www.wikidata.uk-ua.nina.az
Cya stattya pro neskinchenni geometrichni ryadi Dlya skinchennih sum div geometrichnu progresiyu Plosha kozhnogo z fioletovih kvadrativ dorivnyuye 1 4 displaystyle 1 4 ploshi nastupnogo bilshogo kvadrata 1 2 1 2 1 4 1 4 1 4 1 16 displaystyle 1 2 cdot 1 2 1 4 1 4 cdot 1 4 1 16 i t d Suma plosh fioletovih kvadrativ dorivnyuye tretini ploshi velikogo kvadrata U matematici geometrichnij ryad ce ryad z postijnim vidnoshennyam mizh poslidovnimi chlenami Napriklad chislovij ryad en 1 2 1 4 1 8 1 16 displaystyle frac 1 2 frac 1 4 frac 1 8 frac 1 16 cdots ye geometrichnim tomu sho kozhen nastupnij chlen mozhe buti otrimanij z poperednogo chlena mnozhennyam na 1 2 displaystyle 1 2 Geometrichni ryadi ye odnimi z najprostishih prikladiv neskinchennih ryadiv z skinchennimi sumami hocha ne vsi voni mayut cyu vlastivist Istorichno geometrichni ryadi vidigravali vazhlivu rol u rannih etapah rozvitku chislennya i voni prodovzhuyut zajmati centralne misce pri doslidzheni zbizhnosti ryadiv en Geometrichni ryadi vikoristovuyutsya u vsij matematici i voni mayut vazhlive zastosuvannya u fizici inzheneriyi biologiyi ekonomici informatici teoriyi masovogo obslugovuvannya ta finansah Zmist 1 Znamennik 2 Suma 2 1 Priklad 2 2 Formula 2 3 Dovedennya zbizhnosti 3 Zastosuvannya 3 1 Periodichni desyatkovi drobi 3 2 Kvadratura paraboli Arhimeda 3 3 Fraktalna geometriya 3 4 Paradoksi Zenona 3 5 Evklid 3 6 Ekonomika 3 7 Geometrichni stepenevi ryadi 4 Div takozh 4 1 Geometrichni ryadi 5 Literatura 5 1 Istoriya i filosofiya 5 2 Ekonomika 5 3 Biologiya 5 4 Informatika 6 PosilannyaZnamennik Redaguvati nbsp Zbizhnist geometrichnogo ryadu z r 1 2 displaystyle r 1 2 nbsp i a 1 2 displaystyle a 1 2 nbsp nbsp Zbizhnist geometrichnogo ryadu z r 1 2 displaystyle r 1 2 nbsp i a 1 displaystyle a 1 nbsp Chleni geometrichnogo ryadu utvoryuyut geometrichnu progresiyu tobto vidnoshennya poslidovnih chleniv u ryadi ye postijnim Cej vzayemozv yazok dozvolyaye predstaviti geometrichnij ryad vikoristovuyuchi lishe dva znachennya r displaystyle r nbsp ta a displaystyle a nbsp r displaystyle r nbsp znamennik a a displaystyle a nbsp pershij chlen ryadu Napriklad geometrichnij ryad u vstupi 1 2 1 4 1 8 1 16 displaystyle frac 1 2 frac 1 4 frac 1 8 frac 1 16 cdots nbsp mozhna prosto zapisati yak a a r a r 2 a r 3 displaystyle a ar ar 2 ar 3 cdots nbsp de a 1 2 displaystyle a frac 1 2 nbsp r 1 2 displaystyle r frac 1 2 nbsp U nastupnij tablici pokazano dekilka geometrichnih ryadiv z riznimi pershimi chlenami ta znamennikami Pershij chlen a displaystyle a nbsp Znamennik r displaystyle r nbsp Prikladi ryadiv4 10 4 40 400 4000 40 000 displaystyle 4 40 400 4000 40 000 cdots nbsp 9 1 3 9 3 1 1 3 1 9 displaystyle 9 3 1 1 3 1 9 cdots nbsp 7 1 10 7 0 7 0 07 0 007 0 000 7 displaystyle 7 0 7 0 07 0 007 0 0007 cdots nbsp 3 1 3 3 3 3 3 displaystyle 3 3 3 3 3 cdots nbsp 1 1 2 1 1 2 1 4 1 8 1 16 1 32 displaystyle 1 1 2 1 4 1 8 1 16 1 32 cdots nbsp 3 1 3 3 3 3 3 displaystyle 3 3 3 3 3 cdots nbsp Povedinka dodankiv zalezhit vid znamennika r displaystyle r nbsp Yaksho r displaystyle r nbsp znahoditsya mizh 1 displaystyle 1 nbsp ta 1 displaystyle 1 nbsp chleni ryadu pryamuyut do nulya stayuchi vse menshimi ta menshimi za absolyutne znachennya a ryad zbigayetsya U navedenomu vishe vipadku de r 1 2 displaystyle r 1 2 nbsp ryad zbigayetsya do 1 displaystyle 1 nbsp Yaksho r 1 displaystyle r 1 nbsp bilshe za odinicyu abo menshe za minus odinicyu chleni ryadu stayut bilshimi ta bilshimi za absolyutnim znachennyam Suma dodankiv takozh staye vse bilshoyu i bilshoyu a ryad ye rozbizhnim en Yaksho r 1 displaystyle r 1 nbsp to usi chleni ryadu odnakovi Ryad rozbizhnij Yaksho r 1 displaystyle r 1 nbsp to chleni prijmayut po cherzi dva protilezhni za znakom znachennya napriklad 2 2 2 2 2 displaystyle 2 2 2 2 2 dots nbsp Suma chleniv kolivayetsya en mizh dvoma znachennyami napriklad 2 0 2 0 2 displaystyle 2 0 2 0 2 dots nbsp Ce inshij tip rozbizhnosti Div napriklad ryad Grandi 1 1 1 1 displaystyle 1 1 1 1 cdots nbsp Suma RedaguvatiSuma geometrichnogo ryadu ye skinchenoyu yaksho absolyutne znachennya znamennika menshe 1 displaystyle 1 nbsp oskilki chisla blizki do nulya to voni stayut neskinchenno malimi sho dozvolyaye obchisliti sumu nezvazhayuchi na te sho ryad mistit neskinchenno bagato dodankiv Sumu mozhna obchisliti vikoristovuyuchi samopodibnist ryadiv Priklad Redaguvati nbsp Vizualne obchislennya sumi neskinchennih dodankiv geometrichnogo ryadu Rozglyanemo sumu takogo geometrichnogo ryadu s 1 2 3 4 9 8 27 displaystyle s 1 frac 2 3 frac 4 9 frac 8 27 cdots nbsp Znamennik cogo ryadu 2 3 displaystyle 2 3 nbsp Yaksho domnozhiti cej ryad na znamennik to pochatkovij chlen 1 displaystyle 1 nbsp staye 2 3 displaystyle 2 3 nbsp 2 3 displaystyle 2 3 nbsp staye 4 9 displaystyle 4 9 nbsp i tak dali 2 3 s 2 3 4 9 8 27 16 81 displaystyle frac 2 3 s frac 2 3 frac 4 9 frac 8 27 frac 16 81 cdots nbsp Novij ryad takij zh yak i originalnij za vinyatkom togo sho pershij chlen vidsutnij Vidnyavshi novij ryad vid pochatkovogo otrimuyemo s 2 3 s 1 s 3 displaystyle s frac 2 3 s 1 quad Rightarrow quad s 3 nbsp Podibnij metod mozhe buti vikoristanij dlya obchislennya bud yakogo samopodibnogo virazu Formula Redaguvati Pri r 1 displaystyle r neq 1 nbsp suma pershih n displaystyle n nbsp chleniv geometrichnogo ryadu dorivnyuye a a r a r 2 a r 3 a r n 1 k 0 n 1 a r k a 1 r n 1 r displaystyle a ar ar 2 ar 3 cdots ar n 1 sum k 0 n 1 ar k a left frac 1 r n 1 r right nbsp de a displaystyle a nbsp pershij chlen ryadu a r displaystyle r nbsp znamennik Mi mozhemo otrimati formulu dlya sumi s displaystyle s nbsp takim chinom s a a r a r 2 a r 3 a r n 1 r s a r a r 2 a r 3 a r n 1 a r n s r s a a r n s 1 r a 1 r n s a 1 r n 1 r yaksho r 1 displaystyle begin aligned s amp a ar ar 2 ar 3 cdots ar n 1 rs amp qquad ar ar 2 ar 3 cdots ar n 1 ar n s rs amp a ar n s 1 r amp a 1 r n s amp a left frac 1 r n 1 r right quad text yaksho r neq 1 text end aligned nbsp Oskilki n displaystyle n nbsp pryamuye do neskinchennosti to dlya zbizhnosti ryadu neobhidno shob absolyutne znachennya r displaystyle r nbsp bulo menshe odinici Suma nabuvaye viglyadu a a r a r 2 a r 3 a r 4 k 0 a r k a 1 r displaystyle a ar ar 2 ar 3 ar 4 cdots sum k 0 infty ar k frac a 1 r nbsp pri r lt 1 displaystyle r lt 1 nbsp Pri a 1 displaystyle a 1 nbsp otrimuyemo 1 r r 2 r 3 1 1 r displaystyle 1 r r 2 r 3 cdots frac 1 1 r nbsp liva chastina ce geometrichnij ryad iz znamennikom r displaystyle r nbsp Formula takozh spravedliva dlya kompleksnogo r displaystyle r nbsp z vidpovidnim obmezhennyam sho modul znamennika r displaystyle r nbsp strogo menshij za odinicyu Dovedennya zbizhnosti Redaguvati Mi mozhemo dovesti sho geometrichnij ryad ye zbizhnim en vikoristovuyuchi formulu sumi dlya geometrichnoyi progresiyi 1 r r 2 r 3 lim n 1 r r 2 r n lim n 1 r n 1 1 r displaystyle begin aligned 1 r r 2 r 3 cdots amp lim n rightarrow infty left 1 r r 2 cdots r n right amp lim n rightarrow infty frac 1 r n 1 1 r end aligned nbsp Oskilki 1 r r 2 r n 1 r 1 r n 1 displaystyle left 1 r r 2 r n right 1 r 1 r n 1 nbsp i r n 1 0 displaystyle r n 1 rightarrow 0 nbsp pri r lt 1 displaystyle r lt 1 nbsp Zbizhnist geometrichnih ryadiv mozhna takozh prodemonstruvati perepisavshi ryad yak ekvivalentnij teleskopichnij ryad Rozglyanemo funkciyu g K r K 1 r displaystyle g K frac r K 1 r nbsp Zauvazhimo sho 1 g 0 g 1 r g 1 g 2 r 2 g 2 g 3 displaystyle 1 g 0 g 1 quad r g 1 g 2 quad r 2 g 2 g 3 quad ldots nbsp Todi S 1 r r 2 r 3 g 0 g 1 g 1 g 2 g 2 g 3 displaystyle begin aligned S amp 1 r r 2 r 3 cdots amp g 0 g 1 g 1 g 2 g 2 g 3 cdots end aligned nbsp Yaksho r lt 1 displaystyle r lt 1 nbsp to g K 0 pri K displaystyle g K longrightarrow 0 quad text pri quad K to infty nbsp Otzhe S displaystyle S nbsp zbigayetsya do g 0 1 1 r displaystyle g 0 frac 1 1 r nbsp Zastosuvannya RedaguvatiPeriodichni desyatkovi drobi Redaguvati Dokladnishe Periodichni desyatkovi drobi en Periodichnij desyatkovij drib mozhna rozglyadati yak geometrichnij ryad znamennikom yakogo ye stepin chisla 1 10 displaystyle 1 10 nbsp Napriklad 0 777 7 7 10 7 100 7 1000 7 10000 displaystyle 0 7777 ldots frac 7 10 frac 7 100 frac 7 1000 frac 7 10000 cdots nbsp Formula sumi geometrichnogo ryadu mozhe buti vikoristana dlya peretvorennya desyatkovogo drobu u zvichajnij drib 0 777 7 a 1 r 7 10 1 1 10 7 10 9 10 7 9 displaystyle 0 7777 ldots frac a 1 r frac 7 10 1 1 10 frac 7 10 9 10 frac 7 9 nbsp Formula vikonuyetsya ne tilki dlya odniyeyi cifri sho povtoryuyetsya ale j dlya grupi cifr sho povtoryuyutsya Napriklad 0 123 412341234 a 1 r 1234 10000 1 1 10000 1234 10000 9999 10000 1234 9999 displaystyle 0 123412341234 ldots frac a 1 r frac 1234 10000 1 1 10000 frac 1234 10000 9999 10000 frac 1234 9999 nbsp Zauvazhimo sho bud yakij ryad periodichnih desyatkovih drobiv mozhna zruchno sprostiti za dopomogoyu nastupnogo sposterezhennya 0 090 90909 0 9 9 9 1 11 displaystyle 0 09090909 ldots frac 0 9 9 9 frac 1 11 nbsp 0 143 814381438 1 438 9 999 displaystyle 0 143814381438 ldots frac 1 438 9 999 nbsp 0 999 9 0 9 0 9 1 displaystyle 0 9999 ldots frac 0 9 0 9 1 nbsp Tobto periodichnij desyatkovij drib z dovzhinoyu povtorennya n displaystyle n nbsp dorivnyuye vidnoshennyu povtoryuvanoyi chastini yak cile chislo i 10 n 1 displaystyle 10 n 1 nbsp Kvadratura paraboli Arhimeda Redaguvati nbsp Rozbittya parabolichnogo segmenta Arhimeda na neskinchennu kilkist trikutnikiv Dokladnishe Kvadratura paraboli en Arhimed vikoristav sumu geometrichnogo ryadu dlya obchislennya ploshi obmezhenoyi paraboloyu ta pryamoyu liniyeyu Jogo metod polyagav u tomu shob rozdiliti ploshu na neskinchennu kilkist trikutnikiv Teorema Arhimeda stverdzhuye sho zagalna plosha pid paraboloyu stanovit 4 3 displaystyle 4 3 nbsp ploshi sinogo trikutnika Arhimed viznachiv sho plosha kozhnogo zelenogo trikutnika dorivnyuye 1 8 displaystyle 1 8 nbsp ploshi sinogo trikutnika plosha kozhnogo zhovtogo trikutnika dorivnyuye 1 8 displaystyle 1 8 nbsp ploshi zelenogo trikutnika i t d Yaksho pripustiti sho sinij trikutnik maye ploshu 1 displaystyle 1 nbsp to zagalna plosha ye neskinchennoyu sumoyu 1 2 1 8 4 1 8 2 8 1 8 3 displaystyle 1 2 left frac 1 8 right 4 left frac 1 8 right 2 8 left frac 1 8 right 3 cdots nbsp Pershij dodanok predstavlyaye ploshu sinogo trikutnika drugij dodanok ploshi dvoh zelenih trikutnikiv tretij dodanok ploshi chotiroh zhovtih trikutnikiv tosho Pislya sproshennya drobiv otrimuyemo 1 1 4 1 16 1 64 displaystyle 1 frac 1 4 frac 1 16 frac 1 64 cdots nbsp Ce geometrichnij ryad iz znamennikom 1 4 displaystyle 1 4 nbsp yakij mozhna predstaviti u viglyadi n 0 4 n 1 4 1 4 2 4 3 displaystyle sum n 0 infty 4 n 1 4 1 4 2 4 3 cdots nbsp Suma cogo ryadu 1 1 r 1 1 1 4 4 3 displaystyle frac 1 1 r frac 1 1 frac 1 4 frac 4 3 nbsp U comu obchislenni vikoristovuyetsya metod vicherpuvannya rannya versiya integruvannya Vikoristovuyuchi integralne chislennya ta sama plosha mozhe buti znajdena za dopomogoyu viznachenogo integrala Fraktalna geometriya Redaguvati nbsp Vnutrishnya chastina snizhinki Koha predstvlyaye soboyu ob yednannya neskinchennoyi kilkosti trikutnikiv Pri vivchenni fraktaliv geometrichni ryadi chasto vinikayut pri obchislenni perimetriv plosh chi ob yemiv samopodibnih figur Napriklad ploshu vseredini snizhinki Koha mozhna predstaviti yak ob yednannya neskinchennoyi kilkosti pravilnih trikutnikiv div risunok Kozhna storona zelenogo trikutnika dorivnyuye 1 3 displaystyle 1 3 nbsp dovzhini storoni velikogo sinogo trikutnika i tomu jogo plosha dorivnyuye 1 9 displaystyle 1 9 nbsp ploshi sinogo trikutnika Analogichno plosha kozhnogo zhovtogo trikutnika dorivnyuye 1 9 displaystyle 1 9 nbsp ploshi zelenogo trikutnika i t d Yaksho plosha sinogo trikutnik dorivnyuye odinici to zagalna plosha snizhinki dorivnyuye 1 3 1 9 12 1 9 2 48 1 9 3 displaystyle 1 3 left frac 1 9 right 12 left frac 1 9 right 2 48 left frac 1 9 right 3 cdots nbsp Pershij dodanok cogo ryadu plosha sinogo trikutnika drugij dodanok zagalna plosha troh zelenih trikutnikiv tretij dodanok zagalna plosha dvanadcyati zhovtih trikutnikiv i t d Yaksho viklyuchiti pershij dodanok to cej ryad ye geometrichnim ryadom iz znamennikom r 4 9 displaystyle r 4 9 nbsp Pershij chlen cogo geometrichnogo ryadu a 3 1 9 1 3 displaystyle a 3 cdot frac 1 9 1 3 nbsp tomu 1 a 1 r 1 1 3 1 4 9 8 5 displaystyle 1 frac a 1 r 1 frac frac 1 3 1 frac 4 9 frac 8 5 nbsp Takim chinom plosha snizhinki Koha dorivnyuye 8 5 displaystyle 8 5 nbsp ploshi osnovnogo trikutnika Paradoksi Zenona Redaguvati Dokladnishe Aporiyi ZenonaZbizhnist geometrichnogo ryadu pokazuye sho suma sho vklyuchaye neskinchennu kilkist dodankiv dijsno mozhe buti skinchennoyu sho dozvolyaye rozv yazati bagato paradoksiv Zenona Napriklad paradoks dihotomiyi Zenona stverdzhuye sho ruh nemozhlivij oskilki mozhna rozdiliti bud yakij kincevij shlyah na neskinchennu kilkist krokiv de kozhen krok vvazhayetsya rivnim polovini vidstani sho zalishilasya Pomilka Zenona polyagaye v pripushenni sho suma neskinchennogo chisla skinchennih krokiv ne mozhe buti skinchennoyu Ce zvichajno ne tak pro sho svidchit zbizhnist geometrichnogo ryadu z r 1 2 displaystyle r 1 2 nbsp Evklid Redaguvati Kniga IX tverdzhennya 35 1 traktatu Evklida Nachala virazhaye chastkovu sumu geometrichnogo ryadu cherez chleni cogo ryadu sho ye ekvivalentnim suchasnij formuli Ekonomika Redaguvati Dokladnishe Vartist groshej u chasiV ekonomici geometrichni ryadi vikoristovuyutsya dlya predstavlennya privedenoyi vartosti anuyitetu groshovoyi sumi yaku potribno viplachuvati cherez rivni promizhki chasu Napriklad pripustimo sho vlasniku anuyitetu bude viplachuvatisya 100 displaystyle 100 nbsp odin raz na rik v kinci roku neskinchennu kilkist raziv perpetuyitet en Otrimani 100 displaystyle 100 nbsp na rik teper koshtuyut menshe nizh negajni 100 displaystyle 100 nbsp oskilki nihto ne mozhe investuvati groshi poki ne otrimaye yih Zokrema teperishnya vartist 100 displaystyle 100 nbsp na rik u majbutnomu stanovit 100 1 I displaystyle 100 1 I nbsp de I displaystyle I nbsp richna procentna stavka Analogichno plata v rozmiri 100 displaystyle 100 nbsp cherez dva roki v majbutnomu maye teperishnyu vartist 100 1 I 2 displaystyle 100 1 I 2 nbsp u kvadrati cherez vtratu interesu za dva roki cherez neotrimannya groshej pryamo zaraz Takim chinom potochna vartist otrimannya 100 displaystyle 100 nbsp na rik za neobmezhenij termin stanovit n 1 100 1 I n displaystyle sum n 1 infty frac 100 1 I n nbsp sho ye neskinchennim ryadom 100 1 I 100 1 I 2 100 1 I 3 100 1 I 4 displaystyle frac 100 1 I frac 100 1 I 2 frac 100 1 I 3 frac 100 1 I 4 cdots nbsp Ce geometrichnij ryad iz znamennikom 1 1 I displaystyle 1 1 I nbsp Jogo suma ce pershij dodanok podilenij na odin minus znamennik 100 1 I 1 1 1 I 100 I displaystyle frac 100 1 I 1 1 1 I frac 100 I nbsp Napriklad yaksho richna procentna stavka stanovit 10 displaystyle 10 nbsp I 0 10 displaystyle I 0 10 nbsp todi ves anuyitet maye teperishnyu vartist 100 0 10 1000 displaystyle 100 0 10 1000 nbsp Cej vid rozrahunku vikoristovuyetsya dlya obchislennya richnoyi procentnoyi stavki en poziki napriklad ipotechnogo kreditu Vin takozh mozhe buti vikoristanij dlya ocinki teperishnoyi vartosti ochikuvanih dividendiv na akciyi abo terminalnoyi vartisti cinnih paperiv Geometrichni stepenevi ryadi Redaguvati Formula geometrichnogo ryadu 1 1 x 1 x x 2 x 3 x 4 displaystyle frac 1 1 x 1 x x 2 x 3 x 4 cdots nbsp mozhe buti prointerpretovana yak stepenevij ryad v sensi teoremi Tejlora sho zbigayetsya pri x lt 1 displaystyle x lt 1 nbsp Ce mozhna vikoristati shob otrimati inshi stepenevi ryadi Napriklad a r c t g x d x 1 x 2 d x 1 x 2 1 x 2 x 2 2 x 2 3 d x 1 x 2 x 4 x 6 d x x x 3 3 x 5 5 x 7 7 n 0 1 n 2 n 1 x 2 n 1 displaystyle begin aligned rm arctg x amp int frac rm d x 1 x 2 amp int frac rm d x 1 x 2 amp int left 1 left x 2 right left x 2 right 2 left x 2 right 3 cdots right rm d x amp int left 1 x 2 x 4 x 6 cdots right rm d x amp x frac x 3 3 frac x 5 5 frac x 7 7 cdots amp sum n 0 infty frac 1 n 2n 1 x 2n 1 end aligned nbsp Diferenciyuyuchi geometrichnij ryad otrimuyemo 2 n 1 n x n 1 1 1 x 2 dlya x lt 1 displaystyle sum n 1 infty nx n 1 frac 1 1 x 2 quad text dlya quad x lt 1 nbsp Analogichno mozhna otrimati nastupni ryadi n 2 n n 1 x n 2 2 1 x 3 dlya x lt 1 displaystyle sum n 2 infty n n 1 x n 2 frac 2 1 x 3 quad text dlya quad x lt 1 nbsp i n 3 n n 1 n 2 x n 3 6 1 x 4 dlya x lt 1 displaystyle sum n 3 infty n n 1 n 2 x n 3 frac 6 1 x 4 quad text dlya quad x lt 1 nbsp Div takozh Redaguvati0 9 Asimptota Rozbizhni geometrichni ryadi en Uzagalnena gipergeometrichna funkciya en Geometrichna progresiya Ryad Nejmana Oznaka d Alambera Radikalna oznaka Koshi Ryad matematika Geometrichni ryadi Redaguvati Ryad Grandi 1 2 4 8 en 1 2 4 8 en 1 2 1 4 1 8 1 16 en 1 2 1 4 1 8 1 16 en 1 4 1 16 1 64 1 256 en Literatura Redaguvati Euclid s Elements Book IX Proposition 35 Aleph0 clarku edu Arhiv originalu za 16 listopada 2011 Procitovano 1 serpnya 2013 Taylor Angus E 1955 Advanced Calculus Blaisdell s 603 Abramowitz M and Stegun I A Eds Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables 9th printing New York Dover p 10 1972 Arfken G Mathematical Methods for Physicists 3rd ed Orlando FL Academic Press pp 278 279 1985 Beyer W H CRC Standard Mathematical Tables 28th ed Boca Raton FL CRC Press p 8 1987 Courant R and Robbins H The Geometric Progression 1 2 3 in What Is Mathematics An Elementary Approach to Ideas and Methods 2nd ed Oxford England Oxford University Press pp 13 14 1996 Pappas T Perimeter Area amp the Infinite Series The Joy of Mathematics San Carlos CA Wide World Publ Tetra pp 134 135 1989 James Stewart 2002 Calculus 5th ed Brooks Cole ISBN 978 0 534 39339 7 Larson Hostetler and Edwards 2005 Calculus with Analytic Geometry 8th ed Houghton Mifflin Company ISBN 978 0 618 50298 1 Roger B Nelsen 1997 Proofs without Words Exercises in Visual Thinking The Mathematical Association of America ISBN 978 0 88385 700 7 Andrews George E 1998 The geometric series in calculus The American Mathematical Monthly Mathematical Association of America 105 1 36 40 JSTOR 2589524 doi 10 2307 2589524 Istoriya i filosofiya Redaguvati C H Edwards Jr 1994 The Historical Development of the Calculus 3rd ed Springer ISBN 978 0 387 94313 8 Swain Gordon and Thomas Dence April 1998 Archimedes Quadrature of the Parabola Revisited Mathematics Magazine 71 2 123 30 JSTOR 2691014 doi 10 2307 2691014 Eli Maor 1991 To Infinity and Beyond A Cultural History of the Infinite Princeton University Press ISBN 978 0 691 02511 7 Morr Lazerowitz 2000 The Structure of Metaphysics International Library of Philosophy Routledge ISBN 978 0 415 22526 7Ekonomika Redaguvati Carl P Simon and Lawrence Blume 1994 Mathematics for Economists W W Norton amp Company ISBN 978 0 393 95733 4 Mike Rosser 2003 Basic Mathematics for Economists 2nd ed Routledge ISBN 978 0 415 26784 7Biologiya Redaguvati Edward Batschelet 1992 Introduction to Mathematics for Life Scientists 3rd ed Springer ISBN 978 0 387 09648 3 Richard F Burton 1998 Biology by Numbers An Encouragement to Quantitative Thinking Cambridge University Press ISBN 978 0 521 57698 7Informatika Redaguvati John Rast Hubbard 2000 Schaum s Outline of Theory and Problems of Data Structures With Java McGraw Hill ISBN 978 0 07 137870 3Posilannya RedaguvatiHazewinkel Michiel red 2001 Geometric progression Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Weisstein Eric W Geometric Series angl na sajti Wolfram MathWorld Geometric Series na PlanetMath angl Peppard Kim College Algebra Tutorial on Geometric Sequences and Series West Texas A amp M University Arhiv originalu za 7 travnya 2015 Procitovano 1 grudnya 2015 Casselman Bill A Geometric Interpretation of the Geometric Series Applet Arhiv originalu za 29 veresnya 2007 Geometric Series Arhivovano 18 lyutogo 2010 u Wayback Machine by Michael Schreiber Wolfram Demonstrations Project 2007 Otrimano z https uk wikipedia org w index php title Geometrichnij ryad amp oldid 36122245