applications with 150 figures vid 3rd Springer s 23 ISBN 038794222X a b Alfred Gray Elsa Abbena Simon Salamon 2006 Modern differential geometry of curves and surfaces with Mathematica vid 3rd CRC Press s 194 ISBN 1584884487 Arlen Brown Carl M Pearcy 1995 Item C Norm for an arbitrary n tuple An introduction to analysis Springer s 124 ISBN 0387943692 Arhiv originalu za 28 kvitnya 2015 Procitovano 14 kvitnya 2011 See also pages 47 50 Rajendra Bhatia 1997 Matrix analysis Springer s 21 ISBN 0387948465 Stephen W Hawking 2005 cited work s 4 ISBN 0762419229 Arhiv originalu za 2 veresnya 2020 Procitovano 15 kvitnya 2011 Eric W Weisstein 2003 CRC concise encyclopedia of mathematics vid 2nd s 2147 ISBN 1584883472 Arhiv originalu za 18 serpnya 2020 Procitovano 15 kvitnya 2011 The parallel postulate is equivalent to the Equidistance postulate Playfair axiom Proclus axiom the Triangle postulate and the Pythagorean theorem Alexander R Pruss 2006 The principle of sufficient reason a reassessment Cambridge University Press s 11 ISBN 052185959X Arhiv originalu za 25 veresnya 2020 Procitovano 15 kvitnya 2011 We could include the parallel postulate and derive the Pythagorean theorem Or we could instead make the Pythagorean theorem among the other axioms and derive the parallel postulate Victor Pambuccian December 2010 Maria Teresa Calapso s Hyperbolic Pythagorean Theorem The Mathematical Intelligencer 32 4 2 doi 10 1007 s00283 010 9169 0 Barrett O Neill 2006 Exercise 4 Elementary differential geometry vid 2nd Academic Press s 441 ISBN 0120887355 Saul Stahl 1993 Theorem 8 3 The Poincare half plane a gateway to modern geometry Jones amp Bartlett Learning s 122 ISBN 086720298X Jane Gilman 1995 Hyperbolic triangles Two generator discrete subgroups of PSL 2 R American Mathematical Society Bookstore ISBN 0821803611 Tai L Chow 2000 Mathematical methods for physicists a concise introduction Cambridge University Press s 52 ISBN 0521655447 WS Massey Dec 1983 Cross products of vectors in higher dimensional Euclidean spaces The American Mathematical Monthly Mathematical Association of America 90 10 697 701 JSTOR 2323537 doi 10 2307 2323537 Although a cross product involving n 1 vectors can be found in n dimensions a cross product involving only two vectors can be found only in 3 dimensions and in 7 dimensions See Pertti Lounesto 2001 7 4 Cross product of two vectors Clifford algebras and spinors vid 2nd Cambridge University Press s 96 ISBN 0521005515 Francis Begnaud Hildebrand 1992 Methods of applied mathematics vid Reprint of Prentice Hall 1965 2nd Courier Dover Publications s 24 ISBN 0486670023 Literatura RedaguvatiHeath Sir Thomas A History of Greek Mathematics 2 Vols Clarendon Press Oxford 1921 Dover Publications Inc 1981 ISBN 0 486 24073 8 Swetz Frank Kao T I Was Pythagoras Chinese An Examination of Right Triangle Theory in Ancient China Pennsylvania State University Press 1977 Van der Waerden B L Geometry and Algebra in Ancient Civilizations Springer 1983 Euclid 1956 The Thirteen Books of Euclid s Elements Translated from the Text of Heiberg with Introduction and Commentary Arhivovano 27 zhovtnya 2020 u Wayback Machine Vol 1 Books I and II Neugebauer Otto 1969 The exact sciences in antiquity Arhivovano 2 listopada 2013 u Wayback Machine Acta Historica Scientiarum Naturalium et Medicinalium 9 Republication of 1957 Brown University Press 2nd ed Courier Dover Publications pp 1 191 ISBN 0 486 22332 9 PubMed Elenskij Sh Po sledam Pifagora M 1961 Van der Varden B L Probuzhdayushayasya nauka Matematika Drevnego Egipta Vavilona i Grecii M 1959 V Litcman Teorema Pifagora Arhivovano 27 sichnya 2010 u Wayback Machine M 1960 Teorema Pifagora i pifagorovy trojki Arhivovano 3 bereznya 2016 u Wayback Machine glava iz knigi D V Anosova Vzglyad na matematiku i nechto iz nee Posilannya RedaguvatiVikishovishe maye multimedijni dani za temoyu Teorema PifagoraTeorema Pifagora Arhivovano 25 serpnya 2012 u Wayback Machine bilsh nizh 70 doveden vid cut the knot angl Weisstein Eric W Teorema Pifagora angl na sajti Wolfram MathWorld https mathshistory st andrews ac uk HistTopics Babylonian Pythagoras Arhivovano 20 zhovtnya 2020 u Wayback Machine Interaktivni posilannya Interaktivne dovedennya Arhivovano 12 lipnya 2012 u Wayback Machine Teoremi Pifagora za dopomogoyu Java angl She odne interaktivne dovedennya Arhivovano 26 serpnya 2012 u Wayback Machine Teoremi Pifagora za dopomogoyu Java angl Teorema Pifagora Arhivovano 27 zhovtnya 2020 u Wayback Machine z interaktivnoyu animaciyeyu angl Pythagorean theorem water demo na YouTube Cya stattya nalezhit do dobrih statej ukrayinskoyi Vikipediyi Otrimano z https uk wikipedia org w index php title Teorema Pifagora amp oldid 38068588