www.wikidata.uk-ua.nina.az
U Vikipediyi ye statti pro inshi znachennya cogo termina Mnozhina znachennya Mnozhina odne z najvazhlivishih ponyat suchasnoyi matematiki Ponyattya mnozhini vvedeno aksiomatichno yak sukupnist pevnih ob yektiv dovilnoyi prirodi 1 i tomu mnozhinu ne mozhna oznachiti zastosovuyuchi inshi oznacheni ponyattya Navpaki za dopomogoyu ponyattya mnozhina oznachayut bagato inshih ponyat i ne lishe v matematici Ob yekti yaki skladayut mnozhinu nazivayut elementami ciyeyi mnozhini Napriklad mozhna govoriti pro mnozhinu vsih knig u pevnij biblioteci mnozhinu liter ukrayinskogo alfavitu pro mnozhinu vsih koreniv pevnogo rivnyannya mnozhinu geometrichnih figur abo navit mnozhinu yaka skladayetsya z inshih mnozhin Dekilka bagatokutnikiv u diagrami Ejlera Zmist 1 Istoriya ponyattya 1 1 Nayivna teoriya mnozhin 1 2 Aksiomatizaciya teoriyi mnozhin 2 Sposobi zadannya mnozhin 2 1 Zadannya mnozhini za dopomogoyu pereliku yiyi elementiv 2 1 1 Zadannya neskinchennoyi mnozhini za dopomogoyu pereliku yiyi elementiv 2 2 Semantichnij opis 2 3 Notaciya pobudovi mnozhini 3 Element mnozhini 4 Porozhnya mnozhina 5 Vidnoshennya mizh mnozhinami 6 Diagrami Ejlera ta Venna 7 Osoblivi mnozhini chisel v matematici 8 Potuzhnist mnozhini 8 1 Neskinchenni mnozhini ta neskinchenna potuzhnist 8 2 Kontinuum gipoteza 9 Bulean 10 Rozbittya mnozhini 11 Operaciyi z mnozhinami 11 1 Ob yednannya mnozhin 11 2 Peretin mnozhin 11 3 Dopovnennya ta riznicya mnozhin 11 4 Simetrichna riznicya mnozhin 11 5 Dekartiv dobutok mnozhin 12 Pravila de Morgana 13 Formula vklyuchen viklyuchen 14 Div takozh 15 Literatura 16 PrimitkiIstoriya ponyattya RedaguvatiPonyattya mnozhini viniklo v matematici v kinci 19 stolittya 2 Pershi principi teoriyi mnozhin buli sformulovani Bernardom Bolcano u jogo roboti Paradoksi neskinchennosti 3 4 5 Z 1872 po 1897 Georg Kantor opublikuvav ryad robit v yakih buli sistematichno vikladeni osnovni rozdili teoriyi mnozhin U cih robotah vin ne tilki vviv osnovni ponyattya teoriyi mnozhin ale j zbagativ matematiku mirkuvannyami novogo tipu yaki zastosovuvav dlya dovedennya teorem teoriyi mnozhin zokrema vpershe do neskinchennih mnozhin Tomu zagalnoviznano sho teoriyu mnozhini stvoriv Georg Kantor Zokrema vin viznachiv mnozhinu yak yedine im ya dlya sukupnosti vsih ob yektiv sho mayut cyu vlastivist ta nazvav ci ob yekti elementami mnozhini Mnozhinu vsih ob yektiv yaki mayut vlastivist A x displaystyle A x tobto tverdzhennya istinnist yakogo zalezhit vid znachennya zminnoyi x vin poznachiv x A x displaystyle x mid A x a samu vlastivist A x displaystyle A x nazvav harakteristichnoyu vlastivistyu mnozhini X displaystyle X Nayivna teoriya mnozhin Redaguvati Dokladnishe Nayivna teoriya mnozhinOsnovna vlastivist mnozhini polyagaye v tomu sho vona mozhe mati elementi Dvi mnozhini rivni yaksho voni mayut odnakovi elementi Tobto mnozhini A ta B rivni yaksho kozhen element A ye elementom B a kozhen element B ye elementom A Prosta koncepciya mnozhin viyavilasya nadzvichajno korisnoyu v matematici ale yaksho ne naklasti pevnih obmezhen na te yak mozhna buduvati mnozhini vinikayut paradoksi Paradoks Rassella pokazuye sho mnozhina vsih mnozhin yaki ne mistyat samih sebe tobto X X displaystyle X X mnozhina i X X displaystyle X notin X ne mozhe isnuvati Paradoks Kantora pokazuye sho mnozhina vsih mnozhin ne mozhe isnuvati U nayivnij teoriyi mnozhin mnozhina viznachayetsya yak bud yaka dobre viznachena sukupnist okremih elementiv ale cherez nechitkist termina dobre viznachenij vinikayut problemi Aksiomatizaciya teoriyi mnozhin Redaguvati Oskilki teoriya mnozhin faktichno vikoristovuyetsya yak osnova dlya vsih suchasnih matematichnih teorij v 1908 roci vona bula aksiomatizovana nezalezhno Bertranom Rasselom i Ernstom Cermelo Nadali obidvi sistemi pereglyadalisya i zminyuvalisya ale v osnovnomu zberegli svij harakter Voni vidomi yak teoriya tipiv Rassela ta teoriya mnozhin Cermelo Frenkelya Zgodom teoriyu mnozhin Kantora stala nazivatisya nayivnoyu teoriyeyu mnozhin a teoriyu perebudovanu pislya Kantora aksiomatichnoyu teoriyeyu mnozhin Aksiomatichna teoriya mnozhin prijmaye ponyattya mnozhini yak neoznachuvane ponyattya 6 Na praktici sho sklalasya z seredini XX stolittya mnozhina viznachayetsya yak model sho zadovolnyaye aksiomam ZFC aksiomi Cermelo Frenkelya z aksiomoyu viboru Prote za takogo pidhodu u deyakih matematichnih teoriyah vinikayut sukupnosti ob yektiv yaki ne ye mnozhinami Taki sukupnosti nazivayutsya klasami Sposobi zadannya mnozhin RedaguvatiMnozhini chasto poznachayut cherez veliki literi latinskogo alfavitu Mnozhinu mozhna nazivati rodinoyu abo klasom yaksho yiyi elementi sami ye mnozhinami Zadannya mnozhini za dopomogoyu pereliku yiyi elementiv Redaguvati Cej sposib zadaye mnozhinu shlyahom pererahuvannya yiyi elementiv cherez komu u figurnih duzhkah Napriklad A 4 2 1 3 displaystyle A 4 2 1 3 B r e d g r e e n b l u e displaystyle B mathrm color red red mathrm color green green mathrm color blue blue U mnozhini maye znachennya te chi nalezhit yij pevnij element chi ni tomu vporyadkuvannya elementiv u zapisi ne maye znachennya na protivagu u poslidovnosti kortezhi chi perestanovci mnozhini poryadok elementiv u zapisi maye znachennya Napriklad 2 4 6 displaystyle 2 4 6 ta 4 6 2 displaystyle 4 6 2 predstavlyayut tu samu mnozhinu Dlya mnozhin z velikoyu kilkistyu elementiv osoblivo tih yaki sliduyut za pevnim shablonom perelik elementiv mozhna skorochuvati za dopomogoyu troh krapok Napriklad mnozhina pershoyi tisyachi naturalnih chisel mozhe buti zapisana za dopomogoyu pereliku yiyi elementiv yak 1 2 3 1000 displaystyle 1 2 3 dots 1000 Zadannya neskinchennoyi mnozhini za dopomogoyu pereliku yiyi elementiv Redaguvati Neskinchenna mnozhina ce mnozhina z neskinchennim perelikom elementiv Shob opisati neskinchennu mnozhinu v comu zapisi potribno v kinci pereliku abo v oboh kincyah postaviti tri krapki shob vkazati sho perelik prodovzhuyetsya vichno Napriklad dlya mnozhini cilih nevid yemnih chisel bude 0 1 2 3 displaystyle 0 1 2 3 dots a dlya mnozhini cilih chisel bude 3 2 1 0 1 2 3 displaystyle dots 3 2 1 0 1 2 3 dots Semantichnij opis Redaguvati Inshij sposib zadati mnozhinu ce vikoristovuvati pravilo dlya viznachennya elementiv Nehaj A mnozhina elementami yakoyi ye pershi chotiri naturalnih chisla Nehaj B mnozhina koloriv francuzkogo prapora Take zadannya nazivayetsya semantichnim opisom 7 Notaciya pobudovi mnozhini Redaguvati Dokladnishe Notaciya pobudovi mnozhiniV matematichnih zadachah yak pravilo rozglyadayut elementi deyakoyi cilkom oznachenoyi mnozhini A Pri comu neobhidni elementi vidilyayut za deyakoyu yih vlastivistyu abo vkazuyut porodzhuyuchu proceduru P takoyu sho kozhnij element x A displaystyle x in A abo maye vlastivist P zapisuyetsya P x abo ne maye yiyi Za dopomogoyu vlastivosti P vidilimo mnozhinu vsih tih elementiv yaki mayut vlastivist P Cyu mnozhinu budemo poznachati yak F x A P x x P x displaystyle F x in A P x x P x U comu zapisi vertikalna riska oznachaye takij sho ce opisati mozhna yak F ce mnozhina elementiv mnozhini A sho zadovolnyayut umovu P Deyaki avtori zamist vertikalnoyi riski vikoristovuyut dvokrapku Zadannya mnozhini vkazivkoyu yiyi vlastivosti abo porodzhuyuchim predikatom slid zdijsnyuvati oberezhno Napriklad mnozhina Y X X X displaystyle Y X X notin X mnozhina vsih mnozhin yaki ne mistyat sebe yak elementa vede do paradoksa Rassela i ye nekorektnoyu v aksiomatichnij teoriyi mnozhin Element mnozhini RedaguvatiDokladnishe Element matematika Ob yekti z yakih skladayetsya mnozhina nazivayut elementami mnozhini abo tochkami mnozhini Elementi mnozhin chasto poznachayutsya cherez mali literi latinskogo alfavitu Yaksho a displaystyle a element mnozhini A displaystyle A to pishut a A displaystyle a in A kazhut sho a displaystyle a nalezhit A displaystyle A Yaksho a displaystyle a ne ye elementom mnozhini A displaystyle A to pishut a A displaystyle a notin A kazhut sho a displaystyle a ne nalezhit A displaystyle A Poryadok zapisu elementiv mnozhini ne vplivaye na samu mnozhinu tobto 23 8 8 23 displaystyle 23 8 8 23 Krim cogo z visheskazanogo viplivaye sho dlya mnozhini ne viznacheno kilkist vhodzhen odnakovih elementiv tobto zapis A 23 8 8 23 8 displaystyle A 23 8 8 23 8 vzagali kazhuchi ne maye sensu koli A displaystyle A mnozhina Odnak korektnim bude zapis mnozhini B 23 8 8 23 8 displaystyle B 23 8 8 23 8 Porozhnya mnozhina RedaguvatiDokladnishe Porozhnya mnozhinaPorozhnya mnozhina abo pusta mnozhina ce unikalna mnozhina yaka ne maye elementiv Vona poznachayetsya abo displaystyle emptyset Vidnoshennya mizh mnozhinami RedaguvatiDokladnishe PidmnozhinaYaksho kozhen element mnozhini A takozh znahoditsya v B to kazhut sho A ye pidmnozhinoyu B abo mistitsya v B Ce poznachayetsya cherez A B displaystyle A subseteq B abo B A displaystyle B supseteq A Ostannye poznachennya mozhna prochitati yak B mistit A B vklyuchaye A abo B ye nadmnozhinoyu A Vidnoshennya mizh mnozhinami vstanovlene nazivayetsya vklyuchennyam Dvi mnozhini nazivayut rivnimi yaksho voni mistyat odna odnu tobto A B displaystyle A subseteq B ta B A displaystyle B subseteq A pishut A B displaystyle A B Yaksho A ye pidmnozhinoyu B ale A ne dorivnyuye B to A nazivayetsya vlasnoyu pidmnozhinoyu B Ce mozhna zapisati cherez A B displaystyle A subsetneq B Tak samo B A displaystyle B supsetneq A oznachaye sho B ye vlasnoyu nadmnozhinoyu A tobto B mistit A ta ne dorivnyuye A Tretya para operatoriv displaystyle subset i displaystyle supset vikoristovuyetsya riznimi avtorami po riznomu chasto vikoristovuyut A B displaystyle A subset B i B A displaystyle B supset A shob poznachiti sho A ye pidmnozhinoyu B i ne obov yazkovo vlasnoyu pidmnozhinoyu a inodi A B displaystyle A subset B i B A displaystyle B supset A rezervuyut dlya vipadkiv koli A ye vlasnoyu pidmnozhinoyu B Prikladi Mnozhina vsih lyudej ye vlasnoyu pidmnozhinoyu mnozhini vsih ssavciv 1 3 1 2 3 4 displaystyle 1 3 subset 1 2 3 4 1 2 3 1 2 3 displaystyle 1 2 3 subseteq 1 2 3 Porozhnya mnozhina ye pidmnozhinoyu kozhnoyi mnozhini a kozhna mnozhina ye pidmnozhinoyu samoyi sebe A displaystyle emptyset subseteq A A A displaystyle A subseteq A Diagrami Ejlera ta Venna Redaguvati A pidmnozhina B B nadmnozhina A Diagrama Ejlera ce grafichne predstavlennya naboru mnozhin pri yakomu kozhna mnozhina zobrazhuyetsya u viglyadi obmezhenoyi ploskoyi oblasti z yiyi elementami vseredini Yaksho A ye pidmnozhinoyu B to oblast sho predstavlyaye A povnistyu znahoditsya vseredini oblasti sho predstavlyaye B Yaksho dvi mnozhini ne mayut spilnih elementiv to oblasti ne perekrivayutsya Diagrama Venna ye grafichnim predstavlennyam n mnozhin u yakomu n oblastej dilyat ploshinu na 2n zon takim chinom sho dlya kozhnogo sposobu viboru deyakih z n mnozhin mozhlivo vsih abo zhodnoyi isnuye zona dlya elementiv yaki nalezhat do vsih vibranih mnozhin ta zhodnij z inshih Napriklad yaksho mnozhinami ye A B i C maye buti zona dlya elementiv yaki znahodyatsya vseredini A i C ta poza B navit yaksho takih elementiv ne isnuye Osoblivi mnozhini chisel v matematici Redaguvati Naturalni chisla N displaystyle mathbb N mistyatsya v cilih chislah Z displaystyle mathbb Z yaki mistyatsya v racionalnih chislah Q displaystyle mathbb Q yaki mistyatsya v dijsnih chislah R displaystyle mathbb R yaki v svoyu chergu mistyatsya v kompleksnih chislah C displaystyle mathbb C Isnuyut mnozhini takogo matematichnogo znachennya do yakih matematiki zvertayutsya tak chasto sho voni otrimali specialni nazvi ta umovni poznachennya dlya yih identifikaciyi Bagato z cih vazhlivih mnozhin predstavleni v matematichnih tekstah za dopomogoyu zhirnogo shriftu napriklad Z displaystyle mathbf Z abo azhurnogo shriftu en napriklad Z displaystyle mathbb Z Do nih nalezhat N displaystyle mathbf N abo N displaystyle mathbb N mnozhina usih naturalnih chisel N 1 2 3 displaystyle mathbb N 1 2 3 Z displaystyle mathbf Z abo Z displaystyle mathbb Z mnozhina usih cilih chisel Z 2 1 0 1 2 3 displaystyle mathbb Z 2 1 0 1 2 3 Q displaystyle mathbf Q abo Q displaystyle mathbb Q mnozhina usih racionalnih chisel Q a b a b Z b 0 displaystyle mathbb Q left frac a b mid a b in mathbb Z b neq 0 right R displaystyle mathbf R abo R displaystyle mathbb R mnozhina usih dijsnih chisel C displaystyle mathbf C abo C displaystyle mathbb C mnozhina usih kompleksnih chisel C a b i a b R i 2 1 displaystyle mathbb C a bi mid a b in mathbb R i 2 1 Kozhna iz navedenih vishe mnozhin chisel maye neskinchennu kilkist elementiv i kozhna ye pidmnozhinoyu mnozhin pererahovanih nizhche Mnozhini dodatnih chi vid yemnih chisel inodi poznachayutsya zi znakami plyus i minus vidpovidno u verhnomu indeksi Napriklad Q displaystyle mathbb Q predstavlyaye mnozhinu dodatnih racionalnih chisel Mnozhinu naturalnih chisel razom z nulem poznachayut z 0 u nizhnomu indeksi N 0 displaystyle mathbb N 0 Potuzhnist mnozhini RedaguvatiDokladnishe Potuzhnist mnozhiniPotuzhnist mnozhini S sho poznachayetsya S ce kilkist elementiv S Praktichno vsi z rozglyanutih vishe mnozhin mayut viznachenu kilkist elementiv Napriklad dlya B r e d g r e e n b l u e displaystyle B mathrm color red red mathrm color green green mathrm color blue blue bude B 3 displaystyle B 3 Porozhnya mnozhina maye nul elementiv Isnuyut mnozhini yaki mayut neskinchennu kilkist elementiv Takoyu ye mnozhina vsih naturalnih chisel N displaystyle mathbb N Ponyattya potuzhnosti mnozhin staye vazhlivim v konteksti vstanovlennya vidnoshen mizh mnozhinami Zrozumilo napriklad sho vzayemoodnoznachne vidnoshennya mizh mnozhinami A ta B mozhlivo vstanoviti lishe koli kilkist yihnih elementiv zbigayetsya Osoblivo vazhlivoyu problema porivnyannya potuzhnosti postaye dlya mnozhin z neskinchennoyu kilkistyu elementiv Viyavlyayetsya sho potuzhnosti takih mnozhin mozhut buti ne rivnimi i ce prizvodit do deyakih cikavih naslidkiv Neskinchenni mnozhini ta neskinchenna potuzhnist Redaguvati Naspravdi vsi specialni nabori chisel zgadani v rozdili vishe neskinchenni Neskinchenni mnozhini mayut neskinchennu potuzhnist Deyaki neskinchenni potuzhnosti bilshi za inshi Napevno odnim iz najbilsh znachushih rezultativ teoriyi mnozhin ye te sho mnozhina dijsnih chisel maye bilshu potuzhnist nizh mnozhina naturalnih chisel Mnozhini z potuzhnistyu rivnoyu potuzhnosti N displaystyle mathbb N nazivayutsya zlichennimi mnozhinami Yaksho potuzhnist mnozhini mensha abo rivna potuzhnosti N displaystyle mathbb N to cyu mnozhinu nazivayut ne bilshe nizh zlichennoyu Mnozhini z potuzhnistyu strogo bilshoyu za potuzhnist N displaystyle mathbb N nazivayut nezlichennimi mnozhinami Mnozhini z potuzhnistyu rivnoyu potuzhnosti intervala 0 1 nazivayutsya kontinualnimi Mozhna pokazati sho potuzhnist pryamoyi tobto kilkist tochok na pryamij ye takoyu zh yak i potuzhnist bud yakogo vidrizka ciyeyi pryamoyi usiyeyi ploshini ta naspravdi bud yakogo skinchennovimirnogo evklidovogo prostoru tobto vsi tut perelicheni mnozhini mayut potuzhnist kontinuumu Kontinuum gipoteza Redaguvati Dokladnishe Kontinuum gipotezaGipoteza kontinuumu sformulovana Georgom Kantorom u 1878 roci stverdzhuye sho ne isnuye mnozhini z potuzhnistyu strogo mizh potuzhnistyu naturalnih chisel ta potuzhnistyu pryamoyi 8 U 1963 roci Pol Koen doviv sho gipoteza kontinuumu ne zalezhit vid sistemi aksiom ZFC sho skladayetsya z teoriyi mnozhin Cermelo Frenkelya ta aksiomi viboru 9 ZFC ye najbilsh shiroko vivchenoyu versiyeyu aksiomatichnoyi teoriyi mnozhin Bulean RedaguvatiDokladnishe BuleanBuleanom mnozhini S ye mnozhina vsih pidmnozhin S Oskilki porozhnya mnozhina i sama S ye pidmnozhinami S to voni budut elementami buleana mnozhini S Napriklad buleanom mnozhini 1 2 3 displaystyle 1 2 3 bude 1 2 3 1 2 2 3 1 3 1 2 3 displaystyle emptyset 1 2 3 1 2 2 3 1 3 1 2 3 Bulean mnozhini S zazvichaj poznachayut yak P S abo 2S Yaksho mnozhina S maye n elementiv to 2S maye 2n elementiv Napriklad mnozhina 1 2 3 displaystyle 1 2 3 maye tri elementi a yiyi bulean yak pokazano vishe maye 23 8 elementiv Yaksho mnozhina S ye neskinchennoyu nezalezhno vid togo chi zlichennoyu chi nezlichennoyu to 2S nezlichennij Bilshe togo bulean zavzhdi strogo bilshij nizh vihidna mnozhina u tomu sensi sho bud yaka sproba z yednati elementi S z elementami 2S u pari zalishit deyaki elementi 2S bez pari Nikoli ne buvaye biyekciyi mizh S ta 2S Rozbittya mnozhini RedaguvatiDokladnishe Rozbittya mnozhiniRozbittya mnozhini S ce mnozhina neporozhnih pidmnozhin S takih sho kozhen element x z S znahoditsya tilki v odnij iz cih pidmnozhin Tobto ci pidmnozhini poparno ne peretinayutsya ce oznachaye sho bud yaki dvi mnozhini rozbittya ne mistyat zhodnogo spilnogo elementa a ob yednannya vsih pidmnozhin rozbittya daye S Operaciyi z mnozhinami RedaguvatiDokladnishe Algebra mnozhinIsnuye kilka osnovnih operacij dlya pobudovi novih mnozhin iz zadanih mnozhin Ob yednannya mnozhin Redaguvati Ob yednannya mnozhin A ta B Dokladnishe Ob yednannya mnozhinOb yednannya mnozhin A ta BOb yednannyam mnozhin A ta B sho poznachayetsya A B nazivayetsya mnozhina yaka skladayetsya z usih tih elementiv yaki nalezhat hocha b odnij z mnozhin A B A B x x A displaystyle A cup B x mid x in A abo x B displaystyle x in B Prikladi 1 2 2 3 1 2 3 displaystyle 1 2 cup 2 3 1 2 3 1 2 r e d g r e e n 1 2 r e d g r e e n displaystyle 1 2 cup mathrm color red red mathrm color green green 1 2 mathrm color red red mathrm color green green 1 2 1 2 1 2 displaystyle 1 2 cup 1 2 1 2 Deyaki vlastivosti operaciyi ob yednannya A B B A displaystyle A cup B B cup A komutativnist A B C A B C displaystyle A cup B cup C A cup B cup C asociativnist A A B displaystyle A subseteq A cup B A A A displaystyle A cup A A idempotentnist A A displaystyle A cup emptyset A A B displaystyle A subseteq B todi j lishe todi koli A B B displaystyle A cup B B Peretin mnozhin Redaguvati Peretin mnozhin A ta B Dokladnishe Peretin mnozhinPeretinom mnozhin A ta B sho poznachayetsya A B nazivayetsya mnozhina yaka skladayetsya z usih tih elementiv yaki nalezhat kozhnij iz mnozhin A B A B x x A displaystyle A cap B x mid x in A ta x B displaystyle x in B Kazhut sho mnozhini ne peretinayutsya yaksho A B displaystyle A cap B emptyset Prikladi 1 2 2 3 2 displaystyle 1 2 cap 2 3 2 1 2 r e d g r e e n displaystyle 1 2 cap mathrm color red red mathrm color green green emptyset 1 2 1 2 1 2 displaystyle 1 2 cap 1 2 1 2 Deyaki vlastivosti operaciyi peretinu A B B A displaystyle A cap B B cap A komutativnist A B C A B C displaystyle A cap B cap C A cap B cap C asociativnist A B A displaystyle A cap B subseteq A A A A displaystyle A cap A A idempotentnist A displaystyle A cap emptyset emptyset A B displaystyle A subseteq B todi j lishe todi koli A B A displaystyle A cap B A Dopovnennya ta riznicya mnozhin Redaguvati Riznicya mnozhin A ta B Dopovnennya A Dokladnishe Dopovnennya ta riznicya mnozhinDlya dvoh mnozhin takozh mozhna vvesti operaciyu vidnimannya Teoretiko mnozhinnoyu rizniceyu abo prosto rizniceyu mnozhin A ta B sho poznachayetsya A B abo A B ye mnozhina takih elementiv mnozhini A yaki ne nalezhat mnozhini B A B x x A displaystyle A setminus B x mid x in A i x B displaystyle x notin B Za domovlenistyu usi obgovoryuvani mnozhini vvazhayutsya pidmnozhinami zadanoyi universalnoyi mnozhini U U takih vipadkah U A nazivayut dopovnennyam do A i poznachayut A displaystyle overline A A displaystyle A prime abo A c displaystyle A c A U A displaystyle overline A U setminus A Prikladi 1 2 1 2 displaystyle 1 2 setminus 1 2 emptyset 1 2 3 4 1 3 2 4 displaystyle 1 2 3 4 setminus 1 3 2 4 Yaksho U displaystyle U mnozhina cilih chisel to dopovnennya yiyi pidmnozhini vsih parnih chisel A displaystyle A ye pidmnozhina vsih neparnih chisel A displaystyle overline A Deyaki vlastivosti operacij dopovnennya ta riznici A B B A displaystyle A setminus B neq B setminus A pri A B displaystyle A neq B A A U displaystyle A cup overline A U A A displaystyle A cap overline A emptyset A A displaystyle overline overline A A A displaystyle emptyset setminus A emptyset A A displaystyle A setminus emptyset A A A displaystyle A setminus A emptyset A U displaystyle A setminus U emptyset A A A displaystyle A setminus overline A A ta A A A displaystyle overline A setminus A overline A U displaystyle overline U emptyset ta U displaystyle overline emptyset U A B A B displaystyle A setminus B A cap overline B yaksho A B displaystyle A subseteq B to A B displaystyle A setminus B emptyset Simetrichna riznicya mnozhin Redaguvati Simetrichna riznicya mnozhin A ta B Dokladnishe Simetrichna riznicya mnozhinSimetrichnoyu rizniceyu mnozhin A ta B sho poznachayetsya A D B nazivayetsya taka mnozhina elementiv yaki mistyatsya v odnij z cih dvoh mnozhin ale ne v oboh A D B A B B A displaystyle A Delta B A setminus B cup B setminus A Napriklad simetrichna riznicya mnozhin 1 2 3 displaystyle 1 2 3 ta 3 4 displaystyle 3 4 dorivnyuye 1 2 4 displaystyle 1 2 4 Takozh spravedliva nastupna totozhnist A D B A B A B displaystyle A Delta B A cup B setminus A cap B Dekartiv dobutok mnozhin Redaguvati Dokladnishe Dekartiv dobutok mnozhinNovu mnozhinu mozhna pobuduvati pov yazuyuchi kozhen element odniyeyi mnozhini z kozhnim elementom inshoyi mnozhini Dekartovim dobutkom dvoh mnozhin A i B sho poznachayetsya A B nazivayetsya mnozhina vsih vporyadkovanih par a b takih sho a nalezhit A a b nalezhit B A B a b a A b B displaystyle A times B a b mid a in A b in B Prikladi 1 2 r e d g r e e n b l u e 1 r e d 1 g r e e n 1 b l u e 2 r e d 2 g r e e n 2 b l u e displaystyle 1 2 times mathrm color red red mathrm color green green mathrm color blue blue 1 mathrm color red red 1 mathrm color green green 1 mathrm color blue blue 2 mathrm color red red 2 mathrm color green green 2 mathrm color blue blue 1 2 1 2 1 1 1 2 2 1 2 2 displaystyle 1 2 times 1 2 1 1 1 2 2 1 2 2 a b c d e f a d a e a f b d b e b f c d c e c f displaystyle a b c times d e f a d a e a f b d b e b f c d c e c f Deyaki vlastivosti dekartovogo dobutku A displaystyle A times emptyset emptyset A B C A B A C displaystyle A times B cup C A times B cup A times C A B C A C B C displaystyle A cup B times C A times C cup B times C Nehaj A ta B skinchenni mnozhini todi potuzhnist yih dekartovogo dobutku dorivnyuye dobutku yih potuzhnostej A B B A A B displaystyle A times B B times A A cdot B Pravila de Morgana RedaguvatiDokladnishe Pravila de MorganaAugustus de Morgan vstanoviv dva zakoni pro mnozhini Nehaj A ta B bud yaki dvi mnozhini todidopovnennya do ob yednannya A ta B dorivnyuye peretinu dopovnennya do A i dopovnennyam do B A B A B displaystyle overline A cup B overline A cap overline B dopovnennya do peretinu A ta B dorivnyuye ob yednannyu dopovnennya do A i dopovnennyam do B A B A B displaystyle overline A cap B overline A cup overline B Formula vklyuchen viklyuchen RedaguvatiDokladnishe Formula vklyuchen viklyuchen Dlya obchislennya rozmiru ob yednannya mnozhin vikoristovuyetsya princip vklyuchennya viklyuchennya rozmir ob yednannya ce rozmir dvoh mnozhin minus rozmir yih peretinu Princip vklyuchennya viklyuchennya ce metod pidrahunku yakij mozhna vikoristovuvati dlya pidrahunku kilkosti elementiv v ob yednanni dvoh skinchennih mnozhin yaksho vidomi potuzhnist kozhnoyi mnozhini ta potuzhnist yih peretinu Todi potuzhnist ob yednannya mozhna viraziti yak A B A B A B displaystyle A cup B A B A cap B Bilsh zagalnu formu principu mozhna vikoristovuvati dlya znahodzhennya potuzhnosti bud yakogo skinchennogo ob yednannya mnozhin A 1 A 2 A 3 A n A 1 A 2 A 3 A n A 1 A 2 A 1 A 3 A n 1 A n 1 n 1 A 1 A 2 A 3 A n displaystyle begin aligned left A 1 cup A 2 cup A 3 cup ldots cup A n right amp left left A 1 right left A 2 right left A 3 right ldots left A n right right amp left left A 1 cap A 2 right left A 1 cap A 3 right ldots left A n 1 cap A n right right amp ldots amp left 1 right n 1 left left A 1 cap A 2 cap A 3 cap ldots cap A n right right end aligned Div takozh RedaguvatiMultimnozhina Nechitka mnozhina Principia Mathematica Ciklichnij poryadok Vidobrazhennya Vidnoshennya Vidpovidnist mizh mnozhinamiLiteratura RedaguvatiDorogovcev A Ya Matematichnij analiz Pidruchnik U dvoh chastinah Chastina 1 Kiyiv Libid 1993 320 s ISBN 5 325 00380 1 K Kuratovskij A Mostovskij Teoriya mnozhin Varshava Polske matematichne tovaristvo 1952 K Kuratovskij Vstup do teoriyi mnozhin ta topologiyi 8 Varshava PWN 1980 ISBN 83 01 01372 9 Ponyattya mnozhini Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 162 594 s Primitki Redaguvati Cantor Georg Jourdain Philip E B Translator 1895 beitrage zur begrundung der transfiniten Mengenlehre contributions to the founding of the theory of transfinite numbers Mathematische Annalen German New York Dover Publications 1954 English translation xlvi xlix 481 512 207 246 Arhiv originalu za 10 chervnya 2011 By an aggregate Menge we are to understand any collection into a whole Zusammenfassung zu einem Gansen M of definite and separate objects m p 85 Jose Ferreiros 16 serpnya 2007 Labyrinth of Thought A History of Set Theory and Its Role in Modern Mathematics Birkhauser Basel ISBN 978 3 7643 8349 7 Arhiv originalu za 8 travnya 2022 Procitovano 21 chervnya 2022 Steve Russ 9 grudnya 2004 The Mathematical Works of Bernard Bolzano OUP Oxford ISBN 978 0 19 151370 1 Arhiv originalu za 27 kvitnya 2022 Procitovano 21 chervnya 2022 William Ewald William Bragg Ewald 1996 From Kant to Hilbert Volume 1 A Source Book in the Foundations of Mathematics OUP Oxford s 249 ISBN 978 0 19 850535 8 Arhiv originalu za 22 kvitnya 2022 Procitovano 21 chervnya 2022 Paul Rusnock Jan Sebestik 25 kvitnya 2019 Bernard Bolzano His Life and Work OUP Oxford s 430 ISBN 978 0 19 255683 7 Arhiv originalu za 17 kvitnya 2022 Procitovano 21 chervnya 2022 Jose Ferreiros 1 listopada 2001 Labyrinth of Thought A History of Set Theory and Its Role in Modern Mathematics Springer Science amp Business Media ISBN 978 3 7643 5749 8 Arhiv originalu za 15 kvitnya 2022 Procitovano 21 chervnya 2022 Halmos 1960 s 4 Cantor Georg 1878 Ein Beitrag zur Mannigfaltigkeitslehre Journal fur die Reine und Angewandte Mathematik 1878 84 242 258 doi 10 1515 crll 1878 84 242 Arhiv originalu za 5 lyutogo 2021 Procitovano 21 chervnya 2022 Cohen Paul J 15 grudnya 1963 The Independence of the Continuum Hypothesis Proceedings of the National Academy of Sciences of the United States of America 50 6 1143 1148 Bibcode 1963PNAS 50 1143C JSTOR 71858 PMC 221287 PMID 16578557 doi 10 1073 pnas 50 6 1143 Otrimano z https uk wikipedia org w index php title Mnozhina amp oldid 39783247