www.wikidata.uk-ua.nina.az
Skorochennya PSK takozh maye inshi znachennya Polyarna sistema koordinat dvovimirna sistema koordinat v yakij kozhna tochka na ploshini viznachayetsya dvoma chislami kutom ta vidstannyu Polyarna sistema koordinat osoblivo korisna u vipadkah koli vidnoshennya mizh tochkami najprostishe zobraziti u viglyadi vidstanej ta kutiv v bilsh poshirenij Dekartovij abo pryamokutnij sistemi koordinat taki vidnoshennya mozhna vstanoviti lishe shlyahom zastosuvannya trigonometrichnih rivnyan Polyarna sitka na yakij vidkladeno dekilka kutiv z poznachkami v gradusah Polyarna sistema koordinat zadayetsya promenem yakij nazivayut nulovim abo polyarnoyu vissyu Tochka z yakoyi vihodit cej promin nazivayetsya pochatkom koordinat abo polyusom Bud yaka insha tochka na ploshini viznachayetsya dvoma polyarnimi koordinatami radialnoyu ta kutovoyu Radialna koordinata zazvichaj poznachayetsya r displaystyle r vidpovidaye vidstani vid tochki do pochatku koordinat Kutova koordinata sho takozh zvetsya polyarnim kutom abo azimutom poznachayetsya f i dorivnyuye kutu mizh polyarnoyu vissyu ta napryamkom na tochku 1 Viznachena takim chinom radialna koordinata mozhe nabuvati znachennya vid nulya do neskinchenosti a kutova koordinata zminyuyetsya v mezhah vid 0 do 360 Odnak dlya zruchnosti diapazon znachen azimutu mozhna rozshiriti za mezhi povnogo kuta a takozh dozvoliti jomu nabuvati vid yemnih znachen sho vidpovidaye povorotu za godinnikovoyu strilkoyu Zmist 1 Istoriya 2 Grafichne predstavlennya 2 1 Zv yazok mizh dekartovimi ta polyarnimi koordinatami 3 Rivnyannya krivih u polyarnih koordinatah 3 1 Kolo 3 2 Pryama 3 3 Polyarna troyanda 3 4 Spiral Arhimeda 3 5 Konichni peretini 4 Kompleksni chisla 5 U matematichnomu analizi 5 1 Diferencijne chislennya 5 2 Integralne chislennya 5 2 1 Uzagalnennya 5 3 Vektornij analiz 6 Trivimirne rozshirennya 6 1 Cilindrichni koordinati 6 2 Sferichni koordinati 6 3 Uzagalnennya na n vimiriv 7 Zastosuvannya 7 1 Poziciyuvannya ta navigaciya 7 2 Modelyuvannya 8 Posilannya 9 Div takozh 10 PosilannyaIstoriya Redaguvati nbsp GipparhPonyattya kuta ta radiusa buli vidomi she v pershomu tisyacholitti do n e Greckij astronom Gipparh 190 120 rr do n e stvoriv tablicyu v yakij dlya riznih kutiv navodilis dovzhini hord Isnuyut svidchennya pro zastosuvannya nim polyarnih koordinat dlya viznachennya polozhennya nebesnih til 2 Arhimed v svoyemu tvori Spirali opisuye spiral Arhimeda funkciyu radius yakoyi zalezhit vid kuta Roboti greckih doslidnikiv odnak ne rozvinulis u cilisne viznachennya sistemi koordinat V 9 mu stolitti perskij matematik Habas al Hasib al Marvazi zastosovuvav metodi kartografichnih proyekcij ta sferichnoyi trigonometriyi dlya peretvorennya polyarnih koordinat v inshu sistemu koordinat z centrom u pevnij tochci na sferi u comu vipadku dlya viznachennya Kibli napryamu na Mekku 3 Perskij geograf Abu Rajhan Biruni 973 1048 visunuv ideyi sho viglyadayut yak opisannya polyarnoyi sistemi koordinat 4 Vin buv pershim hto priblizno 1025 roku opisav polyarnu ekvi azimutalnu ekvidistantnu proyekciyu nebesnoyi sferi 5 Isnuyut rizni versiyi shodo zaprovadzhennya polyarnih koordinat yak formalnoyi sistemi koordinat Povnu istoriyu viniknennya ta doslidzhennya opisano v praci profesora z Garvardu Dzhulian Louvel Kulidzh Pohodzhennya polyarnih koordinat 6 Greguar de Sent Vinsent ta Bonaventura Kavalyeri nezalezhno odin vid odnogo prijshli do shozhoyi koncepciyi v seredini 17 go stolittya Sent Vinsent opisav polyarnu sistemu v osobistih notatkah 1625 roku nadrukuvavshi svoyi praci 1647 roku a Kavalyeri nadrukuvav pershi svoyi praci 1635 roku a vipravlenu versiyu 1653 roku Kavelyeri zastosovuvav polyarni koordinati dlya obchislennya ploshi obmezhenoyi spirallyu Arhimeda Blez Paskal zgodom vikoristav polyarni koordinati dlya obchislennya dovzhin parabolichnih dug U knizi Metod flyuksij napisanij 1671 roku ta nadrukovanij 1736 ser Isaak Nyuton doslidzhuvav peretvorennya mizh polyarnimi koordinatami yaki vin poznachav yak Somij sposib Dlya spiralej angl Seventh Manner For Spirals ta dev yatma inshimi sistemami koordinat 7 U statti opublikovanij 1691 roku v zhurnali Acta Eruditorum Yakob Bernulli vikoristav sistemu z tochkoyu na pryamij yaki vin nazvav polyusom ta polyarnoyu vissyu vidpovidno Koordinati zadavalis yak vidstan vid polyusa ta kut vid polyarnoyi osi Robota Bernulli bula prisvyachena problemi poshuku radiusu krivini krivih viznachenih v cij sistemi koordinat Zaprovadzhennya terminu polyarni koordinati pripisuyut Gregorio Fontana U 18 mu stolitti vin vhodiv do leksikonu italijskih avtoriv V anglijsku movu termin potrapiv cherez pereklad traktatu Silvestra Lakrua Diferencialne ta integralne chislennya napisanogo 1816 roku Dzhordzhem Pikokom 8 9 Dlya trivimirnogo prostoru polyarni koordinati vpershe zaproponuvav Aleksi Klero a Leonard Ejler buv pershim hto rozrobiv vidpovidnu sistemu 6 Grafichne predstavlennya Redaguvati nbsp Tochka v polyarnij sistemi koordinat Kozhna tochka v polyarnij sistemi koordinat mozhe buti viznachena dvoma polyarnimi koordinatami sho zazvichaj mayut nazvu r displaystyle r nbsp radialna koordinata ta f kutova koordinata polyarnij kut azimut inkoli pishut 8 abo t Koordinata r displaystyle r nbsp vidpovidaye vidstani do polyusa a koordinata f dorivnyuye kutu vidkladenomu proti godinnikovogo napryamu vid promenya yakij vidpovidaye 0 inkoli nazivayetsya polyarnoyu vissyu 1 Napriklad tochka z koordinatami 3 60 viglyadatime na grafiku yak tochka na promeni yakij lezhit pid kutom 60 do polyarnoyi osi na vidstani 3 odinic vid polyusu Tochka z koordinatami 3 240 bude namalovana na tomu zh misci oskilki vid yemna vidstan zobrazhayetsya v dodatnu v protilezhnomu napryami na 180 Odniyeyu z vazhlivih osoblivostej polyarnoyi sistemi koordinat ye te sho odna j ta sama tochka mozhe buti predstavlena neskinchennoyu kilkistyu sposobiv Ce vidbuvayetsya tomu sho dlya viznachennya azimuta tochki potribno povernuti polyarnu vis takim chinom shob vin vkazuvav na tochku Ale napryam na tochku ne zminitsya yaksho zdijsniti dovilnu kilkist dodatkovih povnih obertiv U zagalnomu vipadku tochka r displaystyle r nbsp f mozhe buti predstavlena u viglyadi r displaystyle r nbsp f n displaystyle n nbsp 360 abo r displaystyle r nbsp f 2n displaystyle n nbsp 1 180 de n displaystyle n nbsp dovilne cile chislo 10 Dlya poznachennya polyusu vikoristovuyut koordinati 0 f Nezalezhno vid koordinati f tochka z nulovoyu vidstannyu vid polyusa zavzhdi perebuvatime na nomu 11 Dlya otrimannya odnoznachnih koordinat tochki zazvichaj obmezhuyut znachennya vidstani nevid yemnimi znachennyami r displaystyle r nbsp 0 a kut f intervalami 0 360 abo 180 180 u radianah 0 2p abo p p 12 Kuti v polyarnih koordinatah zadayutsya abo v gradusah abo v radianah pri comu 2p rad 360 Vibir zazvichaj zalezhit vid galuzi zastosuvannya U navigaciyi tradicijno zastosovuyut gradusi u toj chas yak u deyakih galuzyah fiziki ta majzhe v usih rozdilah matematiki zastosovuyut radiani 13 Zv yazok mizh dekartovimi ta polyarnimi koordinatami Redaguvati Paru polyarnih koordinat r displaystyle r nbsp ta f mozhna perevesti v Dekartovi koordinati x displaystyle x nbsp ta y displaystyle y nbsp shlyahom zastosuvannya trigonometrichnih funkcij sinusa ta kosinusa x r cos f displaystyle x r cos varphi nbsp y r sin f displaystyle y r sin varphi nbsp dekartovi koordinati x displaystyle x nbsp ta y displaystyle y nbsp mozhut buti peretvoreni v polyarni koordinati r displaystyle r nbsp f takim chinom r 2 y 2 x 2 displaystyle r 2 y 2 x 2 nbsp za teoremoyu Pifagora Dlya viznachennya kutovoyi koordinati f slid vzyati do uvagi dva taki mirkuvannya Dlya r displaystyle r nbsp 0 f mozhe buti dovilnim dijsnim chislom Dlya r displaystyle r nbsp 0 abi otrimati unikalne znachennya f slid obmezhitis intervalom v 2p Zazvichaj obirayut interval 0 2p abo p p Dlya obchislennya f v intervali 0 2p mozhna skoristatis takimi rivnyannyami arctg displaystyle text arctg nbsp poznachaye obernenu funkciyu do tangensu f arctg y x x gt 0 y 0 arctg y x 2 p x gt 0 y lt 0 arctg y x p x lt 0 p 2 x 0 y gt 0 3 p 2 x 0 y lt 0 displaystyle varphi begin cases text arctg frac y x amp x gt 0 quad y geq 0 text arctg frac y x 2 pi amp x gt 0 quad y lt 0 text arctg frac y x pi amp x lt 0 frac pi 2 amp x 0 quad y gt 0 frac 3 pi 2 amp x 0 quad y lt 0 end cases nbsp Dlya obchislennya f v intervali p p mozhna skoristatis takimi rivnyannyami 14 f arctg y x x gt 0 arctg y x p x lt 0 y 0 arctg y x p x lt 0 y lt 0 p 2 x 0 y gt 0 p 2 x 0 y lt 0 displaystyle varphi begin cases text arctg frac y x amp x gt 0 text arctg frac y x pi amp x lt 0 quad y geq 0 text arctg frac y x pi amp x lt 0 quad y lt 0 frac pi 2 amp x 0 quad y gt 0 frac pi 2 amp x 0 quad y lt 0 end cases nbsp nbsp Dekartova ploshina vidobrazhena v polyarnij sistemi koordinatZvazhayuchi na te sho dlya obchislennya polyarnogo kuta ne dosit znati vidnoshennya y do x a she j dodatkovo znaki odnogo z cih chisel bagato suchasnih mov programuvannya mayut sered svoyih funkcij okrim funkciyi atan yaka viznachaye arktangens chisla she j dodatkovu funkciyu atan2 yaka maye okremi argumenti dlya chiselnika ta znamennika U movah programuvannya sho pidtrimuyut neobov yazkovi argumenti napriklad u Common Lisp funkciya atan mozhe otrimuvati znachennya koordinati x Rivnyannya krivih u polyarnih koordinatah RedaguvatiZavdyaki radialnij prirodi polyarnoyi sistemi koordinat deyaki krivi mozhut buti dosit prosto opisani polyarnim rivnyannyam todi yak rivnyannya v dekartovij sistemi koordinat buli b nabagato skladnishimi Sered najvidomishih krivih mozhna nazvati polyarnu troyandu spiral Arhimeda lemniskatu ravlik Paskalya ta kardioyidu Kolo Redaguvati nbsp Kolo zadane rivnyannyam r displaystyle r nbsp f 1Zagalne rivnyannya kola z centrom v r 0 8 displaystyle r 0 theta nbsp ta radiusom a displaystyle a nbsp maye viglyad r 2 2 r r 0 cos f 8 r 0 2 a 2 displaystyle r 2 2rr 0 cos varphi theta r 0 2 a 2 nbsp Ce rivnyannya mozhe buti sproshene dlya okremih vipadkiv napriklad r f a displaystyle r varphi a nbsp ye rivnyannyam sho viznachaye kolo z centrom v polyusi ta radiusom a displaystyle a nbsp 15 Pryama Redaguvati Radialni pryami ti sho prohodyat cherez polyus viznachayutsya rivnyannyam f 8 displaystyle varphi theta nbsp de 8 kut na yakij pryama vidhilyayetsya vid polyarnoyi osi tobto 8 arctg m displaystyle m nbsp de m displaystyle m nbsp nahil pryamoyi v Dekartovij sistemi koordinat Neradialna pryama sho perpendikulyarno peretinaye radialnu pryamu f 8 v tochci r displaystyle r nbsp 0 8 viznachayetsya rivnyannyam r f r 0 sec f 8 displaystyle r varphi r 0 sec varphi theta nbsp Polyarna troyanda Redaguvati nbsp Polyarna roza zadana rivnyannyam r displaystyle r nbsp f 2 sin 4f Polyarna troyanda vidoma matematichna kriva shozha na kvitku z pelyustkami Vona mozhe buti viznachena prostim rivnyannyam v polyarnih koordinatah r f a cos k f 8 0 displaystyle r varphi a cos k varphi theta 0 nbsp dlya dovilnoyi staloyi 8 0 displaystyle theta 0 nbsp vklyuchno z 0 Yaksho k cile chislo to ce rivnyannya viznachatime rozu z k pelyustkami dlya neparnih k abo z 2k pelyustkami dlya parnih k Yaksho k racionalne ale ne cile grafik zadanij rivnyannyam utvorit figuru podibnu do rozi ale pelyustki budut perekrivatis Rozi z 2 6 10 14 i t d pelyustkami cim rivnyannyam viznachiti nemozhlivo Zminna a displaystyle a nbsp viznachaye dovzhinu pelyustok Spiral Arhimeda Redaguvati nbsp Odna z gilok spirali Arhimeda sho zadayetsya rivnyannyam r f f dlya 0 lt 8 lt 6pVidoma spiral Arhimeda nazvana na chest yiyi vinahidnika davnogreckogo matematika Arhimeda Cyu spiral mozhna viznachiti za dopomogoyu prostogo polyarnogo rivnyannya r f a b f displaystyle r varphi a b varphi nbsp Zmini parametru a prizvodyat do povorotu spirali a parametru b vidstani mizh vitkami yaka ye konstantoyu dlya konkretnoyi spirali Spiral Arhimeda maye dvi gilki odnu dlya f gt 0 a inshu dlya f lt 0 Dvi gilki plavno spoluchayutsya v polyusi Dzerkalne vidobrazhennya odniyeyi gilki vidnosno pryamoyi sho prohodit cherez kut 90 270 dast inshu gilku Cya kriva cikava tim sho bula opisana v matematichnij literaturi odniyeyu z pershih pislya konichnogo peretinu j najkrashe sered inshih viznachayetsya same polyarnim rivnyannyam Konichni peretini Redaguvati nbsp Elips Dokladnishe Konichni peretiniKonichnij peretin odin z fokusiv yakogo znahoditsya v polyusi a inshij des na polyarnij osi tak sho mala pivvis lezhit vzdovzh polyarnoyi osi zadayetsya rivnyannyam r ℓ 1 e cos f displaystyle r ell over 1 e cos varphi nbsp de e ekscentrisitet a ℓ displaystyle ell nbsp fokalnij parametr Yaksho e gt 1 ce rivnyannya viznachaye giperbolu yaksho e 1 to parabolu yaksho e lt 1 to elips Okremim vipadkom ye e 0 sho viznachaye kolo z radiusom ℓ displaystyle ell nbsp Kompleksni chisla Redaguvati nbsp Priklad kompleksnogo chisla z nanesenogo na kompleksnu ploshinu nbsp Priklad kompleksnogo chisla nanesenogo na grafik z vikoristannyam formuli Ejlera Kozhne kompleksne chislo mozhe buti predstavlene tochkoyu na kompleksnij ploshini i vidpovidno cya tochka mozhe viznachatis abo v dekartovih koordinatah pryamokutna abo dekartova forma abo v polyarnih koordinatah polyarna forma Kompleksne chislo z mozhe buti zapisane v pryamokutnij formi yak z x i y displaystyle z x iy nbsp de i uyavna odinicya abo v polyarnij divitsya formuli peretvorennya mizh sistemami koordinat vishe z r cos f i sin f displaystyle z r cdot cos varphi i sin varphi nbsp i zvidsi yak z r e i f displaystyle z re i varphi nbsp de e chislo Ejlera Zavdyaki formuli Ejlera obidva predstavlennya ekvivalentni 16 Slid vidznachiti sho v cij formuli podibno do reshti formul yaki mistyat pidnesennya do stepenya kutiv kut f zadano v radianah Dlya perehodu mizh pryamokutnim ta polyarnim predstavlennyam kompleksnih chisel mozhut vikoristovuvatis navedeni vishe formuli peretvorennya mizh sistemami koordinat Operaciyi mnozhennya dilennya ta pidnesennya do stepenya z kompleksnimi chislami zazvichaj prostishe provoditi v polyarnij formi Zgidno z pravilami pidnesennya do stepenya Mnozhennya r 0 e i f 0 r 1 e i f 1 r 0 r 1 e i f 0 f 1 displaystyle r 0 e i varphi 0 cdot r 1 e i varphi 1 r 0 r 1 e i varphi 0 varphi 1 nbsp dd Dilennya r 0 e i f 0 r 1 e i f 1 r 0 r 1 e i f 0 f 1 displaystyle frac r 0 e i varphi 0 r 1 e i varphi 1 frac r 0 r 1 e i varphi 0 varphi 1 nbsp dd Pidnesennya do stepenya formula Muavra r e i f n r n e i n f displaystyle re i varphi n r n e in varphi nbsp dd U matematichnomu analizi RedaguvatiOperaciyi matematichnogo analizu tezh mozhna sformulyuvati vikoristovuyuchi polyarni koordinati 17 18 Diferencijne chislennya Redaguvati Spravedlivi taki formuli r r x x y y displaystyle r tfrac partial partial r x tfrac partial partial x y tfrac partial partial y nbsp f y x x y displaystyle tfrac partial partial varphi y tfrac partial partial x x tfrac partial partial y nbsp Shob znajti tangens kuta nahilu dotichnoyi do bud yakoyi danoyi tochki polyarnoyi krivoyi r f u dekartovih koordinatah virazimo yih cherez sistemu rivnyan u parametrichnomu viglyadi x r f cos f displaystyle x r varphi cos varphi nbsp y r f sin f displaystyle y r varphi sin varphi nbsp Diferenciyuyuchi obidva rivnyannya po f otrimayemo d x d f r f cos f r f sin f displaystyle frac dx d varphi r varphi cos varphi r varphi sin varphi nbsp d y d f r f sin f r f cos f displaystyle frac dy d varphi r varphi sin varphi r varphi cos varphi nbsp Podilivshi ci rivnyannya druge na pershe otrimayemo shukanij tangens kuta nahilu dotichnoyi u dekartovij sistemi koordinat u tochci r r f d y d x r f sin f r f cos f r f cos f r f sin f displaystyle frac dy dx frac r varphi sin varphi r varphi cos varphi r varphi cos varphi r varphi sin varphi nbsp Integralne chislennya Redaguvati nbsp Oblast R yaka utvorena polyarnoyu krivoyu r f ta promenyami f a ta f b Nehaj R oblast yaku utvoryuyut polyarna kriva r f i promeni f a ta f b de 0 lt b a lt 2p Todi plosha ciyeyi oblasti znahoditsya viznachenim integralom 1 2 a b r f 2 d f displaystyle frac 1 2 int a b left r varphi right 2 d varphi nbsp nbsp Oblast R nablizheno utvorena z n sektoriv tut n 5 Takij rezultat mozhna otrimati nastupnim chinom Spochatku rozib yemo interval a b na dovilne chislo pidintervaliv n Takim chinom dovzhina takogo pidintervalu Df dorivnyuye b a povna dovzhina intervalu podilena na n chislo pidintervaliv Nehaj dlya kozhnogo pidintervalu i 1 2 n fi serednya tochka Pobuduyemo sektori z centrom u polyusi radiusami r fi centralnimi kutami Df i dovzhinoyu dug r f i D f displaystyle r varphi i Delta varphi nbsp Tomu plosha kozhnogo takogo sektora bude 1 2 r f i 2 D f displaystyle tfrac 1 2 r varphi i 2 Delta varphi nbsp Zvidsi povna plosha vsih sektoriv i 1 n 1 2 r f i 2 D f displaystyle sum i 1 n tfrac 1 2 r varphi i 2 Delta varphi nbsp Yaksho chislo pidintervaliv n zbilshuvati to pohibka takogo nablizhenogo virazu bude zmenshuvatisya Poklavshi n vishe otrimana suma stane integralnoyu Granicya ciyeyi sumi pri Df 0 viznachaye visheopisanij integral lim D f 0 i 1 1 2 r f i 2 D f 1 2 a b r f 2 d f displaystyle lim Delta varphi rightarrow 0 sum i 1 infty tfrac 1 2 r varphi i 2 Delta varphi frac 1 2 int a b left r varphi right 2 d varphi nbsp Uzagalnennya Redaguvati Vikoristovuyuchi dekartovi koordinati plosha neskinchenno malogo elementu mozhe buti obchislena yak dA dx dy Pid chas perehodu do inshoyi sistemi koordinat u bagatokratnih integralah neobhidno vikoristovuvati viznachnik Yakobi J det x y r f x r x f y r y f displaystyle J det frac partial x y partial r varphi begin vmatrix frac partial x partial r amp frac partial x partial varphi frac partial y partial r amp frac partial y partial varphi end vmatrix nbsp Dlya polyarnoyi sistemi koordinat viznachnik matrici Yakobi dorivnyuye r J cos f r sin f sin f r cos f r cos 2 f r sin 2 f r displaystyle J begin vmatrix cos varphi amp r sin varphi sin varphi amp r cos varphi end vmatrix r cos 2 varphi r sin 2 varphi r nbsp Otzhe ploshu elementa u polyarnih koordinatah mozhna zapisati tak d A J d r d f r d r d f displaystyle dA J dr d varphi r dr d varphi nbsp Teper funkciya zapisana u polyarnih koordinatah mozhe buti integrovanoyu takim chinom R f r f d A a b 0 r f f r f r d r d f displaystyle iint R f r varphi dA int a b int 0 r varphi f r varphi r dr d varphi nbsp Tut oblast R taka sama yak i u poperednomu rozdili tobto taka yaku utvoryuyut polyarna kriva r f i promeni f a ta f b Formula dlya obchislennya ploshi yaku opisano u poperednomu rozdili otrimana u vipadku f 1 Cikavim rezultatom zastosuvannya formuli dlya kratnih integraliv ye integral Gausa e x 2 d x p displaystyle int infty infty e x 2 dx sqrt pi nbsp Vektornij analiz Redaguvati Do polyarnih koordinat mozhna zastosuvati elementi vektornogo analizu Bud yake vektorne pole F displaystyle mathbf F nbsp mozhna zapisati v polyarnij sistemi koordinat vikoristovuyuchi odinichni vektori e r cos f sin f displaystyle mathbf e r cos varphi sin varphi nbsp u napryamku r displaystyle mathbf r nbsp i e f sin f cos f displaystyle mathbf e varphi sin varphi cos varphi nbsp F F r e r F f e f displaystyle mathbf F F r mathbf e r F varphi mathbf e varphi nbsp Zv yazok mizh dekartovimi komponentami polya F x displaystyle F x nbsp ta F y displaystyle F y nbsp i jogo komponentami v polyarnij sistemi koordinat zadayetsya rivnyannyami F x F r cos f F f sin f displaystyle F x F r cos varphi F varphi sin varphi nbsp F y F r sin f F f cos f displaystyle F y F r sin varphi F varphi cos varphi nbsp Vidpovidnim chinom u polyarnij sistemi koordinat viznachayutsya operatori vektornogo analizu Napriklad gradiyent skalyarnogo polya F r f displaystyle Phi r varphi nbsp zapisuyetsya grad F F r e r 1 r F f e f displaystyle text grad Phi frac partial Phi partial r mathbf e r frac 1 r frac partial Phi partial varphi mathbf e varphi nbsp Trivimirne rozshirennya RedaguvatiPolyarna sistema koordinat poshiryuyetsya v tretij vimir dvoma sistemami cilindrichnoyu ta sferichnoyu obidvi mistyat dvovimirnu polyarnu sistemu koordinat yak pidmnozhinu Po suti cilindrichna sistema rozshiryuye polyarnu dodavannyam she odniyeyi koordinati vidstani a sferichna she odniyeyi kutovoyi koordinati Cilindrichni koordinati Redaguvati nbsp Tochka P nakreslena v cilindrichnij sistemi koordinat Dokladnishe Cilindrichna sistema koordinatCilindrichna sistema koordinat grubo kazhuchi rozshiryuye plasku polyarnu sistemu dodavannyam tretoyi linijnoyi koordinati sho maye nazvu visoti i dorivnyuye visoti tochki nad nulovoyu ploshinoyu podibno do togo yak Dekartova sistema rozshiryuyetsya na vipadok 3 h vimiriv Tretya koordinata zazvichaj poznachayetsya yak z utvoryuyuchi trijku koordinat r f z Trijku cilindrichnih koordinat mozhna perevesti v Dekartovu sistemu takimi peretvorennyami x r cos f y r sin f z z displaystyle begin aligned x amp rho cos varphi y amp rho sin varphi z amp z end aligned nbsp Sferichni koordinati Redaguvati nbsp Tochka nakreslena v sferichnij sistemi koordinat Dokladnishe Sferichna sistema koordinatTakozh polyarni koordinati mozhna rozshiriti na vipadok troh vimiriv shlyahom dodavannya kutovoyi koordinati 8 sho dorivnyuye kutu povertannya vid vertikalnoyi osi z nazivayetsya zenitom abo shirotoyu znachennya znahodyatsya v intervali vid 0 do 180 Tobto sferichni koordinati ce trijka r 8 f de r vidstan vid centru koordinat f kut vid osi x yak i v plaskih polyarnih koordinatah 8 shirota Sferichna sistema koordinat podibna do geografichnoyi sistemi koordinat dlya viznachennya miscya na poverhni Zemli de pochatok koordinat zbigayetsya z centrom Zemli shirota d ye dopovnennyam 8 i dorivnyuye d 90 8 a dovgota l obchislyuyetsya za formuloyu l f 180 19 Trijku sferichnih koordinat mozhna perevesti v dekartovu sistemu takimi peretvorennyami x r sin 8 cos f y r sin 8 sin f z r cos 8 displaystyle begin aligned x amp r sin theta cos varphi y amp r sin theta sin varphi z amp r cos theta end aligned nbsp Uzagalnennya na n vimiriv Redaguvati Polyarnu sistemu koordinat mozhna rozshiriti na vipadok n mirnogo prostoru Nehaj x i R displaystyle x i in mathbb R nbsp i 1 n displaystyle i 1 ldots n nbsp koordinatni vektori n mirnoyi dekartovoyi sistemi koordinat Neobhidni koordinati v n vimirnij polyarnij sistemi mozhna vvoditi yak kut vidhilennya vektora x R n displaystyle x in mathbb R n nbsp vid koordinatnoyi osi x i 2 displaystyle x i 2 nbsp Dlya perevedennya uzagalnenih n vimirnih polyarnih koordinat u dekartovi mozhna skoristatis takimi formulami x 1 r cos f sin ϑ 1 sin ϑ 2 sin ϑ n 3 sin ϑ n 2 x 2 r sin f sin ϑ 1 sin ϑ 2 sin ϑ n 3 sin ϑ n 2 x 3 r cos ϑ 1 sin ϑ 2 sin ϑ n 3 sin ϑ n 2 x 4 r cos ϑ 2 sin ϑ n 3 sin ϑ n 2 x n 1 r cos ϑ n 3 sin ϑ n 2 x n r cos ϑ n 2 displaystyle begin array lcr x 1 amp amp r cos varphi sin vartheta 1 sin vartheta 2 cdots sin vartheta n 3 sin vartheta n 2 x 2 amp amp r sin varphi sin vartheta 1 sin vartheta 2 cdots sin vartheta n 3 sin vartheta n 2 x 3 amp amp r cos vartheta 1 sin vartheta 2 cdots sin vartheta n 3 sin vartheta n 2 x 4 amp amp r cos vartheta 2 cdots sin vartheta n 3 sin vartheta n 2 vdots amp vdots amp vdots qquad qquad qquad quad x n 1 amp amp r cos vartheta n 3 sin vartheta n 2 x n amp amp r cos vartheta n 2 end array nbsp Yak mozhna pokazati vipadok n 2vidpovidaye zvichajnij polyarnij sistemi koordinat na ploshini a n 3 zvichajnij sferichnij sistemi koordinat Yakobian peretvorennya polyarnih koordinat v Dekartovi matime viglyad det x 1 x n r f ϑ 1 ϑ n 2 r n 1 sin ϑ 1 sin ϑ 2 2 sin ϑ n 2 n 2 displaystyle det frac partial x 1 ldots x n partial r varphi vartheta 1 ldots vartheta n 2 r n 1 sin vartheta 1 left sin vartheta 2 right 2 ldots left sin vartheta n 2 right n 2 nbsp De n vimirnij element ob yemu matime viglyad d V r n 1 sin ϑ 1 sin ϑ 2 2 sin ϑ n 2 n 2 d r d f d ϑ 1 d ϑ n 2 r n 1 d r d f j 1 n 2 sin ϑ j j d ϑ j displaystyle begin matrix mathrm d V amp amp r n 1 sin vartheta 1 left sin vartheta 2 right 2 ldots left sin vartheta n 2 right n 2 mathrm d r mathrm d varphi mathrm d vartheta 1 ldots mathrm d vartheta n 2 amp amp r n 1 mathrm d r mathrm d varphi prod limits j 1 n 2 sin vartheta j j mathrm d vartheta j end matrix nbsp Zastosuvannya RedaguvatiPolyarna sistema koordinat dvovimirna i tomu mozhe zastosovuvatis lishe v tih vipadkah koli misce znahodzhennya tochki viznachayetsya na ploshini abo dlya vipadku odnoridnosti vlastivostej sistemi v tretomu vimiri napriklad pri rozglyadi techiyi v kruglij trubi Najkrashim kontekstom zastosuvannya polyarnih koordinat ye vipadki sho silno pov yazani z napryamom ta vidstannyu vid deyakogo centru Napriklad v navedenih vishe prikladah vidno sho prostih rivnyan v polyarnih koordinatah dostatno dlya viznachennya takih krivih yak spiral Arhimeda rivnyannya yakih v dekartovij sistemi koordinat nabagato skladnishe Krim togo bagato fizichnih sistem takih sho mistyat tila sho ruhayutsya navkolo centru abo yavisha sho rozpovsyudzhuyutsya z deyakogo centru nabagato prostishe modelyuvati v polyarnih koordinatah Prichinoyu stvorennya polyarnoyi sistemi koordinat bulo doslidzhennya orbitalnogo ruhu ta ruhu po kolu Poziciyuvannya ta navigaciya Redaguvati Dokladnishe NavigaciyaPolyarnu sistemu koordinat chasto zastosovuyut u navigaciyi oskilki punkt priznachennya mozhna zadati yak vidstan ta napryam ruhu vid vidpravnoyi tochki Napriklad v aviaciyi dlya navigaciyi zastosovuyut trohi zminenu versiyu polyarnih koordinat U cij sistemi sho zazvichaj vikoristovuyetsya dlya navigaciyi promin 0 nazivayut napryamkom 360 a kuti vidrahovuyutsya v napryamku za godinnikovoyu strilkoyu Napryamok 360 vidpovidaye napryamku na pivnichnij magnitnij polyus a napryami 90 180 ta 270 vidpovidayut magnitnim shodu zahodu ta pivdnyu 20 Tak litak sho letit 5 morskih mil na shid mozhna opisati yak litak sho letit 5 odinic v napryamku 90 centr keruvannya polotami nazve jogo najne ziro 21 Modelyuvannya Redaguvati nbsp Front potuzhnosti zvukovoyi hvili promislovogo guchnomovcya pokazanij v sferichnih polyarnih koordinatah pri shistoh chastotah Dokladnishe ModelyuvannyaSistemi z radialnoyu simetriyeyu duzhe dobre pidhodyat dlya opisannya v radialnih koordinatah de polyus sistemi koordinat zbigayetsya z centrom simetriyi Yak priklad mozhna navesti rivnyannya toku gruntovih vod u vipadku radialno simetrichnih kolodyaziv Sistemi z centralnimi silami takozh pidhodyat dlya modelyuvannya v polyarnih koordinatah Do takih sistem nalezhat gravitacijni polya sho pidporyadkovuyutsya zakonu zvorotno kvadratichnoyi zalezhnosti tak i sistemi z tochkovimi dzherelami energiyi taki yak radio anteni Trivimirne modelyuvannya zvuku guchnomovciv mozhe vikoristovuvatisya dlya prognozuvannya yihnoyi efektivnosti Neobhidno zrobiti dekilka diagram v polyarnih koordinatah dlya shirokogo diapazonu chastot oskilki front istotno zminyuyetsya zalezhno vid chastoti zvuku Polyarni diagrami dopomagayut pobachiti sho bagato guchnomovciv zi znizhennyam chastoti zvuku vtrachayut napravlenist U polyarnih koordinatah takozh prijnyato predstavlyati harakteristiku napravlenosti mikrofoniv sho viznachayetsya vidnoshennyam chutlivosti Ma pri padinni zvukovoyi hvili pid kutom a vidnosno akustichnoyi osi mikrofona do jogo osovoyi chutlivosti f Ma M0Posilannya Redaguvati a b Brown Richard G 1997 U Andrew M Gleason Advanced Mathematics Precalculus with Discrete Mathematics and Data Analysis Evanston Illinois McDougal Littell ISBN 0 395 77114 5 Friendly Michael Milestones in the History of Thematic Cartography Statistical Graphics and Data Visualization Arhiv originalu za 25 veresnya 2006 Procitovano 10 veresnya 2006 T Koetsier L Bergmans 2005 Mathematics and the Divine Elsevier s 169 ISBN 0444503285 Dzhon Dzh O Konnor ta Edmund F Robertson Abu Arrayhan Muhammad ibn Ahmad al Biruni v arhivi MacTutor angl David A King 1996 Astronomy and Islamic society Qibla gnomics and timekeeping in Roshdi Rashed ed Encyclopedia of the History of Arabic Science Vol 1 pp 128 184 153 Routledge London and New York a b Coolidge Julian 1952 The Origin of Polar Coordinates American Mathematical Monthly 59 78 85 doi 10 2307 2307104 Boyer C B 1949 Newton as an Originator of Polar Coordinates American Mathematical Monthly 56 73 78 doi 10 2307 2306162 Miller Jeff Earliest Known Uses of Some of the Words of Mathematics Arhiv originalu za 15 lyutogo 2012 Procitovano 10 veresnya 2006 Smith David Eugene 1925 History of Mathematics Vol II Boston Ginn and Co s 324 Polar Coordinates and Graphing PDF 13 kvitnya 2006 Arhiv originalu za 15 lyutogo 2012 Procitovano 22 veresnya 2006 Lee Theodore David Cohen David Sklar 2005 Precalculus With Unit Circle Trigonometry vid Fourth Edition Thomson Brooks Cole ISBN 0534402305 Stewart Ian David Tall 1983 Complex Analysis the Hitchhiker s Guide to the Plane Cambridge University Press ISBN 0521287634 Serway Raymond A Jewett Jr John W 2005 Principles of Physics Brooks Cole Thomson Learning ISBN 0 534 49143 X Torrence Bruce Follett Eve Torrence 1999 The Student s Introduction to Mathematica Cambridge University Press ISBN 0521594618 Claeys Johan Polar coordinates Arhiv originalu za 15 lyutogo 2012 Procitovano 25 travnya 2006 Smith Julius O 2003 Euler s Identity Mathematics of the Discrete Fourier Transform DFT W3K Publishing ISBN 0 9745607 0 7 Arhiv originalu archiveurl vimagaye url dovidka za 15 veresnya 2006 Procitovano 22 veresnya 2006 Husch Lawrence S Areas Bounded by Polar Curves Arhiv originalu za 15 lyutogo 2012 Procitovano 25 listopada 2006 Lawrence S Husch Tangent Lines to Polar Graphs Arhiv originalu za 15 lyutogo 2012 Procitovano 25 listopada 2006 Wattenberg Frank 1997 Spherical Coordinates Arhiv originalu za 15 lyutogo 2012 Procitovano 16 veresnya 2006 Santhi Sumrit Aircraft Navigation System Arhiv originalu za 15 lyutogo 2012 Procitovano 26 listopada 2006 Emergency Procedures PDF pdf Arhiv originalu za 15 lyutogo 2012 Procitovano 15 sichnya 2007 Div takozh Redaguvati nbsp Portal Matematika Sistemi koordinat v elementarnij matematici Sistemi koordinatPosilannya RedaguvatiProgrami dlya malyuvannya grafikiv katalog posilan Open Directory Project nbsp Cya stattya nalezhit do dobrih statej ukrayinskoyi Vikipediyi Otrimano z https uk wikipedia org w index php title Polyarna sistema koordinat amp oldid 37695843