www.wikidata.uk-ua.nina.az
U matematici Ryad Te jlora predstavlennya funkciyi u viglyadi neskinchennoyi sumi dodankiv yaki obchislyuyutsya zi znachen funkcij pohidnih v odnij tochci Oskilki stepin polinoma Tejlora zrostaye vin nablizhayetsya do pravilnoyi funkciyi Ce zobrazhennya pokazuye s i n x displaystyle sin x i yiyi nablizhennya Tejlora mnogochleni stepenya 1 3 5 7 9 11 i 13 Koncepciya ryadu Tejlora bula sformulovana shotlandskim matematikom Dzhejmsom Gregori i oficijno predstavlena anglijskim matematikom Brukom Tejlorom v 1715 roci Yaksho ryad Tejlora z centrom v nuli to cej ryad takozh nazivayetsya ryadom Maklorena yakij nazvanij na chest shotlandskogo matematika Maklorena yakij shiroko vikoristav cej osoblivij vipadok ryadu Tejlora v 18 mu stolitti Funkciya mozhe buti aproksimovana za dopomogoyu skinchennogo chisla chleniv ryadu Tejlora Teorema Tejlora daye kilkisni ocinki pohibok yaki vnosyatsya za dopomogoyu vikoristannya takogo nablizhennya Polinom utvorenij z deyakih pochatkovih chleniv ryadu Tejlora nazivayetsya mnogochlenom Tejlora Ryad Tejlora funkciyi ye graniceyu polinomiv Tejlora ciyeyi funkciyi u miru zbilshennya miri za umovi sho isnuye granicya Funkciya mozhe ne dorivnyuvati yiyi ryadu Tejlora navit yaksho ryad zbigayetsya v kozhnij tochci Funkciya yaka dorivnyuye yiyi ryadu Tejlora u vidkritomu intervali chi v koli v kompleksnij ploshini nazivayetsya analitichnoyu v comu intervali Zmist 1 Viznachennya 2 Priklad 3 Istoriya 4 Analitichni funkciyi 5 Rozklad v ryad Maklorena dlya deyakih funkcij 5 1 Eksponencijna funkciya 5 2 Naturalnij logarifm 5 3 Geometrichnij ryad 5 4 Binomialnij ryad 5 5 Trigonometrichni funkciyi 5 6 Giperbolichni funkciyi 5 7 W funkciya Lamberta 6 Formula Tejlora 6 1 Formula Tejlora z zalishkovim chlenom u formi Peano 6 2 Formula Tejlora z zalishkovim chlenom u formi Lagranzha 6 3 Formula Tejlora z zalishkovim chlenom u formi Koshi 7 Obchislennya ryadiv Tejlora 8 Nablizhennya i zbizhnist 8 1 Uzagalnennya 9 Ryad Tejlora dlya funkcij bagatoh argumentiv 9 1 Priklad 10 Porivnyannya z ryadom Fur ye 11 Div takozh 12 Literatura 13 Posilannya 14 PrimitkiViznachennya RedaguvatiRyad Tejlora dijsnoyi abo kompleksnoyi funkciyi f x displaystyle f x nbsp yaka ye neskinchenno diferencijovnoyu en v okoli tochki a displaystyle a nbsp nazivayetsya stepenevij ryadf a f a 1 x a f a 2 x a 2 f a 3 x a 3 displaystyle f a frac f a 1 x a frac f a 2 x a 2 frac f a 3 x a 3 cdots nbsp yakij mozhe buti zapisanij v kompaktnomu suma zapisi n 0 f n a n x a n displaystyle sum n 0 infty frac f n a n x a n nbsp de n displaystyle n nbsp oznachaye faktorial n displaystyle n nbsp i f n a displaystyle f n a nbsp oznachaye n displaystyle n nbsp nu pohidnu f displaystyle f nbsp v tochci a displaystyle a nbsp Pohidna nulovogo poryadku f displaystyle f nbsp viznachayetsya yak sama funkciya f displaystyle f nbsp tomu sho x a 0 displaystyle x a 0 nbsp i 0 displaystyle 0 nbsp rivni 1 displaystyle 1 nbsp Pri a 0 displaystyle a 0 nbsp ryad takozh nazivayut ryadom Maklorena Priklad RedaguvatiRyad Maklorena dlya bud yakogo mnogochlena ye samim mnogochlenom Ryad Maklorena 1 x 1 displaystyle 1 x 1 nbsp geometrichna progresiya 1 x x 2 x 3 displaystyle 1 x x 2 x 3 cdots nbsp tak sho ryad Tejlora dlya x 1 displaystyle x 1 nbsp pri a 1 displaystyle a 1 nbsp ye1 x 1 x 1 2 x 1 3 displaystyle 1 x 1 x 1 2 x 1 3 cdots nbsp Integruyuchi navedenij vishe Maklorena mi otrimuyemo ryad Maklorena dlya ln 1 x displaystyle ln 1 x nbsp de ln displaystyle ln nbsp oznachaye naturalnij logarifm x 1 2 x 2 1 3 x 3 1 4 x 4 displaystyle x frac 1 2 x 2 frac 1 3 x 3 frac 1 4 x 4 cdots nbsp i vidpovidnij ryad Tejlora dlya ln x displaystyle ln x nbsp pri a 1 displaystyle a 1 nbsp x 1 1 2 x 1 2 1 3 x 1 3 1 4 x 1 4 displaystyle x 1 frac 1 2 x 1 2 frac 1 3 x 1 3 frac 1 4 x 1 4 cdots nbsp U zagalnomu vipadku vidpovidnij ryad Tejlora dlya ln x displaystyle ln x nbsp v nenulovij tochci a x 0 displaystyle a x 0 nbsp dorivnyuye ln x 0 1 x 0 x x 0 1 x 0 2 x x 0 2 2 displaystyle ln x 0 frac 1 x 0 x x 0 frac 1 x 0 2 frac x x 0 2 2 cdots nbsp Ryad Tejlora dlya eksponenti e x displaystyle e x nbsp pri a 0 displaystyle a 0 nbsp dorivnyuye1 x 1 1 x 2 2 x 3 3 x 4 4 x 5 5 1 x x 2 2 x 3 6 x 4 24 x 5 120 n 0 x n n displaystyle 1 frac x 1 1 frac x 2 2 frac x 3 3 frac x 4 4 frac x 5 5 cdots 1 x frac x 2 2 frac x 3 6 frac x 4 24 frac x 5 120 cdots sum n 0 infty frac x n n nbsp Rozklad vishe virnij oskilki pohidna e x displaystyle e x nbsp po x displaystyle x nbsp takozh e x displaystyle e x nbsp i e 0 displaystyle e 0 nbsp dorivnyuyut 1 displaystyle 1 nbsp Ce zalishaye virazi x 0 n displaystyle x 0 n nbsp u chiselniku i n displaystyle n nbsp u znamenniku dlya kozhnogo chlena u neskinchennij sumi Istoriya RedaguvatiGreckij filosof Zenon rozglyadav problemu znahodzhennya sumi neskinchennogo ryadu dlya dosyagnennya skinchennogo rezultatu ale vidhiliv jogo yak nemozhlive rezultatom buv paradoks Zenona Piznishe Aristotel zaproponuvav filosofskij rozv yazok paradoksu ale matematichnij zmist ne z yasuvav Jogo otrimav Arhimed yak ce bulo zrobleno do Aristotelya atomistom Demokritom Zavdyaki metodu vicherpuvannya Arhimeda neskinchennu kilkist podiliv mozhna vikonanati dlya dosyagnennya skinchennogo rezultatu 1 Kitajskij matematik Lyu Huej nezalezhno vikoristav shozhij metod cherez dekilka stolit 2 Upershe vikoristav ryadi Tejlora i tisno pov yazani z nimi metodi u 14 mu stolitti Madhave z Sandamagrami 3 4 Hocha zhoden zvit pro jogo robotu ne uciliv praci piznishih indijskih matematikiv en svidchat pro te sho vin viyaviv ryad osoblivih vipadkiv ryadiv Tejlora u tomu chisli dlya trigonometrichnih funkcij sinusa kosinusa tangensa i arktangensa Keralska shkola astronomiyi i matematiki do 16 go stolittya rozvivala jogo roboti zbilshuyuchi kilkist rozkladiv u ryadi i racionalni nablizhennya U 17 mu stolitti Dzhejms Gregori takozh pracyuvav v cij galuzi i opublikuvav dekilka ryadiv Maklorena Prote lishe v 1715 roci Bruk Tejlor zaproponuvav zagalnij metod pobudovi cih ryadiv dlya usih funkcij dlya yakih voni isnuyut 5 na chest yakogo teper nazvano ci ryadi Ryad Maklorena bulo nazvano na chest Kolina Maklorena profesora z Edinburgu yakij opublikuvav specialnij vipadok ryadu Tejlora u 18 mu stolitti Analitichni funkciyi RedaguvatiDokladnishe Analitichna funkciya nbsp Funkciya e 1 x 2 displaystyle e frac 1 x 2 nbsp ne ye analitichnoyi v tochci x 0 displaystyle x 0 nbsp ryad Tejlora totozhno dorivnyuye 0 displaystyle 0 nbsp a sama funkciya tozhno ne dorivnyuye 0 displaystyle 0 nbsp Yaksho f x displaystyle f x nbsp zadayetsya zbizhnim stepenevim ryadom u vidkritomu kruzi abo v intervali dijsnoyi pryamoyi z centrom v tochci b displaystyle b nbsp na kompleksnij ploshini to vona nazivayetsya analitichnoyu v comu kruzi Takim chinom dlya x displaystyle x nbsp v comu kruzi f displaystyle f nbsp viznachayetsya zbizhnim stepenevim ryadom f x n 0 a n x b n displaystyle f x sum n 0 infty a n x b n nbsp Diferenciyuyuchi po x displaystyle x nbsp navedeni vishe formuli n displaystyle n nbsp raziv ta pidstavlyayuchi x b displaystyle x b nbsp mayemo f n b n a n displaystyle frac f n b n a n nbsp i tomu rozklad ciyeyi funkciyi v stepenevij ryad zbigayetsya z yiyi ryadom Tejlora Takim chinom funkciya ye analitichnoyu u vidkritomu kruzi z centrom v tochci b displaystyle b nbsp todi i tilki todi koli yiyi ryad Tejlora zbigayetsya do znachennya funkciyi v kozhnij tochci zadanogo kruga Yaksho f x displaystyle f x nbsp dorivnyuye yiyi ryadu Tejlora dlya vsih x displaystyle x nbsp v kompleksnij ploshini to vona nazivayetsya ciloyu Mnogochleni eksponencijna funkciya e x displaystyle e x nbsp i trigonometrichni funkciyi sinus i kosinus ye prikladami cilih funkcij Funkciyi taki yak kvadratnij korin logarifm trigonometrichni funkciyi tangens ta arktangens ne ye cilimi Dlya cih funkcij ryad Tejlora ne zbigayetsya en yaksho x displaystyle x nbsp daleko vid b displaystyle b nbsp Tobto ryad Tejlora rozbigayetsya en v tochci x displaystyle x nbsp yaksho vidstan mizh x displaystyle x nbsp i b displaystyle b nbsp bilshe nizh jogo radius zbizhnosti Ryad Tejlora mozhna vikoristovuvati dlya obchislennya znachennya ciloyi funkciyi v kozhnij tochci yaksho lishe v odnij tochci vidomi znachennya funkciyi i vsih yiyi pohidnih Vikoristannya ryadu Tejlora dlya analitichnih funkcij vklyuchaye v sebe Chastkovi sumi polinomi Tejlora ryadiv mozhut buti vikoristani yak nablizhennya funkciyi Ci nablizhennya stayut bilsh tochnimi pri vklyucheni chim bilshoyi kilkosti chleniv rozkladu Diferenciyuvannya ta integruvannya stepennih ryadiv mozhna vikonati pochlenno i otzhe dosit legko Analitichna funkciya odnoznachno prodovzhuyetsya do golomorfnoyi funkciyi u vidkritomu kruzi na kompleksnij ploshini Ce robit mehanizm kompleksnogo analizu bilsh dostupnim Usichenni ryadi mozhna vikoristovuvati dlya chiselnogo obchislennya znachen funkciyi chasto pereroblyayuchi polinom u formu Chebishova i jogo obchislennya za dopomogoyu algoritmu Klenshava en Algebrayichni operaciyi legko provoditi nad funkciyami yaki predstavleni u viglyadi stepennih ryadiv napriklad formula Ejlera viplivaye z rozkladu ryadu Tejlora dlya trigonometrichnih i pokazovih funkcij Cej rezultat maye fundamentalne znachennya v takih oblastyah yak garmonichnij analiz Aproksimaciya z vikoristannyam dekilkoh pershih chleniv ryadu Tejlora mozhe zrobiti nerozv yazni problemi rozv yaznimi dlya obmezhenoyi oblasti cej pidhid chasto vikoristovuyetsya u fizici Rozklad v ryad Maklorena dlya deyakih funkcij RedaguvatiDokladnishe Spisok ryadiv ta sumTut navedeno dekilka vazhlivih rozkladiv v ryadu Maklorena 6 Vsi ci rozkladi spravedlivi dlya kompleksnogo argumentu x displaystyle x nbsp Eksponencijna funkciya Redaguvati nbsp Eksponencijna funkciya e x displaystyle e x nbsp sinim kolorom ta suma pershih n 1 displaystyle n 1 nbsp chleniv ryadu Tejlora v tochci 0 displaystyle 0 nbsp chervonim kolorom Eksponenta maye takij ryad Maklorena e x n 0 x n n 1 x x 2 2 x 3 3 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 cdots nbsp Vin zbigayetsya dlya vsih x displaystyle x nbsp Naturalnij logarifm Redaguvati Dokladnishe Ryad MerkatoraDlya naturalnogo logarifmu ye nastupni vazhlivi ryadi Maklorena log 1 x n 1 x n n displaystyle log 1 x sum n 1 infty frac x n n nbsp log 1 x n 1 1 n 1 x n n displaystyle log 1 x sum n 1 infty 1 n 1 frac x n n nbsp Obidva ci ryadi zbigayutsya pri x lt 1 displaystyle x lt 1 nbsp odnak ryad dlya log 1 x displaystyle log 1 x nbsp zbigayetsya takozh pri x 1 displaystyle x 1 nbsp a ryad dlya log 1 x displaystyle log 1 x nbsp pri x 1 displaystyle x 1 nbsp Geometrichnij ryad Redaguvati Geometrichnij ryad ta jogo pohidni mayut taki ryadi Maklorena 1 1 x n 0 x n x lt 1 displaystyle frac 1 1 x sum n 0 infty x n quad x lt 1 nbsp 1 1 x 2 n 1 n x n 1 x lt 1 displaystyle frac 1 1 x 2 sum n 1 infty nx n 1 quad x lt 1 nbsp x 1 x 2 n 0 n x n x lt 1 displaystyle frac x 1 x 2 sum n 0 infty nx n quad x lt 1 nbsp 2 1 x 3 n 2 n 1 n x n 2 x lt 1 displaystyle frac 2 1 x 3 sum n 2 infty n 1 nx n 2 quad x lt 1 nbsp 2 x 2 1 x 3 n 0 n 1 n x n x lt 1 displaystyle frac 2x 2 1 x 3 sum n 0 infty n 1 nx n quad x lt 1 nbsp Vsi ci ryadi zbigayutsya pri x lt 1 displaystyle x lt 1 nbsp Binomialnij ryad Redaguvati Binomialnij ryad en ce stepenevij ryad viglyadu 1 x a n 0 a n x n displaystyle 1 x alpha sum n 0 infty alpha choose n x n nbsp z uzagalnenimi binomialnimi koeficiyentami a n k 1 n a k 1 k a a 1 a n 1 n displaystyle alpha choose n prod k 1 n frac alpha k 1 k frac alpha alpha 1 cdots alpha n 1 n nbsp Cej ryad zbigayetsya pri x lt 1 displaystyle x lt 1 nbsp dlya vsih dijsnih abo kompleksnih chisel a displaystyle alpha nbsp Yaksho a 1 displaystyle alpha 1 nbsp to ce po suti bude geometrichnij ryad Dlya a 1 2 displaystyle alpha frac 1 2 nbsp i a 1 2 displaystyle alpha frac 1 2 nbsp budut vidpovidni ryadi Maklorena 1 x 1 2 1 1 2 x 1 8 x 2 1 16 x 3 5 128 x 4 7 256 x 5 n 0 1 n 1 2 n 4 n n 2 2 n 1 x n 1 x 1 2 1 1 2 x 3 8 x 2 5 16 x 3 35 128 x 4 63 256 x 5 n 0 1 n 2 n 4 n n 2 x n displaystyle begin aligned 1 x frac 1 2 amp 1 tfrac 1 2 x tfrac 1 8 x 2 tfrac 1 16 x 3 tfrac 5 128 x 4 tfrac 7 256 x 5 cdots amp amp sum n 0 infty frac 1 n 1 2n 4 n n 2 2n 1 x n 1 x frac 1 2 amp 1 tfrac 1 2 x tfrac 3 8 x 2 tfrac 5 16 x 3 tfrac 35 128 x 4 tfrac 63 256 x 5 cdots amp amp sum n 0 infty frac 1 n 2n 4 n n 2 x n end aligned nbsp Trigonometrichni funkciyi Redaguvati nbsp Dijsna chastina kosinusu v kompleksnij ploshini nbsp Nablizhennya vosmogo stepenya dlya kosinusu v kompleksnij ploshini nbsp Dvi vishezgadani poverhni razom Trigonometrichni funkciyi ta yih oberneni mayut nastupni ryadi Maklorena sin x n 0 1 n 2 n 1 x 2 n 1 x x 3 3 x 5 5 displaystyle sin x sum n 0 infty frac 1 n 2n 1 x 2n 1 x frac x 3 3 frac x 5 5 cdots nbsp cos x n 0 1 n 2 n x 2 n 1 x 2 2 x 4 4 displaystyle cos x sum n 0 infty frac 1 n 2n x 2n 1 frac x 2 2 frac x 4 4 cdots nbsp tg x n 1 B 2 n 4 n 1 4 n 2 n x 2 n 1 x x 3 3 2 x 5 15 17 x 7 315 62 x 9 2835 x lt p 2 displaystyle operatorname tg x sum n 1 infty frac B 2n 4 n 1 4 n 2n x 2n 1 x frac x 3 3 frac 2x 5 15 frac 17x 7 315 frac 62x 9 2835 cdots quad x lt frac pi 2 nbsp sec x n 0 1 n E 2 n 2 n x 2 n x lt p 2 displaystyle sec x sum n 0 infty frac 1 n E 2n 2n x 2n quad x lt frac pi 2 nbsp arcsin x n 0 2 n 4 n n 2 2 n 1 x 2 n 1 x 1 displaystyle arcsin x sum n 0 infty frac 2n 4 n n 2 2n 1 x 2n 1 quad x leqslant 1 nbsp arccos x p 2 arcsin x p 2 n 0 2 n 4 n n 2 2 n 1 x 2 n 1 x 1 displaystyle arccos x pi over 2 arcsin x pi over 2 sum n 0 infty frac 2n 4 n n 2 2n 1 x 2n 1 quad x leqslant 1 nbsp arctg x n 0 1 n 2 n 1 x 2 n 1 x 1 x i displaystyle operatorname arctg x sum n 0 infty frac 1 n 2n 1 x 2n 1 quad x leqslant 1 x not pm i nbsp Chisla B k displaystyle B k nbsp sho z yavlyayutsya v rozkladi tg x displaystyle operatorname tg x nbsp ye chislami Bernulli a E k displaystyle E k nbsp u rozkladi sec x displaystyle sec x nbsp chisla Ejlera Giperbolichni funkciyi Redaguvati Giperbolichni funkciyi mayut ryadi Maklorena tisno pov yazani z ryadami Maklorena dlya vidpovidnih trigonometrichnih funkcij sh x n 0 x 2 n 1 2 n 1 x x 3 3 x 5 5 displaystyle operatorname sh x sum n 0 infty frac x 2n 1 2n 1 x frac x 3 3 frac x 5 5 cdots nbsp ch x n 0 x 2 n 2 n 1 x 2 2 x 4 4 displaystyle operatorname ch x sum n 0 infty frac x 2n 2n 1 frac x 2 2 frac x 4 4 cdots nbsp th x n 1 B 2 n 4 n 4 n 1 2 n x 2 n 1 x 1 3 x 3 2 15 x 5 17 315 x 7 x lt p 2 displaystyle operatorname th x sum n 1 infty frac B 2n 4 n 4 n 1 2n x 2n 1 x frac 1 3 x 3 frac 2 15 x 5 frac 17 315 x 7 cdots quad x lt frac pi 2 nbsp arsh x n 0 1 n 2 n 4 n n 2 2 n 1 x 2 n 1 x 1 displaystyle operatorname arsh x sum n 0 infty frac 1 n 2n 4 n n 2 2n 1 x 2n 1 quad x leqslant 1 nbsp arth x n 0 x 2 n 1 2 n 1 x 1 x 1 displaystyle operatorname arth x sum n 0 infty frac x 2n 1 2n 1 quad x leqslant 1 x not pm 1 nbsp Chisla B k displaystyle B k nbsp sho z yavlyayutsya v rozkladi th x displaystyle operatorname th x nbsp ye chislami Bernulli W funkciya Lamberta Redaguvati W funkciya Lamberta maye takij ryad Maklorena W 0 x n 1 n n 1 n x n x x 2 3 2 x 3 8 3 x 4 125 24 x 5 displaystyle W 0 x sum n 1 infty frac n n 1 n x n x x 2 frac 3 2 x 3 frac 8 3 x 4 frac 125 24 x 5 cdots nbsp Cej ryad zbigayetsya pri x lt 1 e displaystyle x lt frac 1 e nbsp Formula Tejlora RedaguvatiFormula Tejlora vikoristovuyetsya pri dovedenni bagatoh teorem u diferencialnomu chislenni Yaksho govoriti nestrogo to formula Tejlora vidobrazhaye povedinku funkciyi v okoli deyakoyi tochki Formula Tejlora z zalishkovim chlenom u formi Peano Redaguvati Nehaj funkciya f a b R displaystyle f a b to mathbb R nbsp dlya tochki x 0 a b displaystyle x 0 in a b nbsp i dlya deyakogo naturalnogo chisla n displaystyle n nbsp zadovolnyaye umovam dlya vsih x a b displaystyle x in a b nbsp isnuye f n 1 x displaystyle f n 1 x nbsp isnuye f n x 0 displaystyle f n x 0 nbsp Todi spravedlive spivvidnoshennya f x k 0 n f k x 0 k x x 0 k o x x 0 n x x 0 displaystyle f x sum k 0 n frac f k x 0 k x x 0 k o left x x 0 n right x to x 0 nbsp de o x x 0 n displaystyle o left x x 0 n right nbsp o malenke nazivayetsya zalishkovim chlenom u formi Peano Formula Tejlora z zalishkovim chlenom u formi Lagranzha Redaguvati Nehaj funkciya f a b R displaystyle f a b to mathbb R nbsp x 0 a b displaystyle x 0 in a b nbsp i dlya deyakogo naturalnogo chisla n displaystyle n nbsp dlya vsih x a b displaystyle x in a b nbsp isnuye f n 1 x displaystyle f n 1 x nbsp Todi dlya vsih x a b displaystyle x in a b nbsp isnuye 8 0 1 displaystyle theta in 0 1 nbsp take sho f x k 0 n f k x 0 k x x 0 k r n x displaystyle f x sum k 0 n frac f k x 0 k x x 0 k r n x nbsp de r n x f n 1 x 0 8 x x 0 n 1 x x 0 n 1 displaystyle r n x frac f n 1 x 0 theta x x 0 n 1 x x 0 n 1 nbsp nazivayetsya zalishkovim chlenom u formi Lagranzha Yak vidno umovi dlya formuli Tejlora z zalishkovim chlenom u formi Peano slabshi nizh z zalishkovim chlenom u formi Lagranzha Formula Tejlora z zalishkovim chlenom u formi Koshi Redaguvati Nehaj funkciya f a b R displaystyle f a b to mathbb R nbsp x 0 a b displaystyle x 0 in a b nbsp i dlya deyakogo naturalnogo chisla n displaystyle n nbsp funkciya f displaystyle f nbsp ye n 1 displaystyle n 1 nbsp raz neperervno diferencijovnoyu na intervali a b displaystyle a b nbsp Todi dlya vsih x a b displaystyle x in a b nbsp vikonuyetsya rivnist f x k 0 n f k x 0 k x x 0 k R n x displaystyle f x sum k 0 n frac f k x 0 k x x 0 k R n x nbsp de R n x 1 n x 0 x f n 1 t x t n d t displaystyle R n x frac 1 n int limits x 0 x f n 1 t x t n dt nbsp nazivayetsya zalishkovim chlenom u formi Koshi abo zalishkovim chlenom u integralnij formi Obchislennya ryadiv Tejlora RedaguvatiIsnuye dekilka metodiv obchislennya ryadiv Tejlora Mozhna sprobuvati vikoristati oznachennya ryadu odnak cej sposib chasto vimagaye uzagalnennya formi koeficiyentiv Takozh mozhna vikoristovuvati taki manipulyaciyi yak zamina mnozhennya abo dilennya dodavannya abo vidnimannya standartnih ryadiv Tejlora shob pobuduvati ryad Tejlora funkciyi oskilki ryad Tejlora ye stepenevim ryadom U deyakih vipadkah mozhna znajti ryad Tejlora bagatorazovo zastosovuyuchi integruvannya po chastinah Pershij priklad Tut vikoristovuyetsya metod pid nazvoyu nepryame rozshirennya shob rozshiriti zadanu funkciyu Cej metod vikoristovuye vidomij rozklad Tejlora eksponenti Shob rozklasti funkciyu 1 x e x displaystyle 1 x e x nbsp v ryad Tejlora vikoristayemo vidomij ryad Tejlora funkciyi e x displaystyle e x nbsp e x n 0 x n n 1 x x 2 2 x 3 3 x 4 4 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 frac x 4 4 cdots nbsp Tomu 1 x e x e x x e x n 0 x n n n 0 x n 1 n 1 n 1 x n n n 0 x n 1 n 1 n 1 x n n n 1 x n n 1 1 n 1 1 n 1 n 1 x n 1 n 1 n 1 n x n n 0 n 1 n x n displaystyle begin aligned 1 x e x amp e x xe x sum n 0 infty frac x n n sum n 0 infty frac x n 1 n 1 sum n 1 infty frac x n n sum n 0 infty frac x n 1 n amp 1 sum n 1 infty frac x n n sum n 1 infty frac x n n 1 1 sum n 1 infty left frac 1 n frac 1 n 1 right x n amp 1 sum n 1 infty frac n 1 n x n amp sum n 0 infty frac n 1 n x n end aligned nbsp Drugij priklad Nehaj zadano funkciyu f x ln cos x x p 2 p 2 displaystyle f x ln cos x quad x in left frac pi 2 frac pi 2 right nbsp Znajdemo yiyi formulu Tejlora z tochnistyu do x 7 displaystyle x 7 nbsp vklyuchno Perepishemo zadanu funkciyu nastupnim chinom f x ln 1 cos x 1 displaystyle f x ln bigl 1 cos x 1 bigr nbsp Formuli Tejlora naturalnogo logarifma z tochnistyu do x 3 displaystyle x 3 nbsp ln 1 x x x 2 2 x 3 3 o x 3 displaystyle ln 1 x x frac x 2 2 frac x 3 3 o left x 3 right nbsp i kosinusa z tochnistyu do x 7 displaystyle x 7 nbsp cos x 1 x 2 2 x 4 24 x 6 720 o x 7 displaystyle cos x 1 frac x 2 2 frac x 4 24 frac x 6 720 o left x 7 right nbsp Pidstavimo drugu formulu v pershu f x ln 1 cos x 1 cos x 1 1 2 cos x 1 2 1 3 cos x 1 3 o cos x 1 3 x 2 2 x 4 24 x 6 720 o x 7 1 2 x 2 2 x 4 24 o x 5 2 1 3 x 2 2 o x 3 3 o x 7 x 2 2 x 4 24 x 6 720 x 4 8 x 6 48 x 6 24 o x 7 x 2 2 x 4 12 x 6 45 o x 7 displaystyle begin aligned f x amp ln bigl 1 cos x 1 bigr amp cos x 1 tfrac 1 2 cos x 1 2 tfrac 1 3 cos x 1 3 o left cos x 1 3 right amp left frac x 2 2 frac x 4 24 frac x 6 720 o left x 7 right right frac 1 2 left frac x 2 2 frac x 4 24 o left x 5 right right 2 frac 1 3 left frac x 2 2 o left x 3 right right 3 o left x 7 right amp frac x 2 2 frac x 4 24 frac x 6 720 frac x 4 8 frac x 6 48 frac x 6 24 o left x 7 right amp frac x 2 2 frac x 4 12 frac x 6 45 o left x 7 right end aligned nbsp Oskilki kosinus ye parnoyu funkciyeyu to koeficiyenti dlya vsih neparnih stepeniv x x3 x5 x7 mayut dorivnyuvati nulyu Tretij priklad Nehaj zadano funkciyu g x e x cos x displaystyle g x frac e x cos x nbsp Znajdemo yiyi ryad Tejlora v tochci 0 Dlya eksponenti mayemo takij ryad Tejlora e x n 0 x n n 1 x x 2 2 x 3 3 x 4 4 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 frac x 4 4 cdots nbsp a dlya kosinusa takij cos x 1 x 2 2 x 4 4 displaystyle cos x 1 frac x 2 2 frac x 4 4 cdots nbsp V zagalnomu stepenevij rozklad maye takij viglyad e x cos x c 0 c 1 x c 2 x 2 c 3 x 3 displaystyle frac e x cos x c 0 c 1 x c 2 x 2 c 3 x 3 cdots nbsp Todi mnozhennya g x displaystyle g x nbsp na yiyi znamennik i pidstanovka ryadu Maklorena kosinusa daye nastupne e x c 0 c 1 x c 2 x 2 c 3 x 3 cos x c 0 c 1 x c 2 x 2 c 3 x 3 c 4 x 4 1 x 2 2 x 4 4 c 0 c 0 2 x 2 c 0 4 x 4 c 1 x c 1 2 x 3 c 1 4 x 5 c 2 x 2 c 2 2 x 4 c 2 4 x 6 c 3 x 3 c 3 2 x 5 c 3 4 x 7 c 4 x 4 displaystyle begin aligned e x amp left c 0 c 1 x c 2 x 2 c 3 x 3 cdots right cos x amp left c 0 c 1 x c 2 x 2 c 3 x 3 c 4 x 4 cdots right left 1 frac x 2 2 frac x 4 4 cdots right amp c 0 frac c 0 2 x 2 frac c 0 4 x 4 c 1 x frac c 1 2 x 3 frac c 1 4 x 5 c 2 x 2 frac c 2 2 x 4 frac c 2 4 x 6 c 3 x 3 frac c 3 2 x 5 frac c 3 4 x 7 c 4 x 4 cdots end aligned nbsp Grupuvannya dodankiv do chetvertogo stepenya daye e x c 0 c 1 x c 2 c 0 2 x 2 c 3 c 1 2 x 3 c 4 c 2 2 c 0 4 x 4 displaystyle e x c 0 c 1 x left c 2 frac c 0 2 right x 2 left c 3 frac c 1 2 right x 3 left c 4 frac c 2 2 frac c 0 4 right x 4 cdots nbsp Znachennya c i displaystyle c i nbsp mozhna znajti shlyahom porivnyannya koeficiyentiv pravoyi chastini z vidpovidnimi koeficiyenatimi rozkladu eksponenti sho daye e x cos x 1 x x 2 2 x 3 3 x 4 2 displaystyle frac e x cos x 1 x x 2 frac 2x 3 3 frac x 4 2 cdots nbsp Nablizhennya i zbizhnist RedaguvatiDokladnishe Teorema Tejlora nbsp Sinusoyida sinij dobre aproksimuyetsya yiyi mnogochlenom Tejlora stepenya 7 rozhevij na vsomu periodi z centrom u pochatku koordinat nbsp Mnogochleni Tejlora dlya log 1 x displaystyle log 1 x nbsp zabezpechuyut tochni nablizhennya tilki v diapazoni 1 lt x lt 1 displaystyle 1 lt x lt 1 nbsp Pri x gt 1 displaystyle x gt 1 nbsp mnogochleni Tejlora bilsh visokogo stepenya zadayut pogani nablizhennya nbsp Nablizhennya Tejlora dlya log 1 x displaystyle log 1 x nbsp chornij Pri x gt 1 displaystyle x gt 1 nbsp nablizhennya rozbigayetsya Zobrazhenij sprava grafik ye nablizhennyam sin x displaystyle sin x nbsp v okoli tochki x 0 displaystyle x 0 nbsp Rozheva kriva zadayetsya nastupnim mnogochlenom somoyi stepeni sin x x x 3 3 x 5 5 x 7 7 displaystyle sin left x right approx x frac x 3 3 frac x 5 5 frac x 7 7 nbsp Pohibka v comu nablizhenni ne perevishuye x 9 9 displaystyle frac x 9 9 nbsp Dlya povnogo periodu z centrom v tochci 0 displaystyle 0 nbsp p lt x lt p displaystyle pi lt x lt pi nbsp pohibka mensha za 0 08215 Zokrema pri 1 lt x lt 1 displaystyle 1 lt x lt 1 nbsp pohibka mensha nizh 0 000003 Na protivagu comu pokazano grafik funkciyi naturalnogo logarifma log 1 x displaystyle log 1 x nbsp i deyaki z jogo mnogochleniv Tejlora v okoli tochki a 0 displaystyle a 0 nbsp Ci nablizhennya shodyatsya do funkciyi tilki v oblasti 1 lt x lt 1 displaystyle 1 lt x lt 1 nbsp za mezhami ciyeyi oblasti mnogochleni Tejlora vishih stepeniv girshe nablizheni do funkciyi Ce shozhe na fenomen Runge Pohibka sho vinikaye pri nablizhenni funkciyi yiyi polinomom Tejlora n go stepenya nazivayetsya zalishkom abo zalishkovim mnogochlenom ta poznachayetsya cherez R n x displaystyle R n x nbsp Teorema Tejlora mozhe buti vikoristana dlya otrimannya ocinki dlya velichini zalishku Zagalom ryad Tejlora ne obv yazkovo maye zbigatisya en u vsih tochkah Dovedeno sho mnozhina funkcij zi zbizhnim ryadom Tejlora ye mnozhinoyu miri nul v prostori Freshe gladkih funkcij I navit yaksho ryad Tejlora funkciyi f displaystyle f nbsp dijsno shoditsya to v zagalnomu vipadku jogo suma ne obov yazkovo dorivnyuye znachennyu funkciyi f x displaystyle f x nbsp Napriklad funkciya f x e 1 x 2 x 0 0 x 0 displaystyle f x begin cases e 1 x 2 amp x neq 0 0 amp x 0 end cases nbsp neskinchenno diferencijovana v tochci x 0 displaystyle x 0 nbsp i maye vsi pohidni rivni nulyu Otzhe ryad Tejlora f x displaystyle f x nbsp pri x 0 displaystyle x 0 nbsp totozhno dorivnyuye nulyu Prote f x displaystyle f x nbsp ne nulova funkciya tak sho yiyi ryad Tejlora ne dorivnyuye znachennyu funkciyi v okoli pochatku koordinat Takim chinom f x displaystyle f x nbsp ye prikladom neanalitichnoyi gladkoyi funkciyi en V analizi funkcij dijsnoyi zminnoyi cej priklad pokazuye sho isnuyut neskinchenno diferencijovani f x displaystyle f x nbsp dlya yakih ryadi Tejlora ne rivni f x displaystyle f x nbsp navit yaksho voni zbigayutsya Na protivagu comu golomorfni funkciyi yaki vivchayutsya v kompleksnomu analizi zavzhdi mayut zbizhni ryadi Tejlora i navit ryadi Tejlora meromorfnih funkcij yaki mozhut mati osoblivosti nikoli ne zbigayutsya do znachen vidminnih vid znachen samoyi funkciyi Kompleksna funkciya e z 2 displaystyle e z 2 nbsp ne pryamuye do 0 displaystyle 0 nbsp pri z displaystyle z nbsp sho pryamuye do 0 displaystyle 0 nbsp vzdovzh uyavnoyi osi tomu vona ne ye neperervnoyu v kompleksnij ploshini i yiyi ryad Tejlora ye neviznachenim v tochci 0 displaystyle 0 nbsp U bilsh zagalnomu sensi bud yaka poslidovnist dijsnih abo kompleksnih chisel mozhe buti koeficiyentami v ryadi Tejlora neskinchenno diferencijovanoyi funkciyi zadanoyi na dijsnij pryamij vnaslidok lemi Borelya en V rezultati radius zbizhnosti ryadu Tejlora mozhe dorivnyuvati nulyu Ye navit neskinchenno diferencijovani funkciyi viznachenoyi na dijsnij pryamij ryad Tejlora yakoyi maye radius zbizhnosti rivnij 0 displaystyle 0 nbsp 7 Funkciyu ne mozhna rozklasti v ryad Tejlora v osoblivij tochci v cih vipadkah chasto vikoristovuyutsya ryadi z vid yemnimi stepenyami zminnoyi x displaystyle x nbsp div ryad Lorana Napriklad f x e x 2 displaystyle f x e x 2 nbsp mozhna rozklasti v ryad Lorana Uzagalnennya Redaguvati Isnuye uzagalnennya 8 9 ryadu Tejlora sho dozvolyaye zbigatisya do znachennya samoyi funkciyi dlya bud yakoyi obmezhenoyi neperervnoyi funkciyi na 0 displaystyle 0 infty nbsp vikoristovuyuchi skinchenni riznici Maye misce nastupna teorema yaku doviv Einar Hill en sho dlya bud yakogo t gt 0 displaystyle t gt 0 nbsp lim h 0 n 0 t n n D h n f a h n f a t displaystyle lim h to 0 sum n 0 infty frac t n n frac Delta h n f a h n f a t nbsp Tut D h n displaystyle Delta h n nbsp n displaystyle n nbsp ta skinchenna riznicya z krokom rozmiru h displaystyle h nbsp Ryad ce same ryad Tejlora za vinyatkom togo sho skinchenni riznici stoyat zamist pohidnih ryad formalno analogichnij ryadu Nyutona Koli funkciya f displaystyle f nbsp ye analitichnoyu v tochci a displaystyle a nbsp to chleni cogo ryadu zbigayutsya do chleniv ryadu Tejlora i v comu sensi navedenij vishe ryad uzagalnyuye zvichajnij ryad Tejlora Zagalom dlya bud yakoyi neskinchennoyi poslidovnosti a i displaystyle a i nbsp maye misce nastupna rivnist n 0 u n n D n a i e u j 0 u j j a i j displaystyle sum n 0 infty frac u n n Delta n a i e u sum j 0 infty frac u j j a i j nbsp Zokrema f a t lim h 0 e t h j 0 f a j h t h j j displaystyle f a t lim h to 0 e t h sum j 0 infty f a jh frac t h j j nbsp Ryad sprava ye matematichnim spodivannyam f a X displaystyle f a X nbsp de X displaystyle X nbsp yavlyaye soboyu vipadkovu velichinu rozpodilu Puassona yaka prijmaye znachennya j h displaystyle jh nbsp z jmovirnistyu e t h t h j j displaystyle e t h frac t h j j nbsp Otzhe f a t lim h 0 f a x d P t h h x displaystyle f a t lim h to 0 int limits infty infty f a x dP t h h x nbsp Zakon velikih chisel vikonuyetsya yaksho vikonuyetsya navedena vishe totozhnist Ryad Tejlora dlya funkcij bagatoh argumentiv RedaguvatiRyad Tejlora takozh mozhna uzagalniti dlya funkcij bilsh nizh odniyeyi zminnoyi T x 1 x d n 1 0 n d 0 x 1 a 1 n 1 x d a d n d n 1 n d n 1 n d f x 1 n 1 x d n d a 1 a d f a 1 a d j 1 d f a 1 a d x j x j a j 1 2 j 1 d k 1 d 2 f a 1 a d x j x k x j a j x k a k 1 3 j 1 d k 1 d l 1 d 3 f a 1 a d x j x k x l x j a j x k a k x l a l displaystyle begin aligned T x 1 ldots x d amp sum n 1 0 infty cdots sum n d 0 infty frac x 1 a 1 n 1 cdots x d a d n d n 1 cdots n d left frac partial n 1 cdots n d f partial x 1 n 1 cdots partial x d n d right a 1 ldots a d amp f a 1 ldots a d sum j 1 d frac partial f a 1 ldots a d partial x j x j a j frac 1 2 sum j 1 d sum k 1 d frac partial 2 f a 1 ldots a d partial x j partial x k x j a j x k a k amp qquad qquad frac 1 3 sum j 1 d sum k 1 d sum l 1 d frac partial 3 f a 1 ldots a d partial x j partial x k partial x l x j a j x k a k x l a l cdots end aligned nbsp Napriklad dlya funkciyi f x y displaystyle f x y nbsp yaka zalezhit vid dvoh zminnih x i y ryad Tejlora v tochci a b maye viglyad f a b x a f x a b y b f y a b 1 2 x a 2 f x x a b 2 x a y b f x y a b y b 2 f y y a b displaystyle f a b x a f x a b y b f y a b frac 1 2 Big x a 2 f xx a b 2 x a y b f xy a b y b 2 f yy a b Big cdots nbsp de nizhni indeksi poznachayut vidpovidni chastkovi pohidni Rozklad skalyarnoyi funkciyi z bilsh nizh odniyeyu zminnoyu v ryad Tejlora kompaktno mozhna zapisati yak T x f a x a T D f a 1 2 x a T D 2 f a x a displaystyle T mathbf x f mathbf a mathbf x mathbf a mathsf T Df mathbf a frac 1 2 mathbf x mathbf a mathsf T D 2 f mathbf a mathbf x mathbf a cdots nbsp de D f a ce gradiyent funkciyi f obchislenij v tochci x a a D2 f a ce matricya Gese Zastosovuyuchi multiindeks poznachennya ryad Tejlora kilkoh zminnih mozhna poznachiti tak T x a 0 x a a a a f a displaystyle T mathbf x sum alpha geq 0 frac mathbf x mathbf a alpha alpha left mathrm partial alpha f right mathbf a nbsp yakij slid rozumiti yak skorochenu bagatoindeksnu versiyu pershoyi formuli cogo rozdilu z povnoyu analogiyeyu do vipadku odniyeyi zminnoyi Priklad Redaguvati nbsp Aproksimaciya chastkovoyu sumoyu ryadu Tejlora do mnogochleniv drugogo stepenya pomaranchevij funkciyi f x y e sup x sup ln 1 y sinij v pochatku koordinat Shob obchisliti rozklad v ryad Tejlora funkciyi f x y e x ln 1 y displaystyle f x y e x ln 1 y nbsp v tochci a b 0 0 do odnochleniv drugogo stepenya spochatku znajdemo vsi neobhidni chastkovi pohidni f x e x ln 1 y f y e x 1 y f x x e x ln 1 y f y y e x 1 y 2 f x y f y x e x 1 y displaystyle begin aligned f x amp e x ln 1 y 6pt f y amp frac e x 1 y 6pt f xx amp e x ln 1 y 6pt f yy amp frac e x 1 y 2 6pt f xy amp f yx frac e x 1 y end aligned nbsp Obchislennya cih pohidnih u pochatku koordinat daye koeficiyenti v ryadi Tejlora f x 0 0 0 f y 0 0 1 f x x 0 0 0 f y y 0 0 1 f x y 0 0 f y x 0 0 1 displaystyle begin aligned f x 0 0 amp 0 f y 0 0 amp 1 f xx 0 0 amp 0 f yy 0 0 amp 1 f xy 0 0 amp f yx 0 0 1 end aligned nbsp Pidstavivshi ci znachennya v zagalnu formulu T x y f a b x a f x a b y b f y a b 1 2 x a 2 f x x a b 2 x a y b f x y a b y b 2 f y y a b displaystyle begin aligned T x y amp f a b x a f x a b y b f y a b amp frac 1 2 left x a 2 f xx a b 2 x a y b f xy a b y b 2 f yy a b right cdots end aligned nbsp otrimayemo T x y 0 0 x 0 1 y 0 1 2 0 x 0 2 2 x 0 y 0 1 y 0 2 y x y y 2 2 displaystyle begin aligned T x y amp 0 0 x 0 1 y 0 frac 1 2 Big 0 x 0 2 2 x 0 y 0 1 y 0 2 Big cdots amp y xy frac y 2 2 cdots end aligned nbsp Oskilki ln 1 y ye analitichnoyu v y lt 1 displaystyle y lt 1 nbsp to mayemo e x ln 1 y y x y y 2 2 y lt 1 displaystyle e x ln 1 y y xy frac y 2 2 cdots qquad y lt 1 nbsp Porivnyannya z ryadom Fur ye RedaguvatiDokladnishe Ryad Fur yeTrigonometrichnij ryad Fur ye dozvolyaye viraziti periodichnu funkciyu abo funkciyu viznachenu na vidrizku a b displaystyle a b nbsp yak neskinchennu sumu trigonometrichnih funkcij sinusiv i kosinusiv U comu sensi ryad Fur ye shozhij na ryad Tejlora oskilki ostannij dozvolyaye viraziti funkciyu yak neskinchennu sumu stepeniv Tim ne mensh ci dva ryadi vidriznyayutsya odin vid odnogo kilkoma vazhlivimi momentami Znachennya v tochci x a usih chastkovih sum ryadu Tejlora f x tochno dorivnyuyut znachennyu f vid a Odnak ryad Fur ye obchislyuyetsya shlyahom integruvannya po vsomu intervalu tomu yak pravilo dlya nogo nemaye takoyi tochki de vsi chastkovi sumi ryadu ye tochnimi Obchislennya ryadu Tejlora vimagaye znannya funkciyi na deyakomu okoli tochki todi yak obchislennya ryadu Fur ye vimagaye znannya funkciyi na vsomu intervali na yakomu viznachena funciya U pevnomu sensi mozhna skazati sho ryad Tejlora ye lokalnim a ryad Fur ye globalnim Ryad Tejlora viznachayetsya dlya funkciyi yaka maye neskinchenno bagato pohidnih v odnij tochci todi yak ryad Fur ye viznachayetsya dlya bud yakoyi integrovnoyi funkciyi Zokrema funkciya mozhe buti nide diferencijovanoyu Napriklad funkciya Veyershtrassa Zbizhnist oboh ryadiv maye rizni vlastivosti Navit yaksho ryad Tejlora maye dodatnij radius zbizhnosti to otrimanij ryad mozhe ne zbigatisya z funkciyeyu ale yaksho funkciya ye analitichnoyu to ryad zbigayetsya potochkovo do funkciyi ta rivnomirno na kozhnij kompaktnij pidmnozhini intervalu zbizhnosti Shodo ryadu Fur ye yaksho funkciya kvadratichno integrovna to ryad zbigayetsya v serednomu kvadratichnomu ale neobhidni dodatkovi vimogi dlya zabezpechennya potochkovoyi abo rivnomirnoyi zbizhnosti Napriklad yaksho funkciya ye periodichnoyu ta neperervno diferencijovnoyu to zbizhnist ye rivnomirnoyu Na praktici potribno aproksimuvati funkciyu skinchennoyu kilkistyu chleniv skazhimo polinomom Tejlora abo chastkovoyu sumoyu trigonometrichnogo ryadu vidpovidno U vipadku ryadu Tejlora pomilka duzhe mala v okolah tochki de vona obchislyuyetsya todi yak vona mozhe buti duzhe velikoyu u bilsh viddalenij tochci U vipadku ryadu Fur ye pohibka rozpodilena po vsij oblasti viznachennya funkciyi Div takozh Redaguvati nbsp Portal Matematika Asimptotichnij rozklad Generatrisa Ryad Lorana Mnogochlen Nyutona Aproksimaciya Pade Ryad Pyuyizo Operator zsuvuLiteratura RedaguvatiDorogovcev A Ya Matematichnij analiz Pidruchnik U dvoh chastinah Chastina 1 Kiyiv Libid 1993 320 s ISBN 5 325 00380 1 S T Zavalo Elementi analizu Algebra mnogochleniv Kiyiv Radyanska shkola 1972 Grigorij Mihajlovich Fihtengolc Kurs diferencialnogo ta integralnogo chislennya 2023 1100 s ukr Posilannya RedaguvatiFormula Tejlora Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 277 594 s Rozklad funkcij v ryadi Tejlora Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 525 594 s Rozklad funkciyi v ryad Maklorena a