www.wikidata.uk-ua.nina.az
Pryama abo pryama liniya odne z osnovnih ponyat geometriyi vvedene antichnimi matematikami dlya poznachennya pryamih ob yektiv tobto bez krivini z nesuttyevoyu shirinoyu ta glibinoyu Pryami ye idealizaciyami takih ob yektiv Chervona ta blakitna pryami mayut odnakovij kutovij koeficiyent chervona ta zelena pryami mayut spilnij peretin z vissyu y Evklid opisuye pryamu yak liniyu neskinchennoyi dovzhini yaka roztashovana odnakovo po vidnoshennyu do bud yakoyi svoyeyi tochki Vin viznachiv nabir postulativ yak osnovnih vlastivostej sho prijmayutsya bez doveden a vzhe z nih roblyatsya logichni dovedennya yaki i utvoryuyut vsyu geometriyu yaka zaraz nazivayetsya Evklidovoyu geometriyeyu Pochinayuchi z kinci 19 storichchya v aktivnomu vzhitku znahodyatsya j inshi geometriyi taki yak neevklidovi geometriyi proektivna ta afinna geometriyi V suchasnij matematici v yakij ye bagato geometrichnih koncepcij ponyattya liniyi zdebilshogo zalezhit vid sposobu yakim geometriya opisuyetsya Napriklad v analitichnij geometriyi pryama viznachayetsya yak mnozhina tochok koordinati yakih zadovolnyayut linijne rivnyannya V bilsh abstraktnih koncepciyah takih yak geometriya incidentnosti pryama mozhe buti nezalezhnim ob yektom vidminnim vid tih tochok z yakih vona skladayetsya Pri aksiomatichnomu opisu geometriyi ponyattya pryamoyi liniyi zazvichaj zalishayetsya neviznachenim prijmayetsya za odne z vihidnih ponyat tak zvane neoznachuvane ponyattya yake lishe oposeredkovano viznachayetsya aksiomami geometriyi Perevagoyu takogo pidhodu ye gnuchkist u vikoristanni takoyi geometriyi Tak u diferencialnij geometriyi pryamu mozhna rozumiti yak geodezichnu liniyu najkorotshij shlyah mizh dvoma tochkami a v proektivnij geometriyi pryama ye dvovimirnim vektornim prostorom vsi linijni kombinaciyi dvoh nezalezhnih vektoriv Taka gnuchkist korisna ne tilki matematikam a j inshim Napriklad fiziki mozhut misliti shlyah prohodzhennya svitla yak pryamu liniyu Zmist 1 Viznachennya i opisannya 2 Vlastivosti pryamoyi v evklidovij geometriyi 3 Algebrayichne viznachennya 3 1 Zagalne viznachennya pryamoyi 3 2 Rivnyannya pryamoyi z kutovim koeficiyentom 3 3 Rivnyannya pryamoyi u vidrizkah 3 4 Normalne rivnyannya pryamoyi 3 5 Rivnyannya pryamoyi sho prohodit cherez dvi zadani nezbizhni tochki 3 6 Vektorne parametrichne rivnyannya pryamoyi 3 7 Parametrichni rivnyannya pryamoyi mozhut buti zapisani u viglyadi 3 8 Kanonichne rivnyannya pryamoyi 4 Rivnyannya pryamoyi u prostori 4 1 V n vimirnomu prostori 5 Uzagalnene viznachennya 6 Vlastivosti 7 V proektivnij geometriyi 8 Primitki 9 Div takozh 10 PosilannyaViznachennya i opisannya RedaguvatiVsi viznachennya z reshtoyu ye cirkulyarnimi en za svoyeyu prirodoyu oskilki voni zalezhat vid ponyat yaki takozh povinni mati viznachennya i cej lancyug zalezhnostej ne mozhna prodovzhuvati neskinchennosti bez povernennya nazad do pochatkovoyi tochki Tomu abi uniknuti takogo zaciklyuvannya pevni ponyattya mayut buti prijnyati yak taki sho ne potrebuyut viznachennya 1 V geometriyi takim ponyattyam chasto ye ponyattya pryamoyi sho ye odnim iz fundamentalnim ponyat 2 V tih vipadkah koli pryama mozhe buti viznachenim ponyattyam yak u analitichnij geometriyi za fundamentalni ponyattya obirayutsya yakis inshi primitivi Yaksho ponyattya pryamoyi ye fundamentalnim neviznachenim ponyattyam todi povedinka i vlastivosti pryamoyi viznachayut za dopomogoyu aksiom yakim vona povinna zadovolnyati Pri sproshenomu abo neaksiomatichnomu traktuvanni geometriyi ponyattya abo fundamentalne oznachennya mozhe buti zanadto abstraktnim dlya uyavlennya V takih vipadkah navodyat opisannya abo mentalnij obraz cogo pervisnogo ponyattya abi sformuvati osnovu dlya vibudovuvannya ponyattya yake formalno bude bazuvatisya na neviznachenih aksiomah Deyaki avtori mozhut navoditi take opisannya zamist viznachennya koristuyuchis cim neformalnim stilem predstavlennya Ale ci viznachennya ne ye virnimi i ne mozhut vikoristovuvatisya v formalnih vivedennyah tverdzhen Viznachennya pryamoyi v v matematichnih traktatah Evklida pidpadaye pid cyu kategoriyu 2 Navit pri rozglyadi pevnoyi sistemi geometriyi napriklad Evklidovoyi geometriyi mizh avtorami ne isnuye zagalnoprijnyatoyi zgodi shodo togo yakim povinno buti neformalne opisannya pryamoyi i te sho vono ne povinno rozglyadatisya formalno Vlastivosti pryamoyi v evklidovij geometriyi RedaguvatiCherez bud yaku tochku mozhna provesti neskinchenno bagato pryamih Cherez bud yaki dvi nezbizhni tochki mozhna provesti yedinu pryamu Dvi nezbizhni pryami na ploshini abo peretinayutsya v yedinij tochci abo ye paralelnimi viplivaye z poperednogo U trivimirnomu prostori isnuyut tri varianti vzayemnogo roztashuvannya dvoh pryamih U trivimirnomu prostori isnuyut tri varianti vzayemnogo roztashuvannya dvoh pryamih pryami peretinayutsya pryami paralelni pryami mimobizhni Algebrayichne viznachennya Redaguvati Tri grafiki linij chervona ta sinya mayut odnakovij nahil k a chervona ta zelena mayut odnakovij zsuv b Pryama liniya algebrayichna liniya pershogo poryadku u dekartovij sistemi koordinat pryama liniya zadayetsya na ploshini rivnyannyam pershogo stepenya linijne rivnyannya a x b y c 0 displaystyle ax by c 0 de a displaystyle a b displaystyle b c displaystyle c deyaki chisla pri chomu a displaystyle a abo b displaystyle b povinne buti vidminne vid nulya 3 Ce rivnyannya zagalne rivnyannya pryamoyi Jogo takozh nazivayut standartnim Natomist kanonichne rivnyannya pryamoyi sho viplivaye z poperednogo maye viglyad linijnoyi funkciyi y k x b displaystyle y kx b Pryama a takozh para peresichnih pryamih ye virodzhenim prikladom konichnogo peretinu Zagalne viznachennya pryamoyi Redaguvati Zagalne rivnyannya pryamoyi liniyi na ploshini v dekartovih koordinatah A x B y C 0 displaystyle Ax By C 0 de A B displaystyle A B ta C C dovilni postijni prichomu postijni A A i B B ne dorivnyuyutsya nulyu odnochasno Pri A 0 displaystyle A 0 pryama paralelna osi O x displaystyle Ox pri B 0 displaystyle B 0 paralelna osi O y displaystyle Oy Vektor z koordinatami A B displaystyle A B nazivayetsya normalnim vektorom vin perpendikulyarnij pryamij Pri C 0 displaystyle C 0 pryama prohodit cherez pochatok koordinat Takozh rivnyannya mozhna perepisati u viglyadi A x x 0 B y y 0 0 displaystyle A x x 0 B y y 0 0 Rivnyannya pryamoyi z kutovim koeficiyentom Redaguvati Rivnyannya pryamoyi liniyi sho peretinaye vis O y displaystyle Oy u tochci 0 b displaystyle 0 b i utvoryuye kut f varphi z dodatnim napryamkom osi O x displaystyle Ox y k x b k t g f displaystyle y kx b quad k mathrm tg varphi Koeficiyent k k nazivayetsya kutovim koeficiyentom pryamoyi U comu vidi nemozhlivo uyaviti pryamu paralelnu osi inodi v comu vipadku formalno kazhut sho kutovij koeficiyent staye neskinchennim Otrimannya rivnyannya pryamoyi u vidrizkahRivnyannya pryamoyi u vidrizkah Redaguvati Rivnyannya pryamoyi liniyi sho peretinaye vis O x displaystyle Ox u tochci a 0 displaystyle a 0 ta vis O y displaystyle Oy u tochci 0 b displaystyle 0 b x a y b 1 a 0 b 0 displaystyle frac x a frac y b 1 quad a neq 0 b neq 0 U comu viglyadi nemozhlivo predstaviti pryamu sho prohodit cherez pochatok koordinat Normalne rivnyannya pryamoyi Redaguvati x cos 8 y sin 8 p 0 displaystyle x cos theta y sin theta p 0 de p p dovzhina perpendikulyara opushenogo na pryamu z pochatku koordinat a 8 theta kut mizh normalnim do pryamoyi vektorom ta dodatnim napryamom osi O x displaystyle Ox Yaksho p 0 displaystyle p 0 to pryama prohodit cherez pochatok koordinat a kut 8 f p 2 displaystyle theta varphi frac pi 2 zadaye kut nahilu pryamoyi Yaksho pryama zadana zagalnim rivnyannyam A x B y C 0 displaystyle Ax By C 0 to vidrizki a a ta b displaystyle b vidsikayutsya neyu na osyah kutovij koeficiyent k displaystyle k vidstan vid pochatku koordinat p displaystyle p cos 8 displaystyle cos theta ta sin 8 displaystyle sin theta virazhayutsya cherez koeficiyenti A A B B ta C C nastupnim chinom a C A b C B k t g f A B f 8 p 2 displaystyle a frac C A quad b frac C B quad k mathrm tg varphi frac A B quad varphi theta frac pi 2 p C A 2 B 2 cos 8 A A 2 B 2 sin 8 B A 2 B 2 displaystyle p frac C pm sqrt A 2 B 2 quad cos theta frac A pm sqrt A 2 B 2 quad sin theta frac B pm sqrt A 2 B 2 Shob uniknuti neviznachenosti znak pered radikalom vibirayetsya tak shob dotrimuvalasya umova p gt 0 displaystyle p gt 0 U comu vipadku cos 8 displaystyle cos theta ta sin 8 displaystyle sin theta ye napryamnimi kosinusami virazhayutsya normali pryamoyi perpendikulyara opushenogo z pochatku koordinat na pryamu Yaksho C 0 displaystyle C 0 to pryama prohodit cherez pochatok koordinat i vibir pozitivnogo napryamku dovilnij Rivnyannya pryamoyi sho prohodit cherez dvi zadani nezbizhni tochki Redaguvati Yaksho zadani dvi nezbizhni tochki z koordinatami x 1 y 1 displaystyle x 1 y 1 ta x 2 y 2 displaystyle x 2 y 2 to pryama sho prohodit cherez nih zadayetsya rivnyannyam x y 1 x 1 y 1 1 x 2 y 2 1 0 displaystyle begin vmatrix x amp y amp 1 x 1 amp y 1 amp 1 x 2 amp y 2 amp 1 end vmatrix 0 abo y y 1 y 2 y 1 x x 1 x 2 x 1 displaystyle frac y y 1 y 2 y 1 frac x x 1 x 2 x 1 abo u zagalnomu viglyadi y 1 y 2 x x 2 x 1 y x 1 y 2 x 2 y 1 0 displaystyle left y 1 y 2 right x left x 2 x 1 right y left x 1 y 2 x 2 y 1 right 0 Otrimannya vektornogo parametrichnogo rivnyannya pryamoyiVektorne parametrichne rivnyannya pryamoyi Redaguvati Vektorne parametrichne rivnyannya pryamoyi zadayetsya vektorom r 0 displaystyle vec r 0 kinec yakogo lezhit na pryamij i napryamnim vektorom pryamoyi u displaystyle vec u Parametr t t probigaye vsi dijsni znachennya r r 0 t u displaystyle vec r vec r 0 t vec u Parametrichni rivnyannya pryamoyi mozhut buti zapisani u viglyadi Redaguvati x x 0 a x t y y 0 a y t displaystyle begin cases x x 0 a x t y y 0 a y t end cases de t t dovilnij parametr a x a y displaystyle a x a y koordinati x x ta y y napryamnogo vektora pryamoyi Pri comu k a y a x a a y x 0 a x y 0 a y b a x y 0 a y x 0 a x displaystyle k frac a y a x quad a frac a y x 0 a x y 0 a y quad b frac a x y 0 a y x 0 a x p a x y 0 a y x 0 a x 2 a y 2 cos 8 a x a x 2 a y 2 sin 8 a y a x 2 a y 2 displaystyle p frac a x y 0 a y x 0 pm sqrt a x 2 a y 2 quad cos theta frac a x pm sqrt a x 2 a y 2 quad sin theta frac a y pm sqrt a x 2 a y 2 Sens parametra t t analogichnij parametru v vektorno parametrichnomu rivnyanni Kanonichne rivnyannya pryamoyi Redaguvati Kanonichne rivnyannya vihodit z parametrichnih rivnyan dilennyam odnogo rivnyannya na inshe x x 0 y y 0 a x a y x x 0 a x y y 0 a y displaystyle frac x x 0 y y 0 frac a x a y Longleftrightarrow frac x x 0 a x frac y y 0 a y de a x a y displaystyle a x a y koordinati x x ta y displaystyle y napryamnogo vektora pryamoyi x 0 displaystyle x 0 ta y 0 displaystyle y 0 koordinati tochki sho nalezhit pryamij Rivnyannya pryamoyi v polyarnih koordinatah r rho ta f varphi r A cos f B sin f C 0 displaystyle rho A cos varphi B sin varphi C 0 abo r cos f 8 p displaystyle rho cos varphi theta p Rivnyannya pryamoyi u prostori RedaguvatiVektorne parametrichne rivnyannya pryamoyi v prostori r r 0 t a t displaystyle vec r vec r 0 t vec a quad t in infty infty de r 0 displaystyle vec r 0 radius vektor deyakoyi fiksovanoyi tochki M 0 displaystyle M 0 sho lezhit na pryamij a displaystyle vec a nenulovij vektor kolinearnij cij pryamij r displaystyle vec r radius vektor dovilnoyi tochki pryamoyi Parametrichni rivnyannya pryamoyi v prostori x x 0 t a y y 0 t b z z 0 t g t displaystyle x x 0 t alpha y y 0 t beta z z 0 t gamma quad t in infty infty de x 0 y 0 z 0 displaystyle x 0 y 0 z 0 koordinati fiksovanoyi tochki M 0 displaystyle M 0 sho lezhit na pryamij a b g displaystyle alpha beta gamma koordinati vektora kolinearnogo cij pryamij Kanonichne rivnyannya pryamoyi v prostori x x 0 a y y 0 b z z 0 g displaystyle frac x x 0 alpha frac y y 0 beta frac z z 0 gamma de x 0 y 0 z 0 displaystyle x 0 y 0 z 0 koordinati fiksovanoyi tochki M 0 displaystyle M 0 sho lezhit na pryamij a b g displaystyle alpha beta gamma koordinati vektora kolinearnogo cij pryamij Oskilki pryama ye peretinom dvoh riznih ploshin zadanih vidpovidno zagalnimi rivnyannyami r N 1 D 1 0 displaystyle vec r vec N 1 D 1 0 i r N 2 D 2 0 displaystyle vec r vec N 2 D 2 0 to rivnyannya pryamoyi mozhna zadati sistemoyu cih rivnyan r N 1 D 1 0 r N 2 D 2 0 displaystyle begin cases vec r vec N 1 D 1 0 vec r vec N 2 D 2 0 end cases Vektorne rivnyannya pryamoyi v prostori Rivnyannya pryamoyi v prostori mozhna zapisati u viglyadi vektornogo dobutku radiusa vektora dovilnoyi tochki ciyeyi pryamoyi r displaystyle vec r na fiksovanij vektor a displaystyle vec a pryamoyi r a M displaystyle vec r vec a vec M de fiksovanij vektor M displaystyle vec M ortogonalnij do vektora a displaystyle vec a mozhna znajti pidstavlyayuchi v ce rivnyannya radius vektor yakoyi nebud odniyeyi vidomoyi tochki pryamoyi V n vimirnomu prostori Redaguvati Nehaj zadano vektor k k v n vimirnomu Evklidovomu prostori E n displaystyle E n k k i E n displaystyle k k i in E n ta a 1 a n displaystyle alpha 1 dots alpha n deyaki fiksovani chisla Geometrichne misce tochok x x i displaystyle x x i prostoru E n displaystyle E n koordinati yakih predstavleno u viglyadi x i k i a i t lt t lt i 1 n displaystyle x i k i alpha i t qquad infty lt t lt infty quad i 1 dots n nazivayetsya pryamoyu v prostori E n displaystyle E n sho prohodit cherez tochku k k v napryami a 1 a n displaystyle alpha 1 dots alpha n 4 Chastina pryamoyi sho vidpovidaye zmini parametru t t v deyakomu vidrizku a b a b nazivayetsya pryamolinijnim vidrizkom a yiyi chastina sho vidpovidaye zmini parametru v promizhku t a displaystyle t geq a promenem Yaksho zadano dvi tochki x i displaystyle x i x i displaystyle x i to rivnyannya pryamoyi sho prohodit cherez ci tochki matime viglyad x i x i x i x i t lt t lt i 1 n displaystyle x i x i x i x i t qquad infty lt t lt infty i 1 dots n Uzagalnene viznachennya RedaguvatiPryamoyu v afinnomu prostori A mathcal A sho zadayetsya tochkoyu M 0 displaystyle M 0 ta vidminnim vid nulya vektorom a V displaystyle mathbf a in mathcal V nazivayetsya mnozhina tochok M M dlya yakih vektor M 0 M displaystyle overrightarrow M 0 M kolinearnij vektoru a mathbf a tobto vikonuyetsya rivnist 5 M 0 M l a displaystyle overrightarrow M 0 M l mathbf a Takim chinom dovilna pryama v prostori A mathcal A maye vlastivosti afinnogo prostoru rozmirnosti 1 V metrichnomu prostori pid pryamoyu rozumiyut geodezichnu liniyu tobto taku liniyu na yakij dosyagayetsya najmensha vidstan mizh dvoma tochkami Vlastivosti RedaguvatiPryama m m paralelna ploshini a alpha todi ta lishe todi koli v cij ploshini isnuye deyaka pryama p p paralelna pryamij m m 6 Yaksho pryama m m paralelna kozhnij z ploshin a alpha ta b beta sho peretinayutsya to vona paralelna liniyi yihnogo peretinu 6 Yaksho tri ploshini poparno peretinayutsya ta ne mayut spilnoyi pryamoyi to liniyi yihnogo peretinu abo paralelni abo mayut spilnu tochku 6 V proektivnij geometriyi RedaguvatiDokladnishe Proektivna geometriya V bagatoh modelyah proektivnoyi geometriyi predstavlennya pryamoyi ridko vidpovidaye ponyattyu pryamoyi liniyi yak ce ye v Evklidovij geometriyi Tipovij priklad cogo mozhna pobachiti v eliptichnij geometriyi 7 U vipadku sferichnogo predstavlennya eliptichnoyi geometriyi pryami predstavleni yak veliki kola na sferi iz viznachenimi na nih diametralno protilezhnimi tochkami U inshij modeli eliptichnoyi geometriyi pryami zadayutsya Evklidovimi ploshinami yaki prohodyat cherez pochatok sistemi koordinat Hocha ci predstavlennya vizualno ye vidminnimi voni zadovolnyayut vlastivostyam proektivnoyi geometriyi napriklad sho dvi tochki viznachayut lishe odnu pryamu sho roblyat yih zruchnoyu vidpovidnistyu ponyattya pryamoyi v cij geometriyi Primitki Redaguvati Coxeter 1969 p 4 a b Faber 1983 p 95 Postnikov s 176 Kudryavcev L D Matematichnij analiz t 1 s 264 Postnikov M M 1979 Analiticheskaya geometriya Nauka a b v Ya P Ponarin 2006 Elementarnaya Geometriya t 2 ISBN 5 94057 223 5 Faber Part III p 108 Div takozh Redaguvati Portal Matematika Paralelni pryami Perpendikulyarnist pryamih na ploshini Liniya Ejlera Linijne rivnyannya Kriva Kutovij koeficiyent Gipercikl geometriya Posilannya RedaguvatiPryama liniya na ploshini Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 88 594 s Pryama liniya v prostori Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 134 594 s Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Otrimano z https uk wikipedia org w index php title Pryama amp oldid 39457837