www.wikidata.uk-ua.nina.az
Ne plutati z inshimi integralami eksponencialnih funkcij U matematici eksponencialnij integral Ei ce specialna funkciya na kompleksnij ploshini Vin viznachayetsya yak pevnij viznachenij integral vid vidnoshennya eksponencialnoyi funkciyi ta yiyi argumentu Zmist 1 Oznachennya 2 Vlastivosti 2 1 Zbizhnij ryad 2 2 Asimptotichnij rozbizhnij ryad 2 3 Eksponencialna ta logarifmichna povedinka dvostoronnya ocinka 2 4 Oznachennya Ein 2 5 Zv yazok z inshimi funkciyami 2 6 Pohidni 2 7 Eksponencijnij integral uyavnogo argumentu 2 8 Nablizhennya 3 Zastosuvannya 4 Div takozh 5 Vinoski 6 Dzherela 7 Zovnishni posilannyaOznachennya Redaguvati nbsp Dilyanka funkciyi E 1 displaystyle operatorname E 1 nbsp zgori ta funkciyi Ei displaystyle operatorname Ei nbsp znizu Dlya dijsnih nenulovih znachen x displaystyle x nbsp eksponencialnij integral Ei x displaystyle x nbsp viznachayetsya yakEi x x e t t d t displaystyle operatorname Ei x int limits x infty frac rm e t t rm d t nbsp Algoritm Risha pokazuye sho Ei ne ye elementarnoyu funkciyeyu Vishenavedene oznachennya mozhe buti vikoristane dlya dodatnih znachen x displaystyle x nbsp ale integral slid rozumiti u terminah golovnogo znachennya za Koshi cherez osoblivist pidintegralnoyi funkciyi v nuli Dlya kompleksnih znachen argumentu oznachennya staye neodnoznachnim cherez tochki rozgaluzhennya u 0 ta displaystyle infty nbsp 1 Zamist Ei vikoristovuyetsya nastupne poznachennya 1 E 1 z z e t t d t Arg z lt p displaystyle operatorname E 1 z int limits z infty frac rm e t t rm d t qquad operatorname Arg z lt pi nbsp zauvazhimo sho dlya dodatnih znachen x displaystyle x nbsp E 1 x Ei x displaystyle operatorname E 1 x operatorname Ei x nbsp Zagalom rozgaluzhennya zdijsnyuyetsya po vid yemnij dijsnij osi i E 1 displaystyle operatorname E 1 nbsp mozhna viznachiti za dopomogoyu analitichnogo prodovzhennya na kompleksnu ploshinu Dlya dodatnih znachen dijsnoyi chastini z displaystyle z nbsp ce mozhna zapisati yak 2 E 1 z 1 e t z t d t 0 1 e z u u d u Re z 0 displaystyle operatorname E 1 z int limits 1 infty frac rm e tz t rm d t int limits 0 1 frac rm e z u u rm d u qquad operatorname Re z geqslant 0 nbsp Povedinka E 1 displaystyle operatorname E 1 nbsp bilya tochki rozgaluzhennya viznachayetsya nastupnim spivvidnoshennyam 3 lim d 0 E 1 x i d Ei x i p x gt 0 displaystyle lim delta to 0 operatorname E 1 x pm i delta operatorname Ei x mp i pi qquad x gt 0 nbsp Vlastivosti RedaguvatiDekilka vlastivostej eksponencialnogo integralu sho navedeni nizhche u deyakih vipadkah dozvolyayut uniknuti jogo yavnogo ocinyuvannya cherez vishenavedene oznachennya Zbizhnij ryad Redaguvati Dlya dijsnih abo kompleksnih argumentiv yaki znahodyatsya poza vid yemnoyu dijsnoyu vissyu E 1 z displaystyle operatorname E 1 z nbsp mozhe buti virazhenij yak 4 E 1 z g ln z k 1 z k k k Arg z lt p displaystyle operatorname E 1 z gamma ln z sum k 1 infty frac z k kk qquad operatorname Arg z lt pi nbsp de g displaystyle gamma nbsp konstanta Ejlera Maskeroni Ryad zbigayetsya dlya vsih kompleksnih z displaystyle z nbsp i mi beremo zvichajne znachennya kompleksnogo logarifma yakij maye rozgaluzhennya vzdovzh vid yemnoyi dijsnoyi osi Cya formula mozhe buti vikoristana dlya obchislennya E 1 x displaystyle operatorname E 1 x nbsp v operaciyah z plavayuchoyu komoyu dlya dijsnogo x displaystyle x nbsp mizh 0 displaystyle 0 nbsp ta 2 5 displaystyle 2 5 nbsp Dlya x gt 2 5 displaystyle x gt 2 5 nbsp rezultat netochnij cherez vtratu znachushosti Ryad yakij zbigayetsya shvidshe znajshov Ramanudzhan Ei x g ln x exp x 2 n 1 1 n 1 x n n 2 n 1 k 0 n 1 2 1 2 k 1 displaystyle operatorname Ei x gamma ln x exp left frac x 2 right sum n 1 infty frac 1 n 1 x n n 2 n 1 sum k 0 lfloor n 1 2 rfloor frac 1 2k 1 nbsp Danij zbizhnij ryad mozhe vikoristovuvatisya dlya otrimannya asimptotichnih ocinok napriklad 1 3 x 4 Ei x g ln x 1 3 x 4 11 x 2 36 displaystyle 1 frac 3x 4 leq operatorname Ei x gamma ln x leq 1 frac 3x 4 frac 11x 2 36 nbsp dlya x 0 displaystyle x geq 0 nbsp Asimptotichnij rozbizhnij ryad Redaguvati nbsp Vidnosna pohibka asimptotichnogo nablizhennya dlya riznogo chisla N displaystyle N nbsp dodankiv v usichenij sumi N 1 displaystyle N 1 nbsp chervona liniya N 5 displaystyle N 5 nbsp rozheva liniya Na zhal zbizhnist ryadiv sho navedeni vishe ye povilnoyu dlya velikih za modulem argumentiv Napriklad dlya x 10 displaystyle x 10 nbsp potribno bilshe 40 chleniv shob dlya E 1 z displaystyle operatorname E 1 z nbsp otrimati u vidpovidi pershi tri pravilni cifri 5 Odnak isnuye aproksimaciya rozbizhnim ryadom yakij mozhna otrimati integruyuchi z e z E 1 z displaystyle ze z operatorname E 1 z nbsp chastinami 6 E 1 z exp z z n 0 N 1 n z n displaystyle operatorname E 1 z frac exp z z sum n 0 N 1 frac n z n nbsp z pohibkoyu poryadku O N z N displaystyle O big N z N big nbsp i yaka mozhe vikoristovuvatisya pri velikih znachen Re z displaystyle operatorname Re z nbsp Vidnosna pohibka takoyi aproksimaciyi priblizno zobrazhena na risunku dlya riznih znachen N displaystyle N nbsp kilkosti dodankiv u sumi Eksponencialna ta logarifmichna povedinka dvostoronnya ocinka Redaguvati nbsp Dvostoronnya ocinka E 1 displaystyle operatorname E 1 nbsp elementarnimi funkciyami Z dvoh ryadiv yaki pokazani v poperednih pidrozdilah viplivaye sho E 1 displaystyle operatorname E 1 nbsp povodit sebe yak vid yemna eksponenta dlya velikih znachen argumentu i yak logarifm dlya malih znachen Dlya dodatnih dijsnih znachen argumentu E 1 displaystyle operatorname E 1 nbsp mozhna obmezhiti elementarnimi funkciyami nastupnim chinom 7 1 2 e x ln 1 2 x lt E 1 x lt e x ln 1 1 x x gt 0 displaystyle frac 1 2 rm e x ln left 1 frac 2 x right lt operatorname E 1 x lt rm e x ln left 1 frac 1 x right qquad x gt 0 nbsp Na risunku liva chastina ciyeyi nerivnosti zobrazhena sinim kolorom centralna chastina E 1 x displaystyle operatorname E 1 x nbsp poznachena chornim kolorom a prava chastina nerivnosti chervonim Oznachennya Ein Redaguvati Funkciyi Ei displaystyle operatorname Ei nbsp i E 1 displaystyle operatorname E 1 nbsp mozhna zapisati prostishe vikoristovuyuchi cilu funkciyu Ein displaystyle operatorname Ein nbsp 8 viznachenu yakEin z 0 z 1 e t d t t k 1 1 k 1 z k k k displaystyle operatorname Ein z int limits 0 z 1 rm e t frac rm d t t sum k 1 infty frac 1 k 1 z k kk nbsp zauvazhte sho ce lishe znakozminnij ryad u navedenomu vishe oznachenni E 1 displaystyle operatorname E 1 nbsp TodiE 1 z g ln z Ein z Arg z lt p displaystyle operatorname E 1 z gamma ln z operatorname Ein z qquad operatorname Arg z lt pi nbsp Ei x g ln x Ein x x gt 0 displaystyle operatorname Ei x gamma ln x operatorname Ein x qquad x gt 0 nbsp Zv yazok z inshimi funkciyami Redaguvati Diferencialne rivnyannya Kummeraz d 2 w d z 2 b z d w d z a w 0 displaystyle z frac rm d 2 w rm d z 2 b z frac rm d w rm d z aw 0 nbsp yak pravilo rozv yazuyetsya za dopomogoyu virodzhenih gipergeometrichnih funkcij en M a b z displaystyle M a b z nbsp ta U a b z displaystyle U a b z nbsp Ale pri a 0 displaystyle a 0 nbsp ta b 1 displaystyle b 1 nbsp rivnyannya nabuvaye viglyaduz d 2 w d z 2 1 z d w d z 0 displaystyle z frac rm d 2 w rm d z 2 1 z frac rm d w rm d z 0 nbsp i dlya vsih z displaystyle z nbsp M 0 1 z U 0 1 z 1 displaystyle M 0 1 z U 0 1 z 1 nbsp Drugij rozv yazok podayetsya cherez E 1 z displaystyle operatorname E 1 z nbsp A same E 1 z g i p U a 1 z M a 1 z a a 0 0 lt Arg z lt 2 p displaystyle operatorname E 1 z gamma i pi frac partial U a 1 z M a 1 z partial a bigg a 0 qquad 0 lt operatorname Arg z lt 2 pi nbsp Inshij zv yazok z virodzhenimi gipergeometrichnimi funkciyami polyagaye v tomu sho E 1 displaystyle operatorname E 1 nbsp ce dobutok eksponencialnoyi funkciyi ta U 1 1 z displaystyle U 1 1 z nbsp E 1 z e z U 1 1 z displaystyle operatorname E 1 z rm e z U 1 1 z nbsp Eksponencijnij integral tisno pov yazanij z logarifmichnoyu integralnoyu funkciyeyu li x displaystyle operatorname li x nbsp za dopomogoyu formulili e x Ei x displaystyle operatorname li rm e x operatorname Ei x nbsp dlya nenulovih dijsnih znachen x displaystyle x nbsp Eksponencijnij integral mozhna takozh uzagalniti do funkciyiE n x 1 e x t t n d t displaystyle operatorname E n x int limits 1 infty frac rm e xt t n rm d t nbsp yaku mozhna zapisati yak chastkovij vipadok nepovnoyi gamma funkciyi 9 E n x x n 1 G 1 n x displaystyle operatorname E n x x n 1 Gamma 1 n x nbsp Taku uzagalnenu formu inodi nazivayut funkciyeyu Mizra 10 f m x displaystyle varphi m x nbsp sho viznachayetsya yakf m x E m x displaystyle varphi m x operatorname E m x nbsp Z vikoristannyam logarifma viznachaye uzagalnenu integro eksponencialnu funkciyu 11 E s j z 1 G j 1 1 log t j e z t t s d t displaystyle operatorname E s j z frac 1 Gamma j 1 int limits 1 infty log t j frac rm e zt t s rm d t nbsp Neviznachenij integralEi a b e a b d a d b displaystyle operatorname Ei a cdot b iint rm e ab rm d a rm d b nbsp za formoyu shozhij na zvichajnu tvirnu funkciyu dlya d n displaystyle rm d n nbsp kilkist dilnikiv chisla n displaystyle n nbsp n 1 d n x n a 1 b 1 x a b displaystyle sum n 1 infty rm d n x n sum a 1 infty sum b 1 infty x ab nbsp Pohidni Redaguvati Pohidni uzagalnenih funkcij E n displaystyle operatorname E n nbsp mozhna obchislyuvati za formuloyu 12 E n z E n 1 z n 1 2 3 displaystyle operatorname E n z operatorname E n 1 z qquad n 1 2 3 dots nbsp Zauvazhimo sho funkciya E 0 displaystyle operatorname E 0 nbsp ce prosto e z z displaystyle rm e z z nbsp 13 i takim chinom take rekursivne spivvidnoshennya dosit zruchne Eksponencijnij integral uyavnogo argumentu Redaguvati nbsp Grafik dijsnoyi chorna kriva ta uyavnoyi chervona kriva chastin funkciyi E 1 i x displaystyle operatorname E 1 ix nbsp Yaksho z displaystyle z nbsp ye uyavnim ta maye nevid yemnu dijsnu chastinu to mozhna vikoristovuvati formuluE 1 z 1 e t z t d t displaystyle operatorname E 1 z int 1 infty frac rm e tz t rm d t nbsp dlya spivvidnoshennya z trigonometrichnimi integralami Si displaystyle operatorname Si nbsp ta Ci displaystyle operatorname Ci nbsp E 1 i x i 1 2 p Si x Ci x x gt 0 displaystyle operatorname E 1 ix i left frac 1 2 pi operatorname Si x right operatorname Ci x qquad x gt 0 nbsp Dijsni ta uyavni chastini funkciyi E 1 i x displaystyle operatorname E 1 ix nbsp zobrazheni na risunku Nablizhennya Redaguvati Isnuye ryad nablizhen dlya eksponencialnoyi integralnoyi funkciyi Zokrema Nablizhennya Svame ta Ohiyi 14 E 1 x A 7 7 B 0 13 displaystyle operatorname E 1 x left A 7 7 B right 0 13 nbsp deA ln 0 561 46 x 0 65 1 x displaystyle A ln left left frac 0 56146 x 0 65 right 1 x right nbsp B x 4 e 7 7 x 2 x 3 7 displaystyle B x 4 rm e 7 7x 2 x 3 7 nbsp Nablizhennya Allena ta Gastingsa 15 E 1 x ln x a x 5 x 1 e x x b x 3 c x 3 x 1 displaystyle operatorname E 1 x begin cases ln x boldsymbol a boldsymbol x 5 qquad x leq 1 dfrac rm e x x dfrac boldsymbol b boldsymbol x 3 boldsymbol c boldsymbol x 3 qquad x geq 1 end cases nbsp dea 0 577 22 0 999 99 0 249 91 0 055 19 0 009 76 0 001 08 displaystyle boldsymbol a triangleq 0 57722 0 99999 0 24991 0 05519 0 00976 0 00108 nbsp b 0 267 77 8 634 76 18 059 02 8 573 33 displaystyle boldsymbol b triangleq 0 26777 8 63476 18 05902 8 57333 nbsp c 3 958 50 21 099 65 25 632 96 9 573 32 displaystyle boldsymbol c triangleq 3 95850 21 09965 25 63296 9 57332 nbsp x k x 0 x 1 x k T displaystyle boldsymbol x k triangleq left x 0 x 1 dots x k right T nbsp Neperervnij lancyugovij dribE 1 x e x x 1 1 1 x 2 1 2 x 3 displaystyle operatorname E 1 x cfrac rm e x x cfrac 1 1 cfrac 1 x cfrac 2 1 cfrac 2 x cfrac 3 dots nbsp Nablizhennya Barri zi spivavtorami 16 E 1 x e x G 1 G e x 1 G ln 1 G x 1 G h b x 2 displaystyle operatorname E 1 x frac rm e x G 1 G rm e frac x 1 G ln left 1 frac G x frac 1 G h bx 2 right nbsp deh 1 1 x x h q 1 q displaystyle h frac 1 1 x sqrt x frac h infty q 1 q nbsp q 20 47 x 31 26 displaystyle q frac 20 47 x sqrt frac 31 26 nbsp h 1 G G 2 6 G 12 3 G 2 G 2 b displaystyle h infty frac 1 G left G 2 6G 12 right 3G 2 G 2 b nbsp b 2 1 G G 2 G displaystyle b sqrt frac 2 1 G G 2 G nbsp G e g displaystyle G rm e gamma nbsp g displaystyle gamma nbsp stala Ejlera Maskeroni Zastosuvannya RedaguvatiZalezhnist teploobminu vid chasu Nerivnovazhnij potik gruntovih vod u rivnyanni Tejsa funkciya sverdlovini Peremishennya radiaciyi u mizhzoryanomu prostori ta zemnij atmosferi Rivnyannya radialnoyi difuziyi dlya perehidnogo abo nestacionarnogo potoku z linijnimi dzherelami ta stokami Rozv yazok rivnyannya peremishennya nejtroniv u sproshenij 1 D geometriyi 17 Div takozh RedaguvatiIntegral Gudvina StatonaFunkciyi Bikli NejloraVinoski Redaguvati a b Abramowitz and Stegun p 228 5 1 1 Abramowitz and Stegun p 228 5 1 4 with n 1 Abramowitz and Stegun p 228 5 1 7 Abramowitz and Stegun p 229 5 1 11 Bleistein and Handelsman p 2 Bleistein and Handelsman p 3 Abramowitz and Stegun p 229 5 1 20 Abramowitz and Stegun p 228 see footnote 3 Abramowitz and Stegun p 230 5 1 45 After Misra 1940 p 178 Milgram 1985 Abramowitz and Stegun p 230 5 1 26 Abramowitz and Stegun p 229 5 1 24 Giao Pham Huy 2003 05 01 Revisit of Well Function Approximation and An Easy Graphical Curve Matching Technique for Theis Solution Ground Water 41 3 387 390 Tseng Peng Hsiang Lee Tien Chang 1998 02 26 Numerical evaluation of exponential integral Theis well function approximation Journal of Hydrology 205 1 2 38 51 Barry D A Parlange J Y Li L 2000 01 31 Approximation for the exponential integral Theis well function Journal of Hydrology 227 1 4 287 291 George I Bell Samuel Glasstone 1970 Nuclear Reactor Theory Van Nostrand Reinhold Com pany Dzherela RedaguvatiAbramowitz Milton Irene Stegun 1964 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Abramowitz and Stegun New York Dover ISBN 978 0 486 61272 0 Chapter 5 Bender Carl M Steven A Orszag 1978 Advanced mathematical methods for scientists and engineers McGraw Hill ISBN 978 0 07 004452 4 Bleistein Norman Richard A Handelsman 1986 Asymptotic Expansions of Integrals Dover ISBN 978 0 486 65082 1 Busbridge Ida W 1950 On the integro exponential function and the evaluation of some integrals involving it Quart J Math Oxford 1 1 176 184 Bibcode 1950QJMat 1 176B doi 10 1093 qmath 1 1 176 Stankiewicz A 1968 Tables of the integro exponential functions Acta Astronomica 18 289 Bibcode 1968AcA 18 289S Sharma R R Zohuri Bahman 1977 A general method for an accurate evaluation of exponential integrals E1 x x gt 0 J Comput Phys 25 2 199 204 Bibcode 1977JCoPh 25 199S doi 10 1016 0021 9991 77 90022 5 Kolbig K S 1983 On the integral exp mt tn 1logmt dt Math Comput 41 163 171 182 doi 10 1090 S0025 5718 1983 0701632 1 Milgram M S 1985 The generalized integro exponential function Mathematics of Computation 44 170 443 458 JSTOR 2007964 MR 0777276 doi 10 1090 S0025 5718 1985 0777276 4 Misra Rama Dhar Born M 1940 On the Stability of Crystal Lattices II Mathematical Proceedings of the Cambridge Philosophical Society 36 2 173 Bibcode 1940PCPS 36 173M doi 10 1017 S030500410001714X Chiccoli C Lorenzutta S Maino G 1988 On the evaluation of generalized exponential integrals En x J Comput Phys 78 2 278 287 Bibcode 1988JCoPh 78 278C doi 10 1016 0021 9991 88 90050 2 Chiccoli C Lorenzutta S Maino G 1990 Recent results for generalized exponential integrals Computer Math Applic 19 5 21 29 doi 10 1016 0898 1221 90 90098 5 MacLeod Allan J 2002 The efficient computation of some generalised exponential integrals J Comput Appl Math 148 2 363 374 Bibcode 2002JCoAm 138 363M doi 10 1016 S0377 0427 02 00556 3 Zovnishni posilannya RedaguvatiHazewinkel Michiel red 2001 Integral exponential function Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 NIST documentation on the Generalized Exponential Integral Arhivovano 8 lyutogo 2020 u Wayback Machine Weisstein Eric W Exponential Integral angl na sajti Wolfram MathWorld Weisstein Eric W En Function angl na sajti Wolfram MathWorld Exponential Logarithmic Sine and Cosine Integrals Arhivovano 6 kvitnya 2020 u Wayback Machine in DLMF Otrimano z https uk wikipedia org w index php title Integralna pokaznikova funkciya amp oldid 40540833