www.wikidata.uk-ua.nina.az
Funkciya f U R displaystyle f U to mathbb R viznachena na U R n displaystyle U subset mathbb R n nazivayetsya garmonichnoyu v cij oblasti yaksho f ye dvichi neperervno diferencijovnoyu i ye rozv yazkom rivnyannya Laplasa 2 f x 1 2 2 f x 2 2 2 f x n 2 0 displaystyle frac partial 2 f partial x 1 2 frac partial 2 f partial x 2 2 cdots frac partial 2 f partial x n 2 0 Dlya poznachennya cogo vikoristovuyutsya poznachennya D f 0 displaystyle textstyle Delta f 0 abo 2 f 0 displaystyle nabla 2 f 0 Vlastivosti RedaguvatiYaksho D skinchenna oblast i garmonichna funkciya f C 1 D displaystyle f in C 1 bar D nbsp todi S f n d s 0 displaystyle int S frac partial f partial nu d sigma 0 nbsp Teorema pro serednye znachennya yaksho f x garmonichna funkciya u kuli B x0 r radiusa r z centrom x 0 displaystyle x 0 nbsp i f C 1 B displaystyle f in C 1 bar B nbsp to yiyi znachennya v centri kuli dorivnyuye serednomu arifmetichnomu yiyi znachen na sferi S x0 r tobtou x 0 1 n w n r n 1 B x 0 r u d s 1 w n r n B x 0 r u d y displaystyle u x 0 frac 1 n omega n r n 1 int partial B x 0 r u d sigma frac 1 omega n r n int B x 0 r u dy nbsp de w n displaystyle omega n nbsp ob yem odinichnoyi kuli v R n displaystyle mathbb R n nbsp U pripushenni neperervnosti f x cya vlastivist mozhe buti prijnyata yak viznachennya garmonichnoyi funkciyi Princip ekstremumu yaksho D oblast v R n displaystyle mathbb R n nbsp sho ne mistit useredini tochki displaystyle infty nbsp f x garmonichna funkciya u D f x c o n s t displaystyle f x neq const nbsp to ni v yakij tochci x 0 D displaystyle x 0 in D nbsp funkciya f x ne mozhe dosyagati lokalnogo ekstremumu tobto v bud yakomu okoli V x0 kozhnoyi tochki x 0 D displaystyle x 0 in D nbsp znajdetsya tochka x V x 0 displaystyle x in V x 0 nbsp u yakij f x gt f x 0 displaystyle f x gt f x 0 nbsp i znajdetsya tochka x V x 0 displaystyle x in V x 0 nbsp u yakij f x lt f x 0 displaystyle f x lt f x 0 nbsp Yaksho krim togo i x C D displaystyle x in C bar D nbsp to najbilshe i najmenshe znachennya f x v zamknutij oblasti D displaystyle bar D nbsp dosyagayutsya tilki v tochkah mezhi D displaystyle partial D nbsp Vidpovidno yaksho f x M displaystyle f x leq M nbsp na D displaystyle partial D nbsp to f x M displaystyle f x leq M nbsp na vsij mnozhini D displaystyle bar D nbsp Yaksho f x garmonichna funkciya u vsomu prostori R n n displaystyle mathbb R n n geq nbsp 2 obmezhena zverhu abo znizu to f x const Teorema Liuvilya Yaksho f x garmonichna funkciya u okoli tochki x 0 x 1 0 x n 0 displaystyle x 0 x 1 0 ldots x n 0 nbsp to f x rozkladayetsya v comu okoli u stepenevij ryad za zminnimi x 1 x 1 0 x n x n 0 displaystyle x 1 x 1 0 ldots x n x n 0 nbsp tobto dovilna garmonichna funkciya ye analitichnoyu funkciyeyu i maye chastkovi pohidni vsih poryadkiv yaki v svoyu chergu ye garmonichnimi funkciyami Vlastivist yedinosti yaksho f x garmonichna funkciya u oblasti D R n displaystyle D subset mathbb R n nbsp i f x 0 displaystyle f x equiv 0 nbsp v deyakomu n vimirnomu okoli dovilnoyi tochki x 0 D displaystyle x 0 in D nbsp to f x 0 displaystyle f x equiv 0 nbsp v D Yaksho f x analitichna funkciya dijsnih zminnih u oblasti D R n displaystyle D subset mathbb R n nbsp i yaksho v deyakomu n vimirnomu okoli tochki x 0 D displaystyle x 0 in D nbsp funkciya f x ye garmonichnoyu to vona ye garmonichnoyu v usij oblasti D Princip simetriyi Nehaj mezha D displaystyle partial D nbsp oblasti D R n displaystyle D subset mathbb R n nbsp mistit vidkritu v ploshini xn 0 mnozhinu G i f x garmonichna funkciya u D i f x 0 i neperervna usyudi na G Yaksho D displaystyle hat D nbsp oblast simetrichna z D vidnosno giperploshini xn 0 todi f x garmonijno prodovzhuyetsya v oblast D G D displaystyle D cup G cup hat D nbsp za formuloyu f x 1 x n 1 x n f x 1 x n 1 x n x 1 x n 1 x n D displaystyle f x 1 ldots x n 1 x n f x 1 ldots x n 1 x n quad x 1 ldots x n 1 x n in hat D nbsp Persha teorema Garnaka yaksho poslidovnist f n x displaystyle f n x nbsp garmonichnih funkcij u obmezhenij oblasti D neperervnih v zamknutij oblasti D displaystyle bar D nbsp ye rivnomirno zbizhnoyu na mezhi D displaystyle partial D nbsp to vona ye rivnomirno zbizhnoyu u D prichomu granichna funkciya f x lim n f n x displaystyle f x lim n to infty f n x nbsp ye garmonichnoyu funkciyeyu u D Druga teorema Garnaka yaksho poslidovnist f n x displaystyle f n x nbsp garmonichnih funkcij v oblasti D ye monotonnoyu i zbigayetsya prinajmni v odnij tochci x 0 D displaystyle x 0 in D nbsp to vona zbigayetsya usyudi v D i granichna funkciya f x lim n f n x displaystyle f x lim n to infty f n x nbsp ye garmonichnoyu Div takozh RedaguvatiBigarmonichna funkciya Golomorfna funkciya Plyurigarmonichna funkciya Rivnyannya Laplasa Subgarmonichna funkciyaLiteratura RedaguvatiMatematicheskaya enciklopediya V pyati tomah Tom 1 Pod red I M Vinogradova M Sovetskaya enciklopediya 1985 Perestyuk M O Marinec V V Teoriya rivnyan matematichnoyi fiziki Navch posibnik Zip K Libid 2001 336 s Privalov I I Granichnye svojstva analiticheskih funkcij 2 izd M L 1950 Timan A F Trofimov V N Vvedenie v teoriyu garmonicheskih funkcij M 1968 Sheldon Axler Paul Bourdon Wade Ramey Harmonic Function Theory Arhivovano 17 lipnya 2011 u Wayback Machine Springer ISBN 978 0 387 95218 5 Otrimano z https uk wikipedia org w index php title Garmonichna funkciya amp oldid 36107272