www.wikidata.uk-ua.nina.az
Kompleksna ploshina C displaystyle mathbb C mnozhina vporyadkovanih par x y displaystyle x y de x y R displaystyle x y in mathbb R Zazvichaj provoditsya utotozhnennya kompleksnoyi ploshini i polya kompleksnih chisel C displaystyle mathbb C za principom x y x i y displaystyle x y equiv x iy Ce dozvolyaye vvesti algebrichni operaciyi na ploshini C displaystyle mathbb C Rozglyanemo topologichni vlastivosti kompleksnoyi ploshini i ne budemo provoditi riznici mizh paroyu z x y displaystyle z x y i kompleksnim chislom z x i y displaystyle z x iy Geometrichne predstavlennya z i jogo spryazhene chislo z v kompleksnij ploshini Dovzhina odnogo blakitnogo vidrizku vid pochatku koordinat do tochki z ye modulem abo absolyutnim znachennyam z Kut f ye argumentom z Koncepciya kompleksnoyi ploshini dozvolyaye privesti kompleksni chisla u geometrichnomu sensi Operaciyu dodavannya zdijsnyuvati yak dodavannya vektoriv Mnozhennya dvoh kompleksnih chisel mozhna u najprostishomu viglyadi mozhna viraziti v polyarnih koordinatah velichina abo modul dobutku ce dobutok dvoh absolyutnih velichin abo moduliv a kut abo argument dobutku ye sumoyu dvoh kutiv abo argumentiv Zokrema mnozhennya na kompleksne chislo iz modulem sho dorivnyuye 1 privodit do obertannya Kompleksnu ploshinu inodi nazivayut ploshinoyu Arganda a geometrichni grafiki en na cij ploshini diagramami Arganda Voni nezvani v chest Roberta Arganda en 1768 1822 hocha vpershe yih opisav norvezko datskij zemlevporyadnik i matematik Kaspar Vessel en 1745 1818 1 Zmist 1 Zagalni poznachennya 2 Topologiya kompleksnoyi ploshini 2 1 Vidkriti mnozhini 2 2 Tochka zgushennya i zamknena mnozhina 2 3 Granicya 2 4 Vsyudi shilni mnozhini 3 Zv yaznist 3 1 Vidstan mizh mnozhinami 3 2 Zv yaznist 4 Vipukli spryazheni i linijno zv yazani mnozhini 5 Krivi na UNIQ postMath 00000040 QINU 5 1 Krivi i shlyahi 5 2 Gomotopiya krivih 6 Rozshirena kompleksna ploshina i neskinchenno viddalena tochka 7 Div takozh 8 PrimitkiZagalni poznachennya RedaguvatiV kompleksnomu analizi kompleksni chisla zazvichaj poznachayutsya simvolom z v yakomu vidilyayut jogo dijsnu x i uyavnu y chastini z x i y displaystyle z x iy napriklad z 4 5i de x i y ye dijsnimi chislami i i ye uyavnoyu odiniceyu V comu zagalnomu poznachenni kompleksne chislo z vidpovidaye tochci x y na dekartovij ploshini V dekartovij sistemi koordinat tochku x y takozh mozhna predstaviti v polyarnih koordinatah nastupnim chinom x y r cos 8 r sin 8 r 8 x 2 y 2 arctan y x displaystyle x y r cos theta r sin theta qquad r theta left sqrt x 2 y 2 quad arctan frac y x right Dlya dekartovoyi ploshini mozhna pripustiti sho arktangens prijmaye znachennya lishe vid p 2 do p 2 v radianah i varto oberezhno povoditisya pri vikoristanni funkciyi arktangensa dlya tochok x y pri x 0 2 V kompleksnij ploshini dani polyarni koordinati budut mati formu z x i y z cos 8 i sin 8 z e i 8 displaystyle z x iy z left cos theta i sin theta right z e i theta de z x 2 y 2 8 arg z 1 i ln z z i ln z z displaystyle z sqrt x 2 y 2 quad theta arg z frac 1 i ln frac z z i ln frac z z 3 Tut z ye absolyutnim znachennyam abo modulem kompleksnogo chisla z 8 ce argument chisla z jogo zazvichaj obirayut v intervali 0 8 lt 2p a ostannya rivnist z ei8 vzyata iz formuli Ejlera Slid zauvazhiti sho bez obmezhennya diapazonu znachen kuta 8 argument z bude mati mnozhinu znachen oskilki kompleksna eksponencijna funkciya periodichna i maye period 2p i Tomu yaksho 8 ye odnim iz znachen arg z to inshimi znachennya budut zadavatisya yak arg z 8 2np de n prijmaye usi cili znachennya 0 4 Topologiya kompleksnoyi ploshini RedaguvatiVidkriti mnozhini Redaguvati Fundamentalne ponyattya okolu vvoditsya na kompleksnij ploshini takim chinom okolom U z 0 displaystyle mathcal U z 0 tochki z 0 C displaystyle z 0 in mathbb C nazivayetsya mnozhina vidu U z 0 z z z 0 lt r r gt 0 displaystyle mathcal U z 0 z colon z z 0 lt r r gt 0 Geometrichno na kompleksnij ploshini okoli mayut viglyad kola z centrom v pevnih tochkah kompleksnoyi ploshini Inkoli dlya zruchnosti neobhidno rozglyadati i prokoloti okoli U z 0 U z 0 z 0 displaystyle dot mathcal U z 0 mathcal U z 0 setminus z 0 Viznachimo vidkritu mnozhinu zgidno z viznachennyam iz zagalnoyi topologiyi vidkritoyu mnozhina bude yaksho vona dlya bud yakoyi svoyeyi tochki mistit deyakij yiyi okil Tochka zgushennya i zamknena mnozhina Redaguvati Tochka z 0 C displaystyle z 0 in mathbb C bude tochkoyu zgushennya dlya mnozhini G C displaystyle G subset mathbb C yaksho dlya dovilnogo okolu U z 0 displaystyle mathcal U z 0 peretin U z 0 G displaystyle mathcal U z 0 cap G bude ne porozhnim Inshimi slovami tochka ye tochkoyu zgushennya yaksho v dovilnij blizkosti do neyi zavzhdi mozhna znajti tochki mnozhini Mnozhina tochok zgushennya nazivayetsya pohidnoyu i poznachayetsya G Mnozhina G C displaystyle G subset mathbb C bude nazivatisya zamknutoyu yaksho dlya neyi spravedlivim ye vklyuchennya G G displaystyle G subset G Ochevidno sho dlya dovilnoyi mnozhini G displaystyle G mnozhina G G G displaystyle overline G G cup G bude zamknenoyu vona nazivayetsya zamikannyam mnozhini G displaystyle G Granicya Redaguvati Tochka z 0 C displaystyle z 0 in mathbb C bude nazivatisya granichnoyu dlya mnozhini G C displaystyle G subset mathbb C yaksho dlya dovilnogo okolu U z 0 displaystyle mathcal U z 0 peretin U z 0 G displaystyle mathcal U z 0 cap G i U z 0 C G displaystyle mathcal U z 0 cap mathbb C setminus G budut ne porozhnimi Mnozhina vsih granichnih tochok nazivayetsya granichnoyu mnozhinoyu G displaystyle partial G abo prosto graniceyu Vsyudi shilni mnozhini Redaguvati Mnozhina E C displaystyle E subset mathbb C bude nazivatisya vsyudi shilnoyu v inshij mnozhini G C displaystyle G subset mathbb C yaksho dlya dovilnoyi tochki z 0 G displaystyle z 0 in G i bud yakogo okolu U z 0 displaystyle mathcal U z 0 peretin U z 0 E displaystyle mathcal U z 0 cap E ne porozhnij Zv yaznist RedaguvatiVidstan mizh mnozhinami Redaguvati Yak vidomo z elementarnoyi matematiki na kompleksnij ploshini vidstan mizh dvoma tochkami dorivnyuye modulyu yih riznici Teper viznachimo vidstan mizh tochkoyu z 0 displaystyle z 0 i deyakoyu mnozhinoyu G C displaystyle G subset mathbb C yak velichinu d i s t z 0 G inf z G z z 0 displaystyle mathrm dist z 0 G inf z in G z z 0 Na bazi cogo ponyattya vzhe mozhna viznachiti vidstan mizh dvoma dovilnimi mnozhinami v C displaystyle mathbb C d i s t G 1 G 2 inf z G 1 d i s t z G 2 inf z G 2 d i s t z G 1 displaystyle mathrm dist G 1 G 2 inf z in G 1 mathrm dist z G 2 inf z in G 2 mathrm dist z G 1 Zv yaznist Redaguvati Mnozhina G C displaystyle G subset mathbb C nazivayetsya Zv yaznoyu yaksho dlya neyi vikonano spivvidnoshennya inf z 1 z 2 G z 1 z 2 0 displaystyle inf z 1 z 2 in G z 1 z 2 0 Yaksho dana velichina ne dorivnyuye nulyu to mnozhina nazivayetsya nezv yaznim Mozhna pokazati sho nezv yaznu mnozhinu G displaystyle G mozhna predstaviti u viglyadi ob yednannya skinchennogo abo zlichennogo G n displaystyle sum G n de G n displaystyle G n zv yazni mnozhini sho ne peretinayutsya nazivayutsya zv yaznimi komponentami mnozhini G displaystyle G Potuzhnist mnozhini zv yaznih komponent nazivayetsya poryadkom zv yaznosti Vipukli spryazheni i linijno zv yazani mnozhini RedaguvatiMnozhina G C displaystyle G subset mathbb C nazivayetsya spryazhenoyu vidnosno tochki z 0 G displaystyle z 0 in G yaksho dlya dovilnoyi tochki z G displaystyle z in G vikonuyetsya vklyuchennya z 0 z G displaystyle overline z 0 z subset G Mnozhina G C displaystyle G subset mathbb C nazivayetsya vipukloyu yaksho vona spryazhena vidnosno bud yakoyi svoyeyi tochki Mnozhina G displaystyle G nazivayetsya vipukloyu obolonkoyu mnozhini G displaystyle G yaksho vona vipukla G G displaystyle G subset G i dlya bud yakoyi vipukloyi mnozhini G displaystyle G sho mistit mnozhinu G displaystyle G vikonuyetsya vklyuchennya G G displaystyle G subset G Lamanoyu G displaystyle Gamma nazivayetsya mnozhina tochok kompleksnoyi ploshini sho predstavlyayetsya u viglyadi ob yednannya vidrizkiv Mnozhina G displaystyle G nazivayetsya linijno zv yaznoyu yaksho dlya dvoh dovilnih tochok z 1 z 2 G displaystyle z 1 z 2 in G isnuye lamana G G displaystyle Gamma subset G taka sho vikonuyetsya z 1 z 2 G displaystyle z 1 z 2 in Gamma Mozhna dovesti sho bud yaka linijno zv yazana mnozhina bude zv yaznoyu Zvidsi naslidkom ye te sho zv yazni vsi vipukli i spryazheni mnozhini Krivi na C displaystyle mathbb C RedaguvatiKrivi i shlyahi Redaguvati Krivoyu abo shlyahom na kompleksnij ploshini C displaystyle mathbb C nazivayetsya vidobrazhennya viglyadu f t 0 1 C displaystyle varphi t colon 0 1 to mathbb C Osoblivo slid zaznachiti sho pri takomu viznachenni mozhna konkretizuvati ne tilki viglyad krivoyi yakij bude zalezhati vid analitichnih vlastivostej funkciyi f t displaystyle varphi t ale j yiyi napryamok Napriklad funkciyi f t displaystyle varphi t i h t f 1 t displaystyle eta t varphi 1 t budut viznachati odnakovu za viglyadom krivu ale vona bude prohoditi v protilezhnih napryamkah Gomotopiya krivih Redaguvati Krivi f 0 t 0 1 C displaystyle varphi 0 t colon 0 1 to mathbb C i f 1 t 0 1 C displaystyle varphi 1 t colon 0 1 to mathbb C nazivayutsya gomotopnimi yaksho isnuye kriva 3 t q 0 1 0 1 C displaystyle xi t q colon 0 1 times 0 1 to mathbb C sho zalezhit vid parametra q displaystyle q takim chinom sho 3 t 0 f 0 displaystyle xi t 0 equiv varphi 0 i 3 t 1 f 1 displaystyle xi t 1 equiv varphi 1 Rozshirena kompleksna ploshina i neskinchenno viddalena tochka RedaguvatiU kompleksnomu analizi chasto korisno rozglyadati rozshirenu kompleksnu ploshinu 5 dopovnenu porivnyano zi zvichajnoyu neskinchenno viddalenoyu tochkoyu z displaystyle z infty C C displaystyle widehat mathbb C mathbb C cup infty geometrichno tochka displaystyle infty zobrazhuyetsya tochkoyu sferi Rimana yiyi pivnichnij polyus Za takogo pidhodu neobmezheno rostucha za modulem poslidovnist vvazhayetsya takoyu sho zbigayetsya do neskinchenno viddalenoyi tochki Algebrichni operaciyi z neskinchennistyu ne vikonuyutsya hocha kilka algebrichnih spivvidnoshen mayut misce 5 z 0 z z displaystyle frac z infty 0 z infty infty z neq infty z z 0 z 0 displaystyle z cdot infty infty frac z 0 infty z neq 0 e displaystyle varepsilon okolom neskinchenno viddalenoyi tochki vvazhayetsya mnozhina tochok z displaystyle z modul yakih bilshij nizh 1 e displaystyle 1 over varepsilon tobto zovnishnya chastina 1 e displaystyle 1 over varepsilon okoliv pochatku koordinat Rozshirena kompleksna ploshina nazivayetsya takozh sferoyu Rimana oskilki vona izomorfna zvichajnij sferi S 2 displaystyle S 2 izomorfizm mozhna vstanoviti napriklad za dopomogoyu stereografichnoyi proyekciyi Kompleksnoznachni funkciyi v deyakih vipadkah mozhna prodovzhiti na sferu Rimana Oskilki pryami na ploshini za stereografichnoyi proyekciyi perehodyat u kola na sferi sho mistyat neskinchenno viddalenu tochku kompleksni funkciyi zruchnishe rozglyadati na sferi utochniti Div takozh RedaguvatiSlovnik terminiv zagalnoyi topologiyiPrimitki Redaguvati Wessel s memoir was presented to the Danish Academy in 1797 Argand s paper was published in 1806 Whittaker amp Watson 1927 p 9 A detailed definition of the complex argument in terms of the real arctangent can be found here It can be shown Whittaker amp Watson 1927 Appendix that all the familiar properties of the complex exponential function the trigonometric functions and the complex logarithm can be deduced directly from the power series for ez In particular the principal value of logr where r 1 can be calculated without reference to any geometrical or trigonometric construction Whittaker amp Watson 1927 p 10 a b Sveshnikov A G Tihonov A N Teoriya funkcij kompleksnoj peremennoj M Nauka 1967 304 s Otrimano z https uk wikipedia org w index php title Kompleksna ploshina amp oldid 37832116