www.wikidata.uk-ua.nina.az
Ryad Fur ye sposib predstavlennya dovilnoyi skladnoyi funkciyi sumoyu prostishih V zagalnomu vipadku kilkist takih funkcij mozhe buti neskinchennoyu pri comu chim bilshe takih funkcij vrahovuyetsya pri rozrahunku tim vishoyu staye kinceva tochnist predstavlennya danoyi funkciyi Zdebilshogo yak najprostishi vikoristovuyutsya trigonometrichni funkciyi sinusa i kosinusa V comu vipadku ryad Fur ye nazivayetsya trigonometrichnim a obchislennya takogo ryadu chasto nazivayut rozkladom na garmoniki Ryadi nazvani na chest francuzkogo matematika Zhana Batista Zhozefa Fur ye Zmist 1 Viznachennya 1 1 Klasichne viznachennya 1 2 Zagalne viznachennya 2 Zbizhnist ryadu Fur ye 3 Dostatni oznaki rozkladu funkciyi v ryad Fur ye 4 Ryadi Fur ye dlya parnih i neparnih funkcij 5 Kompleksna forma ryadu Fur ye 6 Formuli diskretnogo peretvorennya Fur ye 7 Div takozh 8 Literatura 9 Posilannya 10 PrimitkiViznachennya RedaguvatiKlasichne viznachennya Redaguvati Trigonometrichnim ryadom Fur ye nazivayut funkcionalnij ryad vidu a 0 2 n 1 a n cos n x b n sin n x displaystyle frac a 0 2 sum n 1 infty big a n cos nx b n sin nx big nbsp Yaksho ryad zbigayetsya to jogo suma dorivnyuye periodichnij funkciyi f x displaystyle f x nbsp z periodom 2 p displaystyle 2 pi nbsp oskilki sin n x displaystyle sin nx nbsp ta cos n x displaystyle cos nx nbsp ye periodichnimi z periodom 2 p displaystyle 2 pi nbsp Stali chisla a 0 a n b n n N displaystyle a 0 a n b n n in mathbb N nbsp nazivayutsya koeficiyentami trigonometrichnogo ryadu a n 1 p p p f x cos n x d x b n 1 p p p f x sin n x d x displaystyle a n frac 1 pi int limits pi pi f x cos nx dx qquad b n frac 1 pi int limits pi pi f x sin nx dx nbsp Zagalne viznachennya Redaguvati Nehaj dano ortonormovanij bazis f 1 f 2 f n displaystyle varphi 1 varphi 2 varphi n nbsp u Gilbertovomu prostori R displaystyle R nbsp ta f displaystyle f nbsp dovilnij element z R displaystyle R nbsp Poslidovnist chisel c k f f k f k 2 displaystyle c k frac langle f varphi k rangle varphi k 2 nbsp nazivayetsya koordinatami abo koeficiyentami Fur ye elementa f displaystyle f nbsp po sistemi f k displaystyle varphi k nbsp a ryad k c k f k displaystyle sum k c k varphi k nbsp nazivayetsya ryadom Fur ye elementa f displaystyle f nbsp po ortogonalnij sistemi f k displaystyle varphi k nbsp Spravedliva tak zvana nerivnist Besselya k 1 c k 2 f 2 displaystyle sum k 1 infty c k 2 leq f 2 nbsp Yaksho vikonuyetsya rivnist Parsevalya k 1 c k 2 f 2 displaystyle sum k 1 infty c k 2 f 2 nbsp to normovana sistema f k displaystyle varphi k nbsp nazivayetsya zamknenoyu Spravedlive tverdzhennya v separabelnomu evklidovomu prostori R displaystyle R nbsp bud yaka povna ortogonalna normovana sistema ye zamknenoyu i navpaki Zbizhnist ryadu Fur ye RedaguvatiDokladnishe Oznaka Dini nbsp Zbizhnist ryadu Fur yeTeorema Yaksho periodichna funkciya f x displaystyle f x nbsp z periodom 2 p displaystyle 2 pi nbsp kuskovo monotonna 1 i obmezhena na vidrizku p p displaystyle pi pi nbsp to trigonometrichnij ryad Fur ye pobudovanij dlya ciyeyi funkciyi zbigayetsya u vsih tochkah Suma oderzhanogo ryadu s x displaystyle s x nbsp dorivnyuye znachennyu funkciyi f x displaystyle f x nbsp v tochkah yiyi neperervnosti V tochkah rozrivu f x displaystyle f x nbsp suma ryadu dorivnyuye serednomu arifmetichnomu granic funkciyi f x displaystyle f x nbsp sprava i zliva Z ciyeyi teoremi viplivaye sho trigonometrichni ryadi Fur ye zastosovni do dostatno shirokogo klasu funkcij Dostatni oznaki rozkladu funkciyi v ryad Fur ye RedaguvatiTeorema Dirihle Yaksho f x displaystyle f x nbsp periodichna z periodom 2 p displaystyle 2 pi nbsp funkciya neperervna abo maye skinchennu kilkist tochok rozrivu pershogo rodu na vidrizku p p displaystyle pi pi nbsp i cej vidrizok mozhna rozbiti na skinchennu kilkist chastin v kozhnij z yakih f x displaystyle f x nbsp monotonna to ryad Fur ye vidnosno funkciyi zbigayetsya do f x displaystyle f x nbsp v tochkah neperervnosti i do serednogo arifmetichnogo odnostoronnih granic v tochkah rozrivu pershogo rodu Ryadi Fur ye dlya parnih i neparnih funkcij RedaguvatiNehaj f x parna funkciya z periodom 2L sho zadovolnyaye umovi f x f x Todi dlya koeficiyentiv yiyi ryadu Fur ye znahodimo formuli a 0 1 l l l f x d x 2 l 0 l f x d x displaystyle a 0 frac 1 l int limits l l f x dx frac 2 l int limits 0 l f x dx nbsp a n 1 l l l f x cos p n x l d x 2 l 0 l f x cos p n x l d x displaystyle a n frac 1 l int limits l l f x cos frac pi nx l dx frac 2 l int limits 0 l f x cos frac pi nx l dx nbsp b n 1 l l l f x sin p n x l d x 0 displaystyle b n frac 1 l int limits l l f x sin frac pi nx l dx 0 nbsp de n 1 2 displaystyle n 1 2 nbsp Takim chinom v ryadi Fur ye dlya parnoyi funkciyi vidsutni chleni z sinusami i ryad Fur ye dlya parnoyi funkciyi z periodom 2 L displaystyle 2L nbsp viglyadaye tak f x a 0 2 n 1 a n cos p n x l displaystyle f x frac a 0 2 sum n 1 infty a n cos frac pi nx l nbsp Nehaj teper f x displaystyle f x nbsp neparna funkciya z periodom 2 L displaystyle 2L nbsp sho zadovolnyaye umovi f x f x displaystyle f x f x nbsp Todi dlya koeficiyentiv yiyi ryadu Fur ye znahodimo formuli b n 2 l 0 l f x sin p n x l d x displaystyle b n frac 2 l int limits 0 l f x sin frac pi nx l dx nbsp de n 1 2 displaystyle n 1 2 nbsp Takim chinom v ryadi Fur ye dlya neparnoyi funkciyi vidsutnij vilnij chlen i chleni z kosinusami i ryad Fur ye dlya neparnoyi funkciyi z periodom 2 L displaystyle 2L nbsp viglyadaye tak f x n 1 b n sin p n x l displaystyle f x sum n 1 infty b n sin frac pi nx l nbsp Yaksho funkciya f x displaystyle f x nbsp rozkladayetsya v trigonometrichnij ryad Fur ye na promizhku p p displaystyle pi pi nbsp tof x a 0 2 n 1 a n cos n x b n sin n x displaystyle f x frac a 0 2 sum n 1 infty a n cos nx b n sin nx nbsp de a 0 1 p p p f x d x displaystyle a 0 frac 1 pi int limits pi pi f x dx nbsp a n 1 p p p f x cos n x d x displaystyle a n frac 1 pi int limits pi pi f x cos nxdx nbsp b n 1 p p p f x sin n x d x displaystyle b n frac 1 pi int limits pi pi f x sin nxdx nbsp Yaksho f x displaystyle f x nbsp rozkladayetsya v trigonometrichnij ryad Fur ye na 0 L displaystyle 0 L nbsp to doviznachivshi zadanu funkciyu f x displaystyle f x nbsp vidpovidnim chinom na L 0 displaystyle L 0 nbsp pislya chogo periodichno prodovzhivshi na T 2 L displaystyle T 2L nbsp otrimayemo novu funkciyu yaku rozkladayemo v novij ryad Fur ye Dlya rozkladu v ryad Fur ye neperiodichnoyi funkciyi zadanoyi na kincevomu dovilnomu promizhku a b displaystyle a b nbsp treba doviznachiti b a 2 L displaystyle b a 2L nbsp i periodichno prodovzhiti abo doviznachiti na b 2 L a displaystyle b 2L a nbsp i periodichno prodovzhiti Kompleksna forma ryadu Fur ye RedaguvatiViraz c n e i p n x l displaystyle sum infty infty c n e frac i pi nx l nbsp nazivayetsya kompleksnoyu formoyu ryadu Fur ye funkciyi f x displaystyle f x nbsp yaksho viznachayetsya rivnistyuc n 1 2 l l l f x e i p n x l d x displaystyle c n frac 1 2l int limits l l f x e frac i pi nx l dx nbsp de n 0 1 2 displaystyle n 0 pm 1 pm 2 nbsp Perehid vid ryadu Fur ye v kompleksnij formi do ryadu v dijsnij formi i navpaki vikonuyetsya za dopomogoyu formul c n a n i b n 2 displaystyle c n frac a n ib n 2 nbsp c 0 a 0 2 displaystyle c 0 frac a 0 2 nbsp w 1 2 l l l f x d x displaystyle omega frac 1 2l int limits l l f x dx nbsp a n 2 R e c n displaystyle a n 2Rec n nbsp b n 2 I m c n displaystyle b n 2Imc n nbsp a 0 2 c 0 displaystyle a 0 2c 0 nbsp n 1 2 displaystyle n 1 2 nbsp Formuli diskretnogo peretvorennya Fur ye RedaguvatiZvorotne peretvorennya Fur yef t k 1 N k 0 N 1 C k e i 2 p k T t n displaystyle f t k frac 1 N sum k 0 N 1 C k blacklozenge e i frac 2 pi k T t n nbsp C n n 0 f x e i n 2 p T t n displaystyle C n blacklozenge sum n 0 infty f x e in frac 2 pi T t n nbsp de n 1 2 k 1 2 displaystyle n 1 2 k 1 2 nbsp Diskretnim peretvorennyam Fur ye nazivayetsya N vimirnij vektor C 0 C N 1 displaystyle C 0 blacklozenge C N 1 blacklozenge nbsp C n n 0 N 1 f t n e i 2 p n T t n displaystyle C n blacklozenge sum n 0 N 1 f t n e frac i2 pi n T t n nbsp pri comu C n C n N displaystyle C n frac C n N nbsp Div takozh RedaguvatiGarmonichnij ryad zvukiv Peretvorennya Fur ye Ryad matematika Teoriya ryadiv Trigonometrichnij mnogochlen Shvidke peretvorennya Fur ye Teorema PersevalyaLiteratura RedaguvatiTeoriya ryadiv navch metod posib dlya pidgot bakalavriv za spec Fizika Prikladna fizika Astronomiya S A Shogolyev M vo osviti i nauki Ukrayini Odes nac un t im I I Mechnikova In t matematiki ekonomiki ta mehaniki Odesa ONU 2015 74 s Bibliogr s 73 6 nazv ISBN 978 617 689 122 2 Kudryavcev L D Kurs matematicheskogo analiza M Vysshaya shkola 1989 T 3 352 s Nikolskij S M Kurs matematicheskogo analiza M Nauka 1983 T 2 448 s Piskunov N S Differencialnoe i integralnoe ischisleniya M Nauka 1978 T 2 576 s Rudin U Osnovy matematicheskogo analiza M Mir 1976 320 s Fihtengolc G M Kurs differencialnogo i integralnogo ischisleniya Moskva Nauka 1966 T 3 656 s ros Edvards R Ryady Fure v sovremennom izlozhenii M Mir 1985 264 400 s Posilannya RedaguvatiRyadi Fur ye Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 539 594 s Java aplet sho demonstruye rozklad na garmoniki v interaktivnomu rezhimiPrimitki Redaguvati Funkciya nazivayetsya kuskovo monotonnoyu na pevnomu vidrizku yaksho cej vidrizok mozhe buti rozbitij na skinchenne chislo intervaliv tak sho na kozhnomu intervali funkciya bude nespadnoyu abo nezrostayuchoyu tobto monotonnoyu nbsp Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Otrimano z https uk wikipedia org w index php title Ryad Fur 27ye amp oldid 34495415