www.wikidata.uk-ua.nina.az
Dlya vipadku dvovimirnoyi poverhni v trivimirnomu prostori krivinoyu Ga usa nazivayetsya dobutok golovnih krivin k 1 k 2 displaystyle k 1 k 2 Prirodnim bude take uzagalnennya krivini Gausa na vipadok n displaystyle n vimirnoyi giperpoverhni Z liva napravo poverhnya z vid yemnoyu gausovoyu krivinoyu giperboloyid poverhnya z nulovoyu gausovoyu krivinoyu cilindr ta poverhnya z dodatnoyu gausovoyu krivinoyu sfera Zmist 1 Oznachennya krivini Gausa dlya giperpoverhni 2 Tenzorna formula dlya krivin Gausa 3 Virazhennya krivin Gausa parnogo stepenya cherez tenzor Rimana 4 Alternativne vivedennya formuli dlya krivin Gausa parnogo stepenya 5 Krivini Gausa neparnogo stepenya 6 Znachennya krivin Gausa 7 Div takozh 8 DzherelaOznachennya krivini Gausa dlya giperpoverhni RedaguvatiYak vidomo krivina n displaystyle n nbsp vimirnoyi giperpoverhni v tochci povnistyu opisuyetsya golovnimi krivinami 1 k 1 k 2 k n displaystyle 1 qquad k 1 k 2 dots k n nbsp ta vidpovidnimi golovnimi napryamkami v yakih napryamkah krivina geodezichnih dorivnyuye golovnim krivinam Rozglyanemo z tochnistyu do znaku simetrichni mnogochleni skladeni z chisel 1 k 1 k 2 k n displaystyle 1 qquad k 1 k 2 dots k n nbsp 2 K 1 k 1 k 2 k n i k i displaystyle 2 qquad K 1 k 1 k 2 dots k n sum i k i nbsp K 2 k 1 k 2 k 1 k 3 k n 1 k n i lt j k i k j displaystyle qquad K 2 k 1 k 2 k 1 k 3 dots k n 1 k n sum i lt j k i k j nbsp displaystyle qquad cdots cdots cdots nbsp K n 1 n k 1 k 2 k n displaystyle qquad K n 1 n k 1 k 2 cdots k n nbsp Nazvemo vishenavedeni velichini krivinami Gausa vidpovidnogo stepenya Zagalna formula krivini Gausa stepenya m displaystyle m nbsp zapishetsya tak 3 K m i 1 lt i 2 lt lt i m k i 1 k i 2 k i m displaystyle 3 qquad K m sum i 1 lt i 2 lt dots lt i m k i 1 k i 2 cdots k i m nbsp Krivini Gausa ye koeficiyentami harakteristichnogo mnogochlena dlya matrici tenzora povnoyi krivini giperpoverhni 4 det l d j i b j i l n K 1 l n 1 K n 1 l K n displaystyle 4 qquad det lambda delta j i b j i lambda n K 1 lambda n 1 dots K n 1 lambda K n nbsp Tenzorna formula dlya krivin Gausa RedaguvatiFormula 3 viznachaye krivini Gausa cherez vlasni chisla tenzora povnoyi krivini giperpoverhni b i j displaystyle b ij nbsp Sprobuyemo viraziti ci velichini cherez komponenti samogo tenzora b i j displaystyle b ij nbsp v bud yakij sistemi koordinat Dlya obchislennya viznachnika dovilnogo tenzora drugogo rangu a j i displaystyle a j i nbsp mi mayemo taku formulu z vikoristannyam tenzora metrichnoyi matroshki divitsya stattyu Odinichnij antisimetrichnij tenzor 5 det a j i 1 n g j 1 j 2 j n i 1 i 2 i n a i 1 j 1 a i 2 j 2 a i n j n displaystyle 5 qquad det a j i 1 over n g j 1 j 2 dots j n i 1 i 2 dots i n a i 1 j 1 a i 2 j 2 cdots a i n j n nbsp Pidstavimo v cyu formulu a j i l d j i b j i displaystyle a j i lambda delta j i b j i nbsp shob obchisliti livij viraz formuli 4 todi mayemo 6 n det l d j i b j i g j 1 j 2 j n i 1 i 2 i n l d i 1 j 1 b i 1 j 1 l d i n j n b i n j n displaystyle 6 qquad n det lambda delta j i b j i g j 1 j 2 dots j n i 1 i 2 dots i n lambda delta i 1 j 1 b i 1 j 1 cdots lambda delta i n j n b i n j n nbsp Rozkriyemo duzhki u formuli 6 Oskilki tenzor metrichnoyi matroshki g j 1 j 2 j n i 1 i 2 i n displaystyle g j 1 j 2 dots j n i 1 i 2 dots i n nbsp ne zminyuyetsya pri sinhronnij perestanovci verhnih ta nizhnih indeksiv to vsi dodanki pri odnakovomu stepeni l m displaystyle lambda m nbsp budut odnakovimi yihnya kilkist dorivnyuye binomialnomu koeficiyentu C n m displaystyle C n m nbsp i mi oderzhuyemo 7 n det l d j i b j i l n g s 1 s 2 s n s 1 s 2 s n C n 1 l n 1 g j s 2 s n i s 2 s n b i j C n 2 l n 2 g j 1 j 2 s n i 1 i 2 s n b i 1 j 1 b i 2 j 2 displaystyle 7 qquad n det lambda delta j i b j i lambda n g s 1 s 2 dots s n s 1 s 2 dots s n C n 1 lambda n 1 g js 2 dots s n is 2 dots s n b i j C n 2 lambda n 2 g j 1 j 2 dots s n i 1 i 2 dots s n b i 1 j 1 b i 2 j 2 dots nbsp Oskilki poslidovni zgortki tenzora metrichnoyi matroshki dorivnyuyut 8 g j 1 j 2 j m s m 1 s m 2 s n i 1 i 2 i m s m 1 s m 2 s n n m g j 1 j m i 1 i m displaystyle 8 qquad g j 1 j 2 dots j m s m 1 s m 2 dots s n i 1 i 2 dots i m s m 1 s m 2 dots s n n m g j 1 dots j m i 1 dots i m nbsp To z formuli 7 i formuli dlya binomialnih koeficiyentiv C n m n m n m displaystyle C n m n over m n m nbsp znahodimo taku formulu dlya harakteristichnogo mnogochlena podilivshi obidvi storoni rivnyannya 7 na n displaystyle n nbsp 9 det l d j i b j i l n l n 1 1 g j i b i j l n 2 2 g j 1 j 2 i 1 i 2 b i 1 j 1 b i 2 j 2 displaystyle 9 qquad det lambda delta j i b j i lambda n lambda n 1 over 1 g j i b i j lambda n 2 over 2 g j 1 j 2 i 1 i 2 b i 1 j 1 b i 2 j 2 dots nbsp Porivnyuyuchi formuli 9 i 4 znahodimo taku formulu dlya krivin Gausa 10 K m 1 m m g j 1 j 2 j m i 1 i 2 i m b i 1 j 1 b i 2 j 2 b i m j m displaystyle 10 qquad K m 1 m over m g j 1 j 2 dots j m i 1 i 2 dots i m b i 1 j 1 b i 2 j 2 dots b i m j m nbsp Virazhennya krivin Gausa parnogo stepenya cherez tenzor Rimana RedaguvatiDlya skalyarnoyi krivini giperpoverhni mi mali taku formulu divitsya stattyu Giperpoverhnya 11 R g i k g j l R i j k l 2 i lt j k i k j 2 K 2 displaystyle 11 qquad R g ik g jl R ijkl 2 sum i lt j k i k j 2K 2 nbsp Shob uzagalniti cyu formulu na vishi stepeni sprobuyemo zaminiti dobutok dvoh metrichnih tenzoriv u formuli 11 na tenzor metrichnoyi matroshki chetvertogo rangu divitsya stattyu Odinichnij antisimetrichnij tenzor 12 g i j k l R i j k l g i k g i l g j k g j l R i j k l g i k g j l g i l g j k R i j k l 2 R 4 K 2 displaystyle 12 qquad g ijkl R ijkl begin vmatrix g ik amp g il g jk amp g jl end vmatrix R ijkl g ik g jl g il g jk R ijkl 2R 4K 2 nbsp Dlya podalshih obchislen mi perejdemo v lokalnu dekartovu sistemu koordinat v odnij z tochok mnogovida P displaystyle P nbsp ta oriyentuyemo yiyi vzdovzh golovnih napryamkiv giperpoverhni V tochci P displaystyle P nbsp matricya metrichnogo tenzora bude odinichnoyu 13 g i j d i j 1 i j 0 i j displaystyle 13 qquad g ij delta ij begin cases 1 amp i j 0 amp i neq j end cases nbsp a tomu mi mozhemo chiselno ne rozriznyati kovariantni ta vidpovidni kontravariantni komponenti tenzoriv verhni ta nizhni indeksi Tenzor Rimana v tochci P displaystyle P nbsp bude v deyakomu rozuminni diagonalnim a same jogo nenulovi komponenti dorivnyuyut 14 R i j i j R i j j i k i k j i j displaystyle 14 qquad R ijij R ijji k i k j qquad i neq j nbsp i dorivnyuyut nulyu vsi ti komponenti R i j k l displaystyle R ijkl nbsp de druga para indeksiv k l displaystyle kl nbsp ne zbigayetsya z i j displaystyle ij nbsp z tochnistyu do perestanovki v pari Liva chastina formuli 12 ye linijnoyu formoyu vid tenzora Rimana a koeficiyentami ciyeyi formi sluzhat komponenti tenzora metrichnoyi matroshki Ochevidnim uzagalnennyam ye rozglyad bilinijnoyi formi ta form vishih stepeniv vid komponent tenzora Rimana Provedemo obchislennya formuli 12 she raz i v takij sposib shob ci obchislennya mozhna bulo legko uzagalniti Mayemo vrahovuyuchi diagonalnist tenzora Rimana 15 g k l i j R i j k l i j k l g k l i j R i j k l i j g i j i j R i j i j g j i i j R i j j i displaystyle 15 qquad g kl ij R ij kl sum i j left sum k l g kl ij R ij kl right sum i j left g ij ij R ij ij g ji ij R ij ji right nbsp Dali dva dodanki v pravij chastini formuli 15 odnakovi vnaslidok antisimetriyi za indeksami vseredini pari yak tenzora metrichnoyi matroshki tak i tenzora Rimana Krim togo diagonalna komponenta metrichnoyi matroshki dorivnyuye odinici oskilki v nastupnij formuli dodavannya za odnakovimi indeksah ne provoditsya a indeksi i j displaystyle i j nbsp rizni 16 g i j i j d i i d j i d i j d j j 1 0 0 1 1 displaystyle 16 qquad g ij ij begin vmatrix delta i i amp delta j i delta i j amp delta j j end vmatrix begin vmatrix 1 amp 0 0 amp 1 end vmatrix 1 nbsp Vrahovuyuchi visheskazane i formulu 14 peretvoryuyemo formulu 15 dali 17 g k l i j R i j k l 2 i j 1 k i k j 2 2 i lt j k i k j 2 2 K 2 displaystyle 17 qquad g kl ij R ij kl 2 sum i neq j 1 cdot k i k j 2 cdot 2 sum i lt j k i k j 2 cdot 2 K 2 nbsp Teper perejdemo do obchislennya nastupnoyi kvadratichnoyi formi 18 F 2 R g k 1 l 1 k 2 l 2 i 1 j 1 i 2 j 2 R i 1 j 1 k 1 l 1 R i 2 j 2 k 2 l 2 displaystyle 18 qquad Phi 2 R g k 1 l 1 k 2 l 2 i 1 j 1 i 2 j 2 R i 1 j 1 k 1 l 1 R i 2 j 2 k 2 l 2 nbsp Koeficiyentami ciyeyi formi sluzhat komponenti tenzora metrichnoyi matroshki vosmogo rangu Cej tenzor maye dvi grupi indeksiv i ye antisimetrichnim za perestanovkoyu indeksiv vseredini cih grup Obchislyuyemo analogichno do formuli 15 19 F 2 R i 1 j 1 i 2 j 2 k 1 l 1 k 2 l 2 g k 1 l 1 k 2 l 2 i 1 j 1 i 2 j 2 R i 1 j 1 k 1 l 1 R i 2 j 2 k 2 l 2 2 2 i 1 j 1 i 2 j 2 g i 1 j 1 i 2 j 2 i 1 j 1 i 2 j 2 R i 1 j 1 i 1 j 1 R i 2 j 2 i 2 j 2 displaystyle 19 qquad Phi 2 R sum i 1 j 1 i 2 j 2 left sum k 1 l 1 k 2 l 2 g k 1 l 1 k 2 l 2 i 1 j 1 i 2 j 2 R i 1 j 1 k 1 l 1 R i 2 j 2 k 2 l 2 right 2 2 sum i 1 j 1 i 2 j 2 g i 1 j 1 i 2 j 2 i 1 j 1 i 2 j 2 R i 1 j 1 i 1 j 1 R i 2 j 2 i 2 j 2 nbsp Perepoznachimo indeksi i 1 j 1 i 2 j 2 displaystyle i 1 j 1 i 2 j 2 nbsp na i j k l displaystyle i j k l nbsp dlya sproshennya zapisu 19 a F 2 R 2 2 i j k l g i j k l i j k l R i j i j R k l k l 2 2 4 i j k l a l l d i f f e r e n t g i j k l i j k l k i k j k k k l displaystyle 19a qquad Phi 2 R 2 2 sum i j k l g ijkl ijkl R ij ij R kl kl 2 2 4 sum i j k l over all different g ijkl ijkl k i k j k k k l nbsp Vsi chotiri indeksi i j k l displaystyle i j k l nbsp mayut buti poparno riznimi oskilki komponenti tenzora metrichnoyi matroshki dorivnyuyut nulyu pri nayavnosti dvoh odnakovih indeksiv v odnij grupi V pravij sumi formuli 19a stoyat diagonalni komponenti tenzora metrichnoyi matroshki yaki dorivnyuyut odinici analogichno formuli 16 19 b F 2 R 2 2 i j k l a l l d i f f e r e n t k i k j k k k l 2 2 4 i lt j lt k lt l k i k j k k k l 2 2 4 K 4 displaystyle 19b qquad Phi 2 R 2 2 sum i j k l over all different k i k j k k k l 2 2 cdot 4 sum i lt j lt k lt l k i k j k k k l 2 2 cdot 4 K 4 nbsp Mnozhnik 4 pri perehodi do drugoyi sumi v formuli 19a vinik vnaslidok togo sho odnomu dodanku v pravij sumi yakij harakterizuyetsya fiksovanim naborom chotiroh riznih chisel i lt j lt k lt l displaystyle i lt j lt k lt l nbsp vidpovidaye 4 24 odnakovih za velichinoyu dodanki v livij sumi yaki harakterizuyutsya perestanovkami cih chotiroh chisel Formuli 19 19a 19b legko uzagalnyuyutsya na formi vishih stepeniv Takim chinom oderzhuyemo zagalnu formulu dlya znahodzhennya krivin Gausa parnogo stepenya 2 m displaystyle 2m nbsp 20 K 2 m 1 2 m 2 m g k 1 l 1 k m l m i 1 j 1 i m j m R i 1 j 1 k 1 l 1 R i m j m k m l m displaystyle 20 qquad K 2m 1 over 2 m 2m g k 1 l 1 dots k m l m i 1 j 1 dots i m j m R i 1 j 1 k 1 l 1 cdots R i m j m k m l m nbsp Alternativne vivedennya formuli dlya krivin Gausa parnogo stepenya RedaguvatiSkoristayemosya nastupnim virazhennyam tenzora Rimana cherez tenzor povnoyi krivini divitsya stattyu Giperpoverhnya 21 R i j k l b i k b j l b j k b i l displaystyle 21 qquad R ij kl b i k b j l b j k b i l nbsp i pochnemo v formuli 10 grupuvati spivmnozhniki po dva napriklad pochinayuchi z pershih dvoh tut mi vvazhayemo sho stepin 2 m displaystyle 2m nbsp krivini Gausa ne menshij 2 m 1 displaystyle m geq 1 nbsp i dlya sproshennya zapisu opustimo poznachennya m displaystyle m nbsp 22 2 m K g k l i j b i k b j l g k l j i b i k b j l displaystyle 22 qquad 2m K g kl dots ij dots b i k b j l cdots g kl dots ji dots b i k b j l cdots nbsp Ostannye peretvorennya spravedlive vnaslidok antisimetriyi tenzora metrichnoyi matroshki shodo indeksiv v verhnij grupi Dali v ostannomu virazi pominyayemo miscyami indeksi i j displaystyle i j nbsp 23 2 m K g k l i j b j k b i l displaystyle 23 qquad 2m K g kl dots ij dots b j k b i l cdots nbsp Teper dodamo rivnyannya 22 i 23 pri comu vrahuvavshi 21 Oderzhuyemo znovu perepoznachivshi indeksi 24 2 2 m K 2 m g k 1 l 1 k 2 l 2 k m l m i 1 j 1 i 2 j 2 i m j m R i 1 j 1 k 1 l 1 b i 2 k 2 b i m k m b j m l m displaystyle 24 qquad 2 2m K 2m g k 1 l 1 k 2 l 2 dots k m l m i 1 j 1 i 2 j 2 dots i m j m R i 1 j 1 k 1 l 1 b i 2 k 2 cdots b i m k m b j m l m nbsp Mnozhnik 2 v livij chastini rivnyannya 24 z yavivsya vnaslidok grupuvannya dvoh mnozhnikiv b i 1 k 1 b j 1 l 1 displaystyle b i 1 k 1 b j 1 l 1 nbsp Ochevidno mi mozhemo podibnim chinom zgrupuvati poparno i reshtu spivmnozhnikiv todi v livij chastini mi oderzhimo mnozhnik 2 m displaystyle 2 m nbsp a v pravij viraz v yakomu bere uchast tilki tenzor Rimana i tenzor metrichnoyi matroshki tobto mi oderzhimo formulu 20 Krivini Gausa neparnogo stepenya RedaguvatiKrivini Gausa neparnogo stepenya takozh pov yazani z tenzorom Rimana ale skladnishimi formulami anizh 20 Do togo zh z cih formul krivina Gausa virazhayetsya neodnoznachno cherez tenzor Rimana Oskilki tut bagato nyuansiv docilno bude prisvyatiti okremu stattyu krivinam Gausa neparnogo stepenya Znachennya krivin Gausa RedaguvatiNa pochatku mi dali oznachennya krivini Gausa tilki dlya giperpoverhni formuli 2 3 Ale formula 20 yak i formuli dlya znahodzhennya krivini Gausa neparnogo stepenya dayut zmogu poshiriti ce ponyattya na dovilni abstraktni mnogovidi Takim chinom mi mozhemo rozglyadati krivini Gausa yak skalyarni invarianti tenzora Rimana Vnutrishnya krivina mnogovida povnistyu opisuyetsya tenzorom Rimana Ale sam po sobi tenzor ce skladnij ob yekt Mi mozhemo postaviti shodo krivini mnogovida tri pitannya yaka userednena velichina ciyeyi krivini yaka anizotropnist yaka oriyentaciya ciyeyi anizotropnosti Na pershi dva pitannya mozhna dati vidpovid proanalizuvavshi krivini Gausa podibno do togo yak ce robitsya dlya linijnogo operatora tenzora drugogo rangu cherez koeficiyenti harakteristichnogo mnogochlena Krivini Gausa yak skalyari mozhna integruvati za ob yemom vsogo mnogovida divitsya stattyu Integrali Gausa Viyavlyayetsya sho integral vid K n displaystyle K n nbsp ye topologichnim invariantom n displaystyle n nbsp vimirnogo mnogovida ne zminyuyetsya pri neperervnij deformaciyi mnogovida Div takozh RedaguvatiKrivina rimanovih mnogovidiv Gaus Krivina matematika Dzherela RedaguvatiPogorelov A I Differencialnaya geometriya 6 e izdanie Arhivovano 6 zhovtnya 2014 u Wayback Machine M Nauka 1974 Rashevskij P K Kurs differencialnoj geometrii 3 e izdanie Arhivovano 10 veresnya 2011 u Wayback Machine M L GITTL 1950 Otrimano z https uk wikipedia org w index php title Krivina Gausa amp oldid 39635510