www.wikidata.uk-ua.nina.az
Matemati chne spodiva nnya 1 sere dnye zna chennya odna z osnovnih chislovih harakteristik kozhnoyi vipadkovoyi velichini Vono ye uzagalnenim ponyattyam serednogo znachennya sukupnosti chisel na toj vipadok koli elementi mnozhini znachen ciyeyi sukupnosti mayut riznu vagu cinu vazhlivist prioritet sho ye harakternim dlya znachen vipadkovoyi zminnoyi 2 V teoriyi jmovirnostej matematichne spodivannya vipadkovoyi velichini intuyitivno ye serednim znachennyam pri dovgostrokovomu povtorenni odnogo i togo zh eksperimenta yakij vono predstavlyaye Napriklad matematichne spodivannya pri pidkidanni shestigrannoyi gralnoyi kistochki stanovit 3 5 oskilki serednye znachennya z usih chisel yaki mozhut vipasti stanovit 3 5 iz tim yak kilkist pidkidan pryamuye do neskinchennosti Inshimi slovami zakon velikih chisel stverdzhuye sho serednye arifmetichne vsih znachen majzhe pevno zbigayetsya do matematichnogo spodivannya iz tim yak kilkist povtoriv danogo eksperimentu pryamuye do neskinchennosti Matematichne spodivannya takozh inodi nazivayut spodivannyam serednim serednim znachennyam abo pershim momentom Oskilki vipadkova velichina mozhe buti diskretnoyu abo zadana gustinoyu rozpodilu jmovirnostej tomu teoriya jmovirnostej navodit dva oznachennya matematichnogo spodivannya U bilsh praktichnomu rozuminni matematichne spodivannya diskretnoyi vipadkovoyi velichini ye serednim zvazhenim po imovirnosti dlya vsih mozhlivih znachen Inshimi slovami kozhne mozhlive znachennya vipadkovoyi velichini faktichno ye pomnozhene na jogo imovirnist viniknennya i otrimanij dobutok skladayetsya u zagalnu sumu yaka utvoryuye matematichne spodivannya Toj samij princip zastosovuyetsya i dlya absolyutno neperervnih vipadkovih velichin za vinyatkom togo sho suma zaminyuyetsya na integral dlya danoyi vipadkovoyi velichini po vidnoshennyu do yiyi funkciyi gustini imovirnostej Formalne viznachennya ohoplyuye obidva ci vipadki a takozh peredbachaye rozpodili yaki ne ye ni diskretnimi ni absolyutno neperervnimi matematichne spodivannya vipadkovoyi velichini ye integralom argumentom yakogo ye cya vipadkova velichina vidpovidno do yiyi miri imovirnosti 3 4 Matematichne spodivannya ne isnuye dlya vipadkovih velichin sho mayut pevni rozpodili imovirnostej iz velikimi hvostami en yak napriklad Rozpodil Koshi 5 Dlya takih vipadkovih velichin dovgij hvist rozpodilu ne peredbachaye sho suma abo integral budut zbizhnimi Matematichne spodivannya ye klyuchovim aspektom yakij harakterizuye rozpodil jmovirnostej vono ye odnim iz riznovidiv koeficiyenta zsuvu Na protivagu jomu dispersiya ye miroyu rozsiyannya mozhlivih znachen vipadkovoyi velichini dovkola matematichnogo spodivannya Dispersiya sama po sobi viznachayetsya v terminah dvoh matematichnih spodivan ce matematichne spodivannya kvadratichnogo vidhilennya znachen vipadkovoyi velichini vid matematichnogo spodivannya Zmist 1 Oznachennya 1 1 1 Prikladi 2 Oznachennya 2 3 Deyaki formuli dlya obchislennya matematichnogo spodivannya 4 Osnovni vlastivosti matematichnogo spodivannya 4 1 UNIQ postMath 00000028 QINU 4 2 Yaksho X Y todi E X E Y 4 3 Matematichne spodivannya dlya staloyi 4 4 Linijnist 4 5 E X isnuye i ye skinchennim todi i tilki todi koli E X ye skinchennim 4 6 Yaksho X 0 todi E X 0 4 7 Monotonnist 4 8 Yaksho UNIQ postMath 00000086 QINU majzhe skriz i UNIQ postMath 00000087 QINU ye skinchennoyu todi tak samo i dlya UNIQ postMath 00000088 QINU 4 9 Yaksho UNIQ postMath 00000093 QINU ta UNIQ postMath 00000094 QINU todi UNIQ postMath 00000095 QINU 4 9 1 Protilezhnij priklad dlya neskinchennoyi miri 4 10 Vlastivist ekstremalnosti 4 11 Nevirodzhenist 4 12 Yaksho UNIQ postMath 000000DE QINU todi UNIQ postMath 000000DF QINU majzhe pevno 4 12 1 Naslidok yaksho UNIQ postMath 000000F8 QINU todi UNIQ postMath 000000F9 QINU majzhe pevno 4 12 2 Naslidok yaksho UNIQ postMath 000000FA QINU todi UNIQ postMath 000000FB QINU majzhe pevno 4 13 UNIQ postMath 000000FC QINU 4 14 Nemultiplikativnist 4 15 Protilezhnij priklad UNIQ postMath 0000010A QINU nezvazhayuchi na ce UNIQ postMath 0000010B QINU potochkovo 4 16 Zlichenna neaditivnist 4 17 Zlichenna aditivnist dlya ne vid yemnih vipadkovih velichin 5 Nerivnosti 5 1 Nerivnist Koshi Bunyakovskogo Shvarca 5 2 Nerivnist Markova 5 3 Nerivnist Chebishova 5 4 Nerivnist Yensena 5 5 Nerivnist Lyapunova 5 6 Nerivnist Geldera 5 7 Nerivnist Minkovskogo 6 Rozrahunok granic pid znakom operatora UNIQ postMath 00000157 QINU 6 1 Teorema pro monotonnu zbizhnist 6 2 Lema Fatu 6 3 Teorema pro mazhorovanu zbizhnist 7 Zv yazok iz harakteristichnoyu funkciyeyu 8 Priklad vipadkovoyi velichini sho ne maye matematichnogo spodivannya 9 Zastosuvannya 10 Div takozh 11 Dzherela 12 PrimitkiOznachennya 1 RedaguvatiNehaj diskretna vipadkova zminna X X mozhe nabuvati znachennya x 1 x 2 displaystyle x 1 x 2 ldots vidpovidno z jmovirnostyami p x 1 p x 2 displaystyle p x 1 p x 2 ldots prichomu x p x 1 displaystyle sum x p x 1 Oznachennya Chebishova Matematichnim spodivannyam bud yakoyi velichini nazivayetsya suma vsih mozhlivih dlya neyi znachen pomnozhenih na yihni jmovirnosti 6 m E X x x p x displaystyle mu equiv operatorname E X sum x x p x de m displaystyle mu ce serednye znachennya vipadkovoyi velichini X X oblastyu mozhlivih znachen yakoyi ye mnozhina X x displaystyle left X x right E displaystyle operatorname E operator matematichnogo spodivannya E X displaystyle operatorname E X matematichne spodivannya velichini X X Ilyustraciya zbizhnosti serednogo dlya poslidovnosti kidannya gralnogo kubika do spodivannya 3 5 pri postijnomu zbilshenni kilkosti sprob Prikladi Redaguvati Nehaj X X zadaye mnozhinu podij pri pidkidanni gralnoyi kistki iz shistma storonami Rezultatom bude kilkist tochok na verhnij grani pislya pidkidannya gralnoyi kistki Mozhlivimi znachennyami yaki prijmatime X X ye 1 2 3 4 5 i 6 vsi ye rivnojmovirnimi kozhne znachennya maye jmovirnist 1 6 Matematichnim spodivannyam dlya X X budeE X 1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6 1 6 3 5 displaystyle operatorname E X 1 cdot frac 1 6 2 cdot frac 1 6 3 cdot frac 1 6 4 cdot frac 1 6 5 cdot frac 1 6 6 cdot frac 1 6 3 5 dd Yaksho pidkinuti gralnu kistku n n raziv i rozrahuvati serednye serednye arifmetichne vsih rezultativ iz zbilshennyam n n serednye bude majzhe pevne zbigatisya do znachennya spodivannya Cej fakt vidomij yak zakon velikih chisel Odnim iz prikladiv poslidovnosti desyati vipadan gralnoyi kistki ye 2 3 1 2 5 6 2 2 2 6 dlya yakogo serednye bude dorivnyuvati 3 1 sho vidriznyayetsya vid matematichnogo spodivannya 3 5 na chislo 0 4 Zblizhennya ye vidnosno povilnim jmovirnist sho serednye znahoditimetsya v mezhah 3 5 0 1 dorivnyuye 21 6 dlya desyati sprob 46 1 dlya sotni sprob i 93 7 dlya tisyachi sprob Div grafik na yakomu pokazani seredni dlya dovshih poslidovnostej kidannya gralnoyi kistki na yakomu vidno yak voni zbigayutsya do matematichnogo spodivannya iz znachennyam v 3 5 U zagalnomu vipadku shvidkist zblizhennya mozhna priblizno rozrahuvati za dopomogoyu napriklad nerivnosti Chebishova i teoremi Berri Essina en Pri gri v ruletku nevelika kulka mozhe potrapiti v odnu iz 38 pronumerovanih sekcij kolesa sho rozmisheni po kolu Koli koleso rozkruchuyut kulka udaryayetsya i ruhayetsya vipadkovim chinom doki ne zupinitsya v odnomu z sektoriv Nehaj vipadkova velichina X X zadaye groshovij vigrash pri stavci v 1 na odne chislo pryama stavka Yaksho stavka vigraye sho trapitsya iz jmovirnistyu 1 38 vigrash stanovitime 35 v inshomu vipadku gravec vtrachaye stavku Ochikuvanim pributkom vid takoyi stavki budeE gain from 1 bet 1 37 38 35 1 38 0 0526 displaystyle operatorname E text gain from 1 text bet 1 cdot frac 37 38 35 cdot frac 1 38 0 0526 dd Tobto stavka v 1 koshtuvatime vtrati 0 0526 tochnishe yiyi spodivannyam ye 0 0526 Oznachennya 2 RedaguvatiNehaj vipadkova zminna 3 xi zadana gustinoyu rozpodilu jmovirnostej p 3 x displaystyle p xi x x m i n lt x lt x m a x displaystyle x min lt x lt x max Matematichnim spodivannyam takoyi chislovoyi zminnoyi 3 xi yaksho vono isnuye nazivayut integral uzyatij po oblasti isnuvannya yiyi gustini rozpodilu vid dobutku ciyeyi vipadkovoyi zminnoyi na yiyi gustinu rozpodilu tobto m E 3 X x p 3 x d x displaystyle mu equiv operatorname E xi int X xp xi x dx Matematichne podivannya isnuye yaksho cej integral absolyutno zbizhnij Deyaki formuli dlya obchislennya matematichnogo spodivannya RedaguvatiAbstraktnij integral sho figuruye v oznachenni matematichnogo spodivannya mozhna zaminiti vidpovidnim integralom Lebega Stiltyesa Rozglyanemo vipadok kompoziciyi borelivskoyi funkciyi f f ta vipadkovoyi velichini 3 xi E f 3 X f x d F 3 x displaystyle operatorname E f circ xi int X f x dF xi x de F 3 x displaystyle F xi x funkciya rozpodilu vipadkovoyi velichini 3 xi Vid ciyeyi zalezhnosti prihodimo do takoyi formuli E 3 X x d F 3 x displaystyle operatorname E xi int X xdF xi x Osnovni vlastivosti matematichnogo spodivannya RedaguvatiYaksho 3 displaystyle displaystyle xi ta h displaystyle displaystyle eta nezalezhni integrovni vipadkovi velichini to E 3 h E 3 E h displaystyle displaystyle operatorname E xi cdot eta operatorname E xi cdot operatorname E eta Yaksho 3 displaystyle displaystyle xi ta h displaystyle displaystyle eta integrovni vipadkovi velichini to E 3 h E 3 E h displaystyle displaystyle operatorname E xi eta operatorname E xi operatorname E eta Yaksho 3 displaystyle displaystyle xi integrovna vipadkova velichina C R displaystyle C in mathbb R to E C 3 C E 3 displaystyle operatorname E C xi C cdot operatorname E xi Nizhchenavedeni vlastivosti povtoryuyut vlastivosti integrala Lebega abo bezposeredno viplivayut iz nih E 1 A P A displaystyle operatorname E mathbf 1 A operatorname P A Redaguvati Yaksho A A ye vipadkovoyu podiyeyu todi E 1 A P A displaystyle operatorname E mathbf 1 A operatorname P A de 1 A displaystyle mathbf 1 A ce indikatorna funkciya dlya mnozhini A A Dovedennya Za viznachennyam integrala Lebega dlya prostoyi funkciyi 1 A 1 A w displaystyle mathbf 1 A mathbf 1 A omega E 1 A 1 P A 0 P W A P A displaystyle operatorname E mathbf 1 A 1 cdot operatorname P A 0 cdot operatorname P Omega setminus A operatorname P A Yaksho X Y todi E X E Y Redaguvati Ce tverdzhennya viplivaye iz viznachennya integrala Lebega yaksho vzyati do uvagi sho X Y displaystyle X Y X Y displaystyle X Y i sho zamina prostoyi vipadkovoyi velichini na mnozhinu iz nulovoyu imovirnistyu ne zminyuye matematichnogo spodivannya Matematichne spodivannya dlya staloyi Redaguvati Yaksho X X ce vipadkova velichina i X c displaystyle X c de c displaystyle c in infty infty todi E X c displaystyle operatorname E X c Zokrema dlya dovilnoyi vipadkovoyi velichini X X E E X E X displaystyle operatorname E operatorname E X operatorname E X Dovedennya Nehaj C C ce stala vipadkova velichina tobto C c displaystyle C equiv c Z viznachennya integrala Lebega viplivaye sho E C c displaystyle operatorname E C c Takozh viplivaye sho X C displaystyle X C Iz poperednoyi vlastivosti E X E C c displaystyle operatorname E X operatorname E C c Linijnist Redaguvati Operator matematichnogo spodivannya E displaystyle operatorname E cdot ye linijnim v tomu sensi sho E X Y E X E Y E a X a E X displaystyle begin aligned operatorname E X Y amp operatorname E X operatorname E Y 6pt operatorname E aX amp a operatorname E X end aligned de X X i Y Y ye dovilnimi vipadkovimi velichinami i a a ye skalyarom Bilsh suvoro nehaj X X i Y Y vipadkovi velichini yaki mayut viznacheni matematichni spodivannya sho vidminni vid displaystyle infty infty Yaksho E X E Y displaystyle operatorname E X operatorname E Y takozh viznachene tobto vidminne vid displaystyle infty infty todiE X Y E X E Y displaystyle operatorname E X Y operatorname E X operatorname E Y nehaj E X displaystyle operatorname E X ye skinchennim a a R displaystyle a in mathbb R ye skinchennim skalyarom Todi E a X a E X displaystyle operatorname E aX a operatorname E X Dovedennya 1 Dovedemo aditivnist za dopomogoyu dekilkoh krokiv 1a Yaksho X X i Y Y ye prostimi i nevid yemnimi znahodyachi peretini de ce neobhidno perepishemo X X i Y Y u nastupnomu viglyadi X i 1 n x i 1 A i displaystyle X sum i 1 n x i cdot mathbf 1 A i i Y i 1 n y i 1 A i displaystyle Y sum i 1 n y i cdot mathbf 1 A i dlya deyakih vimirnih poparno neperesichnih mnozhin A i i 1 n displaystyle A i i 1 n rozbittya W Omega i 1 A i 1 A i w displaystyle mathbf 1 A i mathbf 1 A i omega bude indikatornoyu funkciyeyu dlya mnozhini A i displaystyle A i Aditivnist viplivaye iz perevirki pryamim metodom 1b Pripustimo sho X X i Y Y ye dovilnimi ne vid yemnimi velichinami Zauvazhimo sho kozhna ne vid yemna vimirna funkciya ye potochkovoyu graniceyu dlya potochkovoyi ne spadnoyi poslidovnosti iz prostih ne vid yemnih funkcij Nehaj X n displaystyle X n i Y n displaystyle Y n ye takimi poslidovnostyami yaki zbigayutsya do X X i Y displaystyle Y vidpovidno Mi bachimo sho X n Y n displaystyle X n Y n potochkovo ne spadaye i X n Y n X Y displaystyle X n Y n to X Y potochkovo Vidpovidno do Teoremi Levi pro monotonnu zbizhnist i vipadku 1a E X Y E lim n X n Y n lim n E X n Y n lim n E X n E Y n lim n E X n lim n E Y n E lim n X n E lim n Y n E X E Y displaystyle begin aligned operatorname E X Y amp operatorname E lim n X n Y n amp lim n operatorname E X n Y n amp lim n operatorname E X n operatorname E Y n amp lim n operatorname E X n lim n operatorname E Y n amp operatorname E lim n X n operatorname E lim n Y n amp operatorname E X operatorname E Y end aligned Za dopomogoyu teoremi pro monotonnu zbizhnist mozhna pereviriti sho ce ne vede do krugovoyi logiki 1c V zagalnomu vipadku yaksho Z X Y displaystyle Z X Y todi Z X Y Z X Y displaystyle Z X Y Z X Y and E Z X Y E Z X Y displaystyle operatorname E Z X Y operatorname E Z X Y Rozdilivshi ce E Z E X E Y E Z E X E Y displaystyle operatorname E Z operatorname E X operatorname E Y operatorname E Z operatorname E X operatorname E Y sho ekvivalentno E Z E Z E X E Y E X E Y displaystyle operatorname E Z operatorname E Z operatorname E X operatorname E Y operatorname E X operatorname E Y i zreshtoyu E Z E X E Y displaystyle operatorname E Z operatorname E X operatorname E Y 2 Dlya dovedennya odnoridnosti pripustimo spershu sho skalyar a a opisanij pered cim ne vid yemnij Skinchennist E X displaystyle operatorname E X peredbachaye sho X X takozh ye skinchennim Tomu a X displaystyle a cdot X takozh skinchenne sho zreshtoyu garantuye sho E a X displaystyle operatorname E aX ye skinchennim Rivnyannya takim chinom ye prostoyu perevirkoyu sho osnovana na viznachenni integrala Lebega Yaksho a lt 0 displaystyle a lt 0 todi spershu dovedemo sho E X E X displaystyle operatorname E X operatorname E X sposterigayuchi sho X X displaystyle X X i navpaki E X isnuye i ye skinchennim todi i tilki todi koli E X ye skinchennim Redaguvati Taki tverdzhennya vidnosno vipadkovoyi velichini X X ekvivalentni E X displaystyle operatorname E X isnuye i ye skinchennim Obidva E X displaystyle operatorname E X i E X displaystyle operatorname E X ye skinchennimi E X displaystyle operatorname E X skinchenne Naspravdi X X X displaystyle X X X Vidpovidno do vlastivosti linijnosti E X E X E X displaystyle operatorname E X operatorname E X operatorname E X Vishenavedena rivnist spirayetsya na viznachennya integralu Lebega i vimirnist X X Zavdyaki comu virazi pro te sho X X ye integrovanoyu i matematichne spodivannya X X ye skinchennim ye zreshtoyu vzayemozaminnimi yaksho govoryat pro vipadkovu velichinu Yaksho X 0 todi E X 0 Redaguvati Dovedennya Poznachimo SF s W R s ye prostoyu vipadkovoyu velichinoyu i 0 s X displaystyle operatorname SF s Omega to mathbb R mid s text ye prostoyu vipadkovoyu velichinoyu i 0 leq s leq X Yaksho s SF displaystyle s in operatorname SF todi E s 0 displaystyle operatorname E s in 0 infty i zvidsi za viznachennyam integrala Lebega E X sup s SF E s 0 displaystyle operatorname E X sup s in operatorname SF operatorname E s geq 0 Z inshogo boku X 0 displaystyle X 0 majzhe skriz tozh yaksho zadati cherez podibnij argument E X 0 displaystyle operatorname E X 0 i takim chinom E X E X E X E X 0 displaystyle operatorname E X operatorname E X operatorname E X operatorname E X geq 0 Monotonnist Redaguvati Yaksho X Y displaystyle X leq Y a s i obidva E X displaystyle operatorname E X ta E Y displaystyle operatorname E Y isnuyut todi E X E Y displaystyle operatorname E X leq operatorname E Y Zauvazhennya E X displaystyle operatorname E X and E Y displaystyle operatorname E Y isnuyu v tomu rozuminni sho min E X E X lt displaystyle min operatorname E X operatorname E X lt infty and min E Y E Y lt displaystyle min operatorname E Y operatorname E Y lt infty Dovedennya viplivaye iz vlastivosti linijnosti i poperednoyi vlastivosti yaksho zadati Z Y X displaystyle Z Y X i zvernuti uvagu na te sho Z 0 displaystyle Z geq 0 majzhe skriz Yaksho X Y displaystyle X leq Y majzhe skriz i E Y displaystyle operatorname E Y ye skinchennoyu todi tak samo i dlya E X displaystyle operatorname E X Redaguvati Nehaj X X i Y Y ye vipadkovimi velichinami takimi sho X Y displaystyle X leq Y majzhe skriz i E Y lt displaystyle operatorname E Y lt infty Todi E X displaystyle operatorname E X neq pm infty Dovedennya Zavdyaki ne vid yemnosti X displaystyle X E X displaystyle operatorname E X isnuye skinchenne abo neskinchenne Vidpovidno do vlastivosti monotonnosti E X E Y lt displaystyle operatorname E X leq operatorname E Y lt infty tozh E X displaystyle operatorname E X ye skinchennim sho v svoyu chergu yak mi bachili bude ekvivalentne tomu sho E X displaystyle operatorname E X ye skinchennim Yaksho E X b lt displaystyle operatorname E X beta lt infty ta 0 lt a lt b displaystyle 0 lt alpha lt beta todi E X a lt displaystyle operatorname E X alpha lt infty Redaguvati Nizhchenavedene tverdzhennya bude vikoristane dlya dovedennya vlastivosti ekstremalnosti dlya E X displaystyle operatorname E X Tverdzhennya Yaksho X X ye vipadkovoyu velichinoyu todi tak samo bude i X a displaystyle X alpha dlya bud yakogo a gt 0 displaystyle alpha gt 0 Yaksho v dodatok do togo E X b lt displaystyle operatorname E X beta lt infty i 0 lt a lt b displaystyle 0 lt alpha lt beta todi E X a lt displaystyle operatorname E X alpha lt infty Dovedennya Abi zrozumiti chomu pershe tverdzhennya ye spravedlivim zauvazhimo sho X a displaystyle X alpha ye kompoziciyeyu iz X X ta x x a displaystyle x mapsto x alpha Oskilki ce bude kompoziciyeyu dvoh vimirnih funkcij to X a displaystyle X alpha takozh ye vimirnoyu Abi dovesti druge tverdzhennya viznachimo Y w max X w b 1 displaystyle Y omega max X omega beta 1 Mozhna pereviriti sho Y Y ye vipadkovoyu velichinoyu i X a Y displaystyle X alpha leq Y Vidpovidno do vlastivosti nevid yemnosti E Y w X w b 1 Y d P w X w b gt 1 Y d P P X w b 1 w X w b gt 1 X b d P 1 E X b lt displaystyle begin aligned operatorname E Y amp int limits omega mid X omega beta leq 1 Y dP int limits omega mid X omega beta gt 1 Y dP 6pt amp operatorname P bigl X omega beta leq 1 bigr int limits omega mid X omega beta gt 1 X beta dP 6pt amp leq 1 operatorname E X beta lt infty end aligned Vidpovidno do vlastivosti monotonnosti E X a E Y 1 E X b lt displaystyle operatorname E X alpha leq operatorname E Y leq 1 operatorname E X beta lt infty Protilezhnij priklad dlya neskinchennoyi miri Redaguvati Vimoga sho P W lt displaystyle operatorname P Omega lt infty ye suttyevoyu Yak protilezhnij priklad rozglyanemo vimirnij prostir 1 B R 1 l displaystyle 1 infty mathcal B mathbb R 1 infty lambda de B R 1 displaystyle mathcal B mathbb R 1 infty ce Borelivska s sigma algebra nad intervalom 1 displaystyle 1 infty i l lambda ye linijnoyu miroyu Lebega Mozhna dovesti sho 1 1 x d x displaystyle textstyle int 1 infty frac 1 x dx infty navit yaksho 1 1 x 2 d x 1 displaystyle textstyle int 1 infty frac 1 x 2 dx 1 S 1 x d x displaystyle textstyle int S frac 1 x dx i S 1 x 2 d x displaystyle textstyle int S frac 1 x 2 dx viznachayut miru m mu nad 1 n 1 1 n displaystyle textstyle 1 infty cup n 1 infty 1 n Zvazhayuchi na neperervnist dlya m mu i sprostivshi integral Rimana dlya kozhnogo skinchennogo intervala 1 n displaystyle 1 n otrimayemo neobhidne dovedennya Vlastivist ekstremalnosti Redaguvati Vidpovidno do togo sho bulo dovedeno vishe yaksho X X ce vipadkova zminna todi tak samo i X 2 displaystyle X 2 Tverdzhennya vlastivist ekstremalnosti dlya E X displaystyle operatorname E X Nehaj X X ye vipadkovoyu velichinoyu i E X 2 lt displaystyle operatorname E X 2 lt infty Todi E X displaystyle operatorname E X i Var X displaystyle operatorname Var X ye skinchennimi a E X displaystyle operatorname E X najkrasha aproksimaciya metodom najmenshih kvadrativ dlya X X sered stalih Zokrema dlya kozhnogo c R displaystyle c in mathbb R E X c 2 Var X displaystyle textstyle operatorname E X c 2 geq operatorname Var X rivnyannya bude dijsnim todi i tilki todi koli c E X displaystyle c operatorname E X Var X displaystyle operatorname Var X poznachaye dispersiyu velichini X X Poyasnennya intuyitivno zrozumila interpretaciya vlastivosti ekstremalnosti U prostomu rozuminni vlastivist ekstremalnosti stverdzhuye sho yaksho isnuye zadacha peredbachennya rezultatu en viprobuvannya dlya vipadkovoyi velichini X X todi E X displaystyle operatorname E X v deyakomu praktichnomu sensi ye najkrashim zakladom peredbachennya yaksho nemaye poperednoyi informaciyi pro rezultat Z inshogo boku yaksho v rezultati otrimanogo rezultatu isnuye deyake utochnene znannya F displaystyle mathcal F todi znov v deyakomu praktichnomu sensi peredbachennya mozhna pokrashiti vikoristovuyuchi umovni matematichni spodivannya E X F displaystyle operatorname E X mid mathcal F sered yakih E X displaystyle operatorname E X ye osoblivim vipadkom zamist E X displaystyle operatorname E X Dovedennya tverdzhennya Vidpovidno do poperednih vlastivostej E X displaystyle operatorname E X i Var X E X 2 E 2 X displaystyle operatorname Var X operatorname E X 2 operatorname E 2 X obidva ye skinchennimi i E X c 2 E X 2 2 c X c 2 E X 2 2 c E X c 2 c E X 2 E X 2 E 2 X c E X 2 Var X displaystyle begin aligned operatorname E X c 2 amp operatorname E X 2 2cX c 2 6pt amp operatorname E X 2 2c operatorname E X c 2 6pt amp c operatorname E X 2 operatorname E X 2 operatorname E 2 X 6pt amp c operatorname E X 2 operatorname Var X end aligned zvidki viplivaye vlastivist ekstremalnosti Nevirodzhenist Redaguvati Yaksho E X 0 displaystyle operatorname E X 0 todi X 0 displaystyle X 0 majzhe pevno Dovedennya Dlya bud yakoyi dodatnoyi staloyi r R gt 0 displaystyle r in mathbb R gt 0 P X r 0 displaystyle operatorname P X geq r 0 Naspravdi r 1 X r X 1 X r X displaystyle r cdot mathbf 1 X geq r leq X cdot mathbf 1 X geq r leq X de 1 X r 1 X r w displaystyle mathbf 1 X geq r mathbf 1 X geq r omega ce indikatorna funkciya dlya mnozhini w W X w r displaystyle omega in Omega mid X omega geq r Vidpovidno do vishenavedenoyi vlastivosti skinchennist E X displaystyle operatorname E X garantuye sho matematichni spodivannya E r 1 X r displaystyle operatorname E r cdot mathbf 1 X geq r i E X 1 X r displaystyle operatorname E X cdot mathbf 1 X geq r takozh ye skinchennimi Vidpovidno do vlastivosti monotonnosti r P X r E r 1 X r E X 1 X r E X 0 displaystyle r cdot operatorname P X geq r operatorname E r cdot mathbf 1 X geq r leq operatorname E X cdot mathbf 1 X geq r leq operatorname E X 0 Dlya deyakogo cilogo chisla n gt 0 displaystyle n gt 0 zadamo r 1 n displaystyle textstyle r frac 1 n Viznachimo S n w W X w 1 n displaystyle textstyle S n omega in Omega mid X omega geq frac 1 n i S w W X w gt 0 displaystyle textstyle S omega in Omega mid X omega gt 0 Poslidovnist mnozhin S 1 S n S n 1 S displaystyle S 1 subseteq cdots subseteq S n subseteq S n 1 subseteq cdots subseteq S monotonno ne spadaye i S n 1 S n displaystyle S cup n 1 infty S n Vidpovidno do neperervnosti znizu P S lim n P S n displaystyle textstyle operatorname P S lim n operatorname P S n Zastosuvavshi cyu formulu otrimayemo P X 0 P X gt 0 lim n P X 1 n lim n 0 0 displaystyle operatorname P X neq 0 operatorname P X gt 0 lim n operatorname P left X geq frac 1 n right lim n 0 0 sho i treba bulo dovesti Yaksho E X lt displaystyle operatorname E X lt infty todi X lt displaystyle X lt infty majzhe pevno Redaguvati Dovedennya Oskilki E X displaystyle operatorname E X ye viznachenim tobto min E X E X lt displaystyle min operatorname E X operatorname E X lt infty i E X E X E X displaystyle operatorname E X operatorname E X operatorname E X nam vidomo sho E X displaystyle operatorname E X ye skinchennim i mi hochemo pokazati sho X lt displaystyle X lt infty majzhe pevno Pokazhemo sho P W 0 displaystyle operatorname P Omega infty 0 de W w W X w displaystyle Omega infty omega in Omega mid X omega infty Yaksho W displaystyle Omega infty emptyset todi P W 0 displaystyle operatorname P Omega infty 0 i dokaz zavershenij Pripustivshi sho W displaystyle Omega infty neq emptyset viznachimo SF s s ye prostoyu vipadkovoyu velichinoyu 0 s X displaystyle operatorname SF s mid s hbox ye prostoyu vipadkovoyu velichinoyu 0 leq s leq X Dano sho S F displaystyle rm SF neq emptyset oberemo f S F displaystyle f in rm SF Dlya kozhnogo n gt sup W f displaystyle textstyle n gt sup Omega f viznachimo f n w n if w W f w if w W displaystyle f n omega begin cases n amp hbox if omega in Omega infty 3pt f omega amp hbox if omega notin Omega infty end cases Ochevidno f n S F displaystyle f n in rm SF i E f n n P W h displaystyle operatorname E f n n cdot operatorname P Omega infty h dlya deyakoyi staloyi h 0 displaystyle h geq 0 nezalezhnoyi vid n displaystyle n Mozhna legko pomititi sho naspravdi h E f 1 W W displaystyle h operatorname E f cdot mathbf 1 Omega setminus Omega infty ale v danomu vipadku ce nas ne cikavit Pripustimo sho P W gt 0 displaystyle operatorname P Omega infty gt 0 Poslidovnist E f n displaystyle operatorname E f n strogo zrostaye tomu za viznachennyam integrala Lebega E X sup s S F E s sup n gt sup W f E f n P W h displaystyle operatorname E X sup s in rm SF operatorname E s geq sup n gt sup Omega f operatorname E f n infty cdot operatorname P Omega infty h infty sho superechit poperednomu visnovku pro te sho E X displaystyle operatorname E X ye skinchennim Naslidok yaksho E X gt displaystyle operatorname E X gt infty todi X gt displaystyle X gt infty majzhe pevno Redaguvati Naslidok yaksho E X lt displaystyle operatorname E X lt infty todi X displaystyle X neq pm infty majzhe pevno Redaguvati E X E X displaystyle operatorname E X leq operatorname E X Redaguvati Dlya dovilnoyi vipadkovoyi velichini bude virnoyu vlastivist X X E X E X displaystyle operatorname E X leq operatorname E X Dovedennya Vidpovidno do viznachennya integrala Lebega E X E X E X E X E X E X E X E X X E X displaystyle begin aligned operatorname E X amp Bigl operatorname E X operatorname E X Bigr leq Bigl operatorname E X Bigr Bigl operatorname E X Bigr 5pt amp operatorname E X operatorname E X operatorname E X X 5pt amp operatorname E X end aligned Vidmitimo sho cej samij rezultat mozhna dovesti za dopomogoyu nerivnosti Yensena Nemultiplikativnist Redaguvati U zagalnomu vipadku operator matematichnogo spodivannya ne ye multiplikativnim tobto E X Y displaystyle operatorname E XY ne obov yazkovo dorivnyuvatime E X E Y displaystyle operatorname E X cdot operatorname E Y Naspravdi nehaj X X prijmaye znachennya 1 ta 1 iz imovirnistyu 0 5 kozhne Todi E 2 X 1 2 1 1 2 1 2 0 displaystyle operatorname E 2 X left frac 1 2 cdot 1 frac 1 2 cdot 1 right 2 0 i E X 2 1 2 1 2 1 2 1 2 1 tozh E X 2 E 2 X displaystyle operatorname E X 2 frac 1 2 cdot 1 2 frac 1 2 cdot 1 2 1 text tozh operatorname E X 2 neq operatorname E 2 X Velichina na yaku vidriznyayetsya multiplikativnist nazivayetsya kovariaciyeyu Cov X Y E X Y E X E Y displaystyle operatorname Cov X Y operatorname E XY operatorname E X operatorname E Y Odnak yaksho vipadkovi velichini X W 1 F 1 P 1 displaystyle X in Omega 1 mathcal F 1 operatorname P 1 i Y W 2 F 2 P 2 displaystyle Y in Omega 2 mathcal F 2 operatorname P 2 ye nezalezhnimi todi E X Y E X E Y displaystyle operatorname E XY operatorname E X operatorname E Y ta Cov X Y 0 displaystyle operatorname Cov X Y 0 Protilezhnij priklad E X i E X displaystyle operatorname E X i not to operatorname E X nezvazhayuchi na ce X i X displaystyle X i to X potochkovo Redaguvati Nehaj 0 1 B 0 1 P displaystyle left 0 1 mathcal B 0 1 mathrm P right zadaye jmovirnisnij prostir de B 0 1 displaystyle mathcal B 0 1 ye Borelivskoyu s sigma algebroyu nad 0 1 0 1 i P displaystyle mathrm P ye linijnoyu miroyu Lebega Dlya i 1 displaystyle i geq 1 viznachimo poslidovnist vipadkovih velichin X i i 1 0 1 i displaystyle X i i cdot mathbf 1 left 0 frac 1 i right i vipadkovu velichinu X yaksho x 0 0 v inshih vipadkah displaystyle X begin cases infty amp text yaksho x 0 0 amp text v inshih vipadkah end cases v intervali 0 1 0 1 i de 1 S displaystyle mathbf 1 S ye indikatornoyu funkciyeyu nad mnozhinoyu S 0 1 displaystyle S subseteq 0 1 Dlya kozhnogo x 0 1 displaystyle x in 0 1 pri tomu yak i displaystyle i to infty X i x X x displaystyle X i x to X x i E X i i P 0 1 i i 1 i 1 displaystyle operatorname E X i i cdot mathrm P left left 0 frac 1 i right right i cdot dfrac 1 i 1 tozh lim i E X i 1 displaystyle lim i to infty operatorname E X i 1 Z inshogo boku P 0 0 displaystyle mathop mathrm P 0 0 i takim chinom E X 0 displaystyle operatorname E left X right 0 Zlichenna neaditivnist Redaguvati U zagalnomu vipadku operator matematichnogo spodivannya ne s sigma aditivnij tobto E i 0 X i i 0 E X i displaystyle operatorname E left sum i 0 infty X i right neq sum i 0 infty operatorname E X i Rozglyanemo obernenij priklad nehaj 0 1 B 0 1 P displaystyle left 0 1 mathcal B 0 1 mathrm P right ye jmovirnisnim prostorom de B 0 1 displaystyle mathcal B 0 1 ce Borelivska s sigma algebra u intervali 0 1 0 1 i P displaystyle mathrm P ce linijna mira Lebega Viznachimo poslidovnist vipadkovih velichin X i i 1 1 0 1 i 1 i 1 0 1 i displaystyle textstyle X i i 1 cdot mathbf 1 left 0 frac 1 i 1 right i cdot mathbf 1 left 0 frac 1 i right u 0 1 0 1 de 1 S displaystyle mathbf 1 S zadaye indikatornu funkciyu nad mnozhinoyu S 0 1 displaystyle S subseteq 0 1 Dlya potochkovih sum matimemo sho i 0 n X i n 1 1 0 1 n 1 displaystyle sum i 0 n X i n 1 cdot mathbf 1 left 0 frac 1 n 1 right i 0 X i x yaksho x 0 0 v inshih vipadkah displaystyle sum i 0 infty X i x begin cases infty amp text yaksho x 0 0 amp text v inshih vipadkah end cases Vidpovidno do skinchennosti aditivnosti i 0 E X i lim n i 0 n E X i lim n E i 0 n X i 1 displaystyle sum i 0 infty operatorname E X i lim n to infty sum i 0 n operatorname E X i lim n to infty operatorname E left sum i 0 n X i right 1 Z inshogo boku P 0 0 displaystyle mathop mathrm P 0 0 i tomu E i 0