www.wikidata.uk-ua.nina.az
Ne plutati z chislom Ejlera e 2 718 28 displaystyle rm e approx 2 71828 osnovoyu naturalnogo logarifma Plosha sinoyi oblasti zbigayetsya do staloyi Ejlera Stala Ejlera abo Ejlera Maskeroni matematichna konstanta yaku poznachayut maloyu greckoyu literoyu gamma g displaystyle gamma Vona viznachayetsya yak granicya riznici mizh garmonijnim ryadom i naturalnim logarifmom sho poznachayetsya yak ln displaystyle ln g lim n ln n k 1 n 1 k 1 1 x 1 x d x displaystyle begin aligned gamma amp lim n to infty left ln n sum k 1 n frac 1 k right amp int 1 infty left frac 1 x frac 1 lfloor x rfloor right rm d x end aligned Tut x displaystyle lfloor x rfloor funkciya pidloga Chislove znachennya staloyi Ejlera z tochnistyu do 50 znakiv pislya komi 1 0 577 21 56649 01532 86060 65120 90082 40243 10421 59335 93992 displaystyle 0 57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 dots Zmist 1 Istoriya 2 Zastosuvannya 3 Vlastivosti 3 1 Zv yazok z gamma funkciyeyu 3 2 Zv yazok z dzeta funkciyeyu 3 3 Integrali 3 4 Rozklad v ryad 3 5 Asimptotichni rozkladi 3 6 Eksponenta 3 7 Lancyugovij drib 4 Uzagalnennya 5 Opublikovani desyatkovi rozkladi dlya UNIQ postMath 0000008E QINU 6 Primitki 7 Literatura 8 Dodatkova literatura 9 Zovnishni linki 10 Div takozhIstoriya RedaguvatiKonstanta vpershe z yavilasya v 1734 roci v roboti shvejcarskogo matematika Leonarda Ejlera De Progressionibus harmonicis observationes Enestrom Index 43 Dlya konstanti Ejler vikoristovuvav poznachennya C ta O U 1790 roci italijskij matematik Lorenco Maskeroni it vikoristav dlya konstanti poznachennya A ta a Poznachennya g nide ne zustrichayetsya v robotah ni Ejlera ni Maskeroni i bulo obrane 2 piznishe mozhlivo cherez zv yazok konstanti z gamma funkciyeyu Napriklad nimeckij matematik Karl Anton Bretshnajder de vikoristovuvav poznachennya g u 1835 roci 3 a Avgust de Morgan vikoristovuvav jogo v pidruchniku opublikovanomu chastinami z 1836 po 1842 roki 4 Zastosuvannya RedaguvatiStala Ejlera sered inshogo zustrichayetsya oznachaye sho vidpovidnij element mistit rivnyannya u yavnomu viglyadi zokrema v takih ponyattyah spivvidnoshennya z eksponencijnim integralom peretvorennya Laplasa dlya naturalnogo logarifma pershij chlen rozkladu v Ryad Lorana dlya Dzeta funkciyi Rimana de vona ye pershoyu z konstant Stiltyesa obchislennya digamma funkciyi formula dobutku dlya gamma funkciyi asimptotichnij rozklad gamma funkciyi dlya malih argumentiv nerivnist dlya funkciyi Ejlera shvidkist zrostannya funkciyi dilnikiv u regulyarizaciyi rozmirnosti Diagram Fejnmana v kvantovij teoriyi polya obchislennya staloyi Mejselya Mertensa tretya teorema Mertensa rozv yazok rivnyannya Besselya drugogo rodu u regulyarizaciyi perenormuvanni garmonichnogo ryadu yak skinchenne znachennya matematichne spodivannya rozpodilu Gambelya en informacijna entropiya rozpodiliv Vejbulla i Levi i neyavno rozpodilu hi kvadrat dlya odnogo abo dvoh stepeniv vilnosti rozv yazok zadachi pro zbiracha kuponiv u deyakih formulyuvannyah zakonu Cipfa oznachennya integralnogo kosinusa nizhnya mezha shilini prostih chisel verhnya mezha entropiyi Shennona v kvantovij teoriyi informaciyi 5 model Fishera Orra dlya genetiki adaptaciyi v evolyucijnij biologiyi 6 Vlastivosti RedaguvatiNe dovedeno chi ye chislo g displaystyle gamma nbsp algebrayichnim abo transcendentnim Naspravdi navit nevidomo chi ye g displaystyle gamma nbsp irracionalnim Vikoristovuyuchi lancyugovi drobi Papanikolau pokazav u 1997 roci sho yaksho g displaystyle gamma nbsp ye racionalnim jogo znamennik povinen buti bilshim za 10244663 7 8 Universalnist chisla g displaystyle gamma nbsp pidtverdzhuyetsya velikoyu kilkistyu rivnyan nizhche sho robit pitannya irracionalnosti g displaystyle gamma nbsp ye golovnim vidkritim pitannyam u matematici 9 Prote pevnij progres vse zh dosyagnuto Kurt Maler pokazav u 1968 r sho chislo p Y 0 2 2 J 0 2 g displaystyle dfrac pi Y 0 2 2J 0 2 gamma nbsp ye transcendentnim tut J a x displaystyle J alpha x nbsp i Y a x displaystyle Y alpha x nbsp ye funkciyami Besselya 10 U 2009 roci Oleksandr Aptekarev doviv sho prinajmni odna z konstant Ejlera g displaystyle gamma nbsp abo Ejlera Gomperca en d displaystyle delta nbsp ye irracionalnoyu 11 Tangi Rivoal doviv u 2012 roci sho prinajmni odna z nih ye transcendentnoyu 12 U 2010 r M Ram Murti en ta N Saradha pokazali sho prinajmi odne z chisel viglyadu g a q lim n k 0 n 1 a k q log a n q q displaystyle gamma a q lim n to infty left left sum k 0 n frac 1 a kq right frac log a nq q right nbsp de q 2 displaystyle q geq 2 nbsp i 1 a lt q displaystyle 1 leq a lt q nbsp ye algebrayichnim ce simejstvo vklyuchaye chastinnij vipadok g 2 4 g 4 displaystyle gamma 2 4 frac gamma 4 nbsp 13 U 2013 roci M Ram Murti ta A Zajceva znajshli inshu sim yu sho mistit g displaystyle gamma nbsp yake bazuyetsya na sumah obernenih cilih chisel yaki ne dilyatsya na fiksovanij spisok prostih chisel z odniyeyu i tiyeyu zh vlastivistyu 14 Zv yazok z gamma funkciyeyu Redaguvati g displaystyle gamma nbsp pov yazana z digamma funkciyeyu PS displaystyle Psi nbsp a otzhe iz pohidnoyu vid gamma funkciyi yaksho obidvi funkciyi obchislyuvati v 1 Takim chinom g G 1 PS 1 displaystyle gamma Gamma 1 Psi 1 nbsp Ce dorivnyuye granicyam g lim z 0 G z 1 z lim z 0 PS z 1 z displaystyle begin aligned gamma amp lim z to 0 left Gamma z frac 1 z right lim z to 0 left Psi z frac 1 z right end aligned nbsp Podalshi obchislennya granic 15 lim z 0 1 z 1 G 1 z 1 G 1 z 2 g lim z 0 1 z 1 PS 1 z 1 PS 1 z p 2 3 g 2 displaystyle begin aligned lim z to 0 frac 1 z left frac 1 Gamma 1 z frac 1 Gamma 1 z right amp 2 gamma lim z to 0 frac 1 z left frac 1 Psi 1 z frac 1 Psi 1 z right amp frac pi 2 3 gamma 2 end aligned nbsp Granicya pov yazana z beta funkciyeyu zapisana za dopomogoyu gamma funkciyi g lim n G 1 n G n 1 n 1 1 n G 2 n 1 n n 2 n 1 lim m k 1 m m k 1 k k log G k 1 displaystyle begin aligned gamma amp lim n to infty left frac Gamma left frac 1 n right Gamma n 1 n 1 frac 1 n Gamma left 2 n frac 1 n right frac n 2 n 1 right lim limits m to infty sum k 1 m m choose k frac 1 k k log big Gamma k 1 big end aligned nbsp Zv yazok z dzeta funkciyeyu Redaguvati g displaystyle gamma nbsp takozh mozhna viraziti yak neskinchennu sumu chleni yakoyi vklyuchayut dzeta funkciyu Rimana yaka obchislyuyetsya dlya cilih dodatnih chislah g m 2 1 m z m m log 4 p m 2 1 m z m 2 m 1 m displaystyle begin aligned gamma amp sum m 2 infty 1 m frac zeta m m log frac 4 pi sum m 2 infty 1 m frac zeta m 2 m 1 m end aligned nbsp Inshi ryadi pov yazani z dzeta funkciyeyu vklyuchayut g 3 2 log 2 m 2 1 m m 1 m z m 1 lim n 2 n 1 2 n log n k 2 n 1 k z 1 k n k lim n 2 n e 2 n m 0 2 m n m 1 t 0 m 1 t 1 n log 2 O 1 2 n e 2 n displaystyle begin aligned gamma amp tfrac 3 2 log 2 sum m 2 infty 1 m frac m 1 m big zeta m 1 big lim n to infty left frac 2n 1 2n log n sum k 2 n left frac 1 k frac zeta 1 k n k right right amp lim n to infty left frac 2 n e 2 n sum m 0 infty frac 2 mn m 1 sum t 0 m frac 1 t 1 n log 2 O left frac 1 2 n e 2 n right right end aligned nbsp Pohibka v ostannomu rivnyanni ye shvidkospadnoyu funkciyeyu zminnoyi n displaystyle n nbsp U rezultati formula dobre pidhodit dlya efektivnogo obchislennya konstanti z visokoyu tochnistyu Inshimi cikavimi granicyami sho dorivnyuyut stalij Ejlera ye antisimetrichna granicya 16 g lim s 1 n 1 1 n s 1 s n lim s 1 z s 1 s 1 lim s 0 z 1 s z 1 s 2 displaystyle begin aligned gamma amp lim s to 1 sum n 1 infty left frac 1 n s frac 1 s n right lim s to 1 left zeta s frac 1 s 1 right lim s to 0 frac zeta 1 s zeta 1 s 2 end aligned nbsp i nastupna formula otrimana v 1898 roci de la Valle Pussenom g lim n 1 n k 1 n n k n k displaystyle gamma lim n to infty frac 1 n sum k 1 n left left lceil frac n k right rceil frac n k right nbsp de displaystyle lceil rceil nbsp funkciya steli Cya formula vkazuye sho koli beremo bud yake naturalne chislo n displaystyle n nbsp i dilimo jogo na bud yake naturalne chislo k displaystyle k nbsp menshe za n displaystyle n nbsp to serednya chastka do yakoyi spadaye chastka n k displaystyle frac n k nbsp mensha nastupnogo cilogo chisla pryamuye do g displaystyle gamma nbsp nizh do 0 5 displaystyle 0 5 nbsp yaksho n displaystyle n nbsp pryamuye do neskinchennosti Z cim tisno pov yazane predstavlennya u viglyadi racionalnogo dzeta ryadu Vzyavshi okremo dekilka pershih chleniv ryadu navedenogo vishe mozhna otrimati ocinku dlya klasichnoyi granici ryadu g k 1 n 1 k log n m 2 z m n 1 m displaystyle gamma sum k 1 n frac 1 k log n sum m 2 infty frac zeta m n 1 m nbsp de z s k displaystyle zeta s k nbsp dzeta funkciya Gurvica Suma v comu rivnyanni vklyuchaye garmonichni chisla H n displaystyle H n nbsp Rozpisavshi deyaki chleni dzeta funkciyi Gurvica otrimuyemo H n log n g 1 2 n 1 12 n 2 1 120 n 4 e displaystyle H n log n gamma frac 1 2n frac 1 12n 2 frac 1 120n 4 varepsilon nbsp de 0 lt e lt 1 252 n 6 displaystyle 0 lt varepsilon lt dfrac 1 252n 6 nbsp g displaystyle gamma nbsp takozh mozhna predstaviti nastupnim chinom g 12 log A log 2 p 6 p 2 z 2 displaystyle gamma 12 log A log 2 pi frac 6 pi 2 zeta 2 nbsp de A displaystyle A nbsp stala Glejshera Kinkelina en g displaystyle gamma nbsp takozh mozhna predstaviti u viglyadi g lim n n z n 1 n displaystyle gamma lim n to infty biggl n zeta Bigl frac n 1 n Bigr biggr nbsp yakij otrimuyetsya z rozkladu dzeta funkciyi u ryad Lorana Integrali Redaguvati g displaystyle gamma nbsp dorivnyuye takim znachennyam viznachenih integraliv g 0 e x log x d x 0 1 log log 1 x d x 0 1 e x 1 1 x e x d x 0 1 1 e x x d x 1 e x x d x 0 1 1 log x 1 1 x d x 0 1 1 x k e x d x x k gt 0 2 0 e x 2 e x x d x 0 1 H x d x displaystyle begin aligned gamma amp int 0 infty e x log x dx quad int 0 1 log left log frac 1 x right dx quad int 0 infty left frac 1 e x 1 frac 1 x cdot e x right dx amp int 0 1 frac 1 e x x dx int 1 infty frac e x x dx quad int 0 1 left frac 1 log x frac 1 1 x right dx amp int 0 infty left frac 1 1 x k e x right frac dx x quad k gt 0 amp 2 int 0 infty frac e x 2 e x x dx quad int 0 1 H x dx end aligned nbsp de H x displaystyle H x nbsp drobove Garmonichne chislo Tretyu formulu v integralnomu spisku mozhna dovesti nastupnim chinom 0 1 e x 1 1 x e x d x 0 e x x 1 x e x 1 d x 0 1 x e x 1 m 1 1 m 1 x m 1 m 1 d x 0 m 1 1 m 1 x m m 1 e x 1 d x m 1 0 1 m 1 x m m 1 e x 1 d x m 1 1 m 1 m 1 0 x m e x 1 d x m 1 1 m 1 m 1 m z m 1 m 1 1 m 1 m 1 z m 1 m 1 1 m 1 m 1 n 1 1 n m 1 m 1 n 1 1 m 1 m 1 1 n m 1 n 1 m 1 1 m 1 m 1 1 n m 1 n 1 1 n ln 1 1 n g displaystyle begin aligned amp int 0 infty left frac 1 e x 1 frac 1 xe x right dx int 0 infty frac e x x 1 x e x 1 dx int 0 infty frac 1 x e x 1 sum m 1 infty frac 1 m 1 x m 1 m 1 dx 2pt amp int 0 infty sum m 1 infty frac 1 m 1 x m m 1 e x 1 dx sum m 1 infty int 0 infty frac 1 m 1 x m m 1 e x 1 dx sum m 1 infty frac 1 m 1 m 1 int 0 infty frac x m e x 1 dx 2pt amp sum m 1 infty frac 1 m 1 m 1 m zeta m 1 sum m 1 infty frac 1 m 1 m 1 zeta m 1 sum m 1 infty frac 1 m 1 m 1 sum n 1 infty frac 1 n m 1 sum m 1 infty sum n 1 infty frac 1 m 1 m 1 frac 1 n m 1 2pt amp sum n 1 infty sum m 1 infty frac 1 m 1 m 1 frac 1 n m 1 sum n 1 infty left frac 1 n ln left 1 frac 1 n right right gamma end aligned nbsp Integral u tretomu ryadku znachennya funkciyi Debaya v displaystyle infty nbsp yake v svoyu chergu dorivnyuye m z m 1 displaystyle m zeta m 1 nbsp Viznacheni integrali u yakih zustrichayetsya g displaystyle gamma nbsp 0 e x 2 log x d x g 2 log 2 p 4 0 e x log 2 x d x g 2 p 2 6 e x log x 2 d x g displaystyle begin aligned int 0 infty e x 2 log x dx amp frac gamma 2 log 2 sqrt pi 4 int 0 infty e x log 2 x dx amp gamma 2 frac pi 2 6 int infty infty frac e x log x 2 dx amp gamma end aligned nbsp Mozhna viraziti g displaystyle gamma nbsp vikoristovuyuchi chastinnij vipadok formuli Hadzhikostasa 17 yak podvijnij integral z ekvivalentnim ryadom g 0 1 0 1 x 1 1 x y log x y d x d y n 1 1 n log n 1 n displaystyle begin aligned gamma amp int 0 1 int 0 1 frac x 1 1 xy log xy dx dy sum n 1 infty left frac 1 n log frac n 1 n right end aligned nbsp Cikavim ye porivnyannya Sondou log 4 p 0 1 0 1 x 1 1 x y log x y d x d y n 1 1 n 1 1 n log n 1 n displaystyle begin aligned log frac 4 pi amp int 0 1 int 0 1 frac x 1 1 xy log xy rm d x rm d y amp sum n 1 infty left 1 n 1 left frac 1 n log frac n 1 n right right end aligned nbsp Ce pokazuye sho log 4 p displaystyle log frac 4 pi nbsp mozhna rozglyadati yak znakozminnu stalu Ejlera Ci dvi stali takozh pov yazani za dopomogoyu pari ryadiv 18 g n 1 N 1 n N 0 n 2 n 2 n 1 log 4 p n 1 N 1 n N 0 n 2 n 2 n 1 displaystyle begin aligned gamma amp sum n 1 infty frac N 1 n N 0 n 2n 2n 1 log frac 4 pi amp sum n 1 infty frac N 1 n N 0 n 2n 2n 1 end aligned nbsp de N 1 n displaystyle N 1 n nbsp i N 0 n displaystyle N 0 n nbsp vidpovidno kilkist odinic i nuliv u rozkladi n displaystyle n nbsp za osnovoyu 2 Takozh g displaystyle gamma nbsp mozhna zapisati za dopomogoyu integrala 19 Katalana g 0 1 1 1 x n 1 x 2 n 1 d x displaystyle gamma int 0 1 left frac 1 1 x sum n 1 infty x 2 n 1 right dx nbsp Rozklad v ryad Redaguvati U zagalnomu vipadku g lim n 1 1 1 2 1 3 1 n log n a lim n g n a displaystyle gamma lim n to infty left frac 1 1 frac 1 2 frac 1 3 ldots frac 1 n log n alpha right equiv lim n to infty gamma n alpha nbsp dlya bud yakogo a gt n displaystyle alpha gt n nbsp Odnak shvidkist zbizhnosti cogo rozkladu znachnoyu miroyu zalezhit vid a displaystyle alpha nbsp Zokrema g n 1 2 displaystyle gamma n left frac 1 2 right nbsp demonstruye nabagato shvidshu zbizhnist nizh standartnij rozklad g n 0 displaystyle gamma n 0 nbsp 20 21 Ce tomu sho 1 2 n 1 lt g n 0 g lt 1 2 n displaystyle frac 1 2 n 1 lt gamma n 0 gamma lt frac 1 2n nbsp koli 1 24 n 1 2 lt g n 1 2 g lt 1 24 n 2 displaystyle frac 1 24 n 1 2 lt gamma n 1 2 gamma lt frac 1 24n 2 nbsp Tim ne mensh isnuyut inshi rozkladi ryadiv yaki zbigayutsya shvidshe nizh cej deyaki z nih rozglyanuti nizhche Ejler pokazav sho nastupnij neskinchennij ryad zbigayetsya do g displaystyle gamma nbsp g k 1 1 k log 1 1 k displaystyle gamma sum k 1 infty left frac 1 k log left 1 frac 1 k right right nbsp Cej ryad dlya g displaystyle gamma nbsp ekvivalentnij ryadu Nilsena znajdenomu v 1897 roci 22 23 g 1 k 2 1 k log 2 k k 1 displaystyle gamma 1 sum k 2 infty 1 k frac left lfloor log 2 k right rfloor k 1 nbsp U 1810 roci Vakka znajshov tisno pov yazani ryad 24 25 26 27 28 29 30 g k 2 1 k log 2 k k 1 2 1 3 2 1 4 1 5 1 6 1 7 3 1 8 1 9 1 10 1 11 1 15 displaystyle begin aligned gamma amp sum k 2 infty 1 k frac left lfloor log 2 k right rfloor k 5pt amp tfrac 1 2 tfrac 1 3 2 left tfrac 1 4 tfrac 1 5 tfrac 1 6 tfrac 1 7 right 3 left tfrac 1 8 tfrac 1 9 tfrac 1 10 tfrac 1 11 cdots tfrac 1 15 right cdots end aligned nbsp de log 2 displaystyle log 2 nbsp ce logarifm za osnovoyu 2 displaystyle lfloor rfloor nbsp funkciya pidlogi U 1926 roci vin znajshov inshij ryad g z 2 k 2 1 k 2 1 k k 2 k k 2 k k 2 1 2 2 3 1 2 2 k 1 2 2 k k 2 2 1 3 2 k 1 3 2 k k 3 2 displaystyle begin aligned gamma zeta 2 amp sum k 2 infty left frac 1 left lfloor sqrt k right rfloor 2 frac 1 k right 5pt amp sum k 2 infty frac k left lfloor sqrt k right rfloor 2 k left lfloor sqrt k right rfloor 2 5pt amp frac 1 2 frac 2 3 frac 1 2 2 sum k 1 2 cdot 2 frac k k 2 2 frac 1 3 2 sum k 1 3 cdot 2 frac k k 3 2 cdots end aligned nbsp Iz rozkladu v ryad Malstena en Kummera dlya logarifma gamma funkciyi 31 otrimuyemo g log p 4 log G 3 4 4 p k 1 1 k 1 log 2 k 1 2 k 1 displaystyle gamma log pi 4 log left Gamma tfrac 3 4 right frac 4 pi sum k 1 infty 1 k 1 frac log 2k 1 2k 1 nbsp Vazhlivij rozklad u ryad staloyi Ejlera otrimali Fontanoyu en i Maskeroni g n 1 G n n 1 2 1 24 1 72 19 2880 3 800 displaystyle gamma sum n 1 infty frac G n n frac 1 2 frac 1 24 frac 1 72 frac 19 2880 frac 3 800 cdots nbsp de G n displaystyle G n nbsp koeficiyenti Gregori 32 33 34 Cej ryad ye chastinnim vipadkom pri k 1 displaystyle k 1 nbsp nastupnogo rozkladiv g H k 1 log k n 1 n 1 G n k k 1 k n 1 H k 1 log k 1 2 k 1 12 k k 1 1 12 k k 1 k 2 19 120 k k 1 k 2 k 3 displaystyle begin aligned gamma amp H k 1 log k sum n 1 infty frac n 1 G n k k 1 cdots k n 1 amp amp amp H k 1 log k frac 1 2k frac 1 12k k 1 frac 1 12k k 1 k 2 frac 19 120k k 1 k 2 k 3 cdots amp amp end aligned nbsp yaki ye zbizhnimi pri 35 Analogichnij ryad zapisanij z vikoristannyam chisel Koshi drugogo rodu C n displaystyle C n nbsp maye viglyad 36 g 1 n 1 C n n n 1 1 1 4 5 72 1 32 251 14400 19 1728 displaystyle gamma 1 sum n 1 infty frac C n n n 1 1 frac 1 4 frac 5 72 frac 1 32 frac 251 14400 frac 19 1728 ldots nbsp Blagouchin 2018 znajshov cikave uzagalnennya ryadu Fontana Masheroni g n 1 1 n 1 2 n ps n a ps n a 1 a a gt 1 displaystyle gamma sum n 1 infty frac 1 n 1 2n Big psi n a psi n Big frac a 1 a Big Big quad a gt 1 nbsp de ps n a displaystyle psi n a nbsp mnogochleni Bernulli drugogo rodu en yaki viznachayutsya tvirnoyu funkciyeyu z 1 z s log 1 z n 0 z n ps n s z lt 1 displaystyle frac z 1 z s log 1 z sum n 0 infty z n psi n s qquad z lt 1 nbsp Dlya bud yakogo racionalnogo a displaystyle a nbsp cej ryad mistit lishe racionalni dodanki Napriklad pri a 1 displaystyle a 1 nbsp mayemo 37 38 g 3 4 11 96 1 72 311 46080 5 1152 7291 2322432 243 100352 displaystyle gamma frac 3 4 frac 11 96 frac 1 72 frac 311 46080 frac 5 1152 frac 7291 2322432 frac 243 100352 ldots nbsp Inshi ryadi z takimi zh mnogochlenami vklyuchayut taki prikladi g log a 1 n 1 1 n ps n a n ℜ a gt 1 displaystyle gamma log a 1 sum n 1 infty frac 1 n psi n a n qquad Re a gt 1 nbsp ta g 2 1 2 a log G a 1 1 2 log 2 p 1 2 n 1 1 n ps n 1 a n ℜ a gt 1 displaystyle gamma frac 2 1 2a left log Gamma a 1 frac 1 2 log 2 pi frac 1 2 sum n 1 infty frac 1 n psi n 1 a n right qquad Re a gt 1 nbsp de G a displaystyle Gamma a nbsp gamma funkciya Ryad pov yazanij z algoritmom Akiyama Tanigavi maye viglyad g log 2 p 2 2 n 1 1 n G n 2 n log 2 p 2 2 3 1 24 7 540 17 2880 41 12600 displaystyle gamma log 2 pi 2 2 sum n 1 infty frac 1 n G n 2 n log 2 pi 2 frac 2 3 frac 1 24 frac 7 540 frac 17 2880 frac 41 12600 ldots nbsp de G n 2 displaystyle G n 2 nbsp koeficiyenti Gregori drugogo poryadku 39 Ryad prostih chisel g lim n log n p n log p p 1 displaystyle gamma lim n to infty left log n sum p leq n frac log p p 1 right nbsp Asimptotichni rozkladi Redaguvati g displaystyle gamma nbsp mozhna viznachiti za dopomogoyu nastupnih asimptotichnih formul de H n displaystyle H n nbsp n displaystyle n nbsp e garmonichne chislo g H n log n 1 2 n 1 12 n 2 1 120 n 4 displaystyle gamma sim H n log n frac 1 2n frac 1 12n 2 frac 1 120n 4 cdots nbsp Ejler g H n log n 1 2 1 24 n 1 48 n 2 displaystyle gamma sim H n log left n frac 1 2 frac 1 24n frac 1 48n 2 cdots right nbsp Negoj g H n log n log n 1 2 1 6 n n 1 1 30 n 2 n 1 2 displaystyle gamma sim H n frac log n log n 1 2 frac 1 6n n 1 frac 1 30n 2 n 1 2 cdots nbsp Ernesto Tretya formula takozh nazivayetsya rozkladom Ramanudzhana Alabdulmohsin otrimav u zamknenij formi spivvidnoshennya dlya sum pohibok cih nablizhen 36 Vin pokazav sho teorema A 1 n 1 log n g H n 1 2 n log 2 p 1 g 2 displaystyle sum n 1 infty log n gamma H n frac 1 2n frac log 2 pi 1 gamma 2 nbsp n 1 log n n 1 g H n log 2 p 1 2 g displaystyle sum n 1 infty log sqrt n n 1 gamma H n frac log 2 pi 1 2 gamma nbsp n 1 1 n log n g H n log p g 2 displaystyle sum n 1 infty 1 n Big log n gamma H n Big frac log pi gamma 2 nbsp Eksponenta Redaguvati Stala e g displaystyle rm e gamma nbsp ye vazhlivoyu v teoriyi chisel Deyaki avtori poznachayut cyu velichinu prosto yak g displaystyle gamma nbsp e g displaystyle rm e gamma nbsp dorivnyuye nastupnij granici de p n displaystyle p n nbsp n displaystyle n nbsp e proste chislo e g lim n 1 log p n i 1 n p i p i 1 displaystyle e gamma lim n to infty frac 1 log p n prod i 1 n frac p i p i 1 nbsp Ce pidtverdzhuye tretyu teoremu Mertensa 40 Chislove znachennya e g displaystyle rm e gamma nbsp 41 1 7810724179 90197 98523 65041 03107 17954 91696 45214 30343 Inshi neskinchenni dobutki sho pov yazani z e g displaystyle rm e gamma nbsp vklyuchayut e 1 g 2 2 p n 1 e 1 1 2 n 1 1 n n e 3 2 g 2 p n 1 e 2 2 n 1 2 n n displaystyle begin aligned frac e 1 frac gamma 2 sqrt 2 pi amp prod n 1 infty e 1 frac 1 2n left 1 frac 1 n right n frac e 3 2 gamma 2 pi amp prod n 1 infty e 2 frac 2 n left 1 frac 2 n right n end aligned nbsp Ci dodanki ye rezultatom G funkciyi Barnsa en Dodatkovo e g 2 1 2 2 1 3 3 2 3 4 1 3 3 4 2 4 4 4 1 3 6 5 5 displaystyle e gamma sqrt frac 2 1 cdot sqrt 3 frac 2 2 1 cdot 3 cdot sqrt 4 frac 2 3 cdot 4 1 cdot 3 3 cdot sqrt 5 frac 2 4 cdot 4 4 1 cdot 3 6 cdot 5 cdots nbsp de n displaystyle n nbsp j mnozhnik ce n 1 displaystyle n 1 nbsp j korin z k 0 n k 1 1 k 1 n k displaystyle prod k 0 n k 1 1 k 1 n choose k nbsp Cej neskinchennij dobutok vpershe vidkritij Serom u 1926 roci buv perevidkritij Sondu za dopomogoyu gipergeometrichnih funkcij 42 Takozh spravedliva nastupna formula 43 e p 2 e p 2 p e g n 1 e 1 n 1 1 n 1 2 n 2 displaystyle frac e frac pi 2 e frac pi 2 pi e gamma prod n 1 infty left e frac 1 n left 1 frac 1 n frac 1 2n 2 right right nbsp Lancyugovij drib Redaguvati Rozklad lancyugovogo drobu dlya staloyi g displaystyle gamma nbsp pochinayetsya z 0 1 1 2 1 2 1 4 3 13 5 1 1 8 1 2 4 1 1 40 displaystyle 0 1 1 2 1 2 1 4 3 13 5 1 1 8 1 2 4 1 1 40 dots nbsp 1 i nemaye vidimoyi zakonomirnosti Vidomo sho cej lancyugovij drib maye shonajmenshe 475 006 dodankiv i maye neskinchenno bagato dodankiv todi j lishe todi 44 koli stala 45 ye irracionalnim chislom Uzagalnennya Redaguvati nbsp abm x g xUzagalneni stali Ejlera viznachayutsya yak g a lim n k 1 n 1 k a 1 n 1 x a d x displaystyle gamma alpha lim n to infty left sum k 1 n frac 1 k alpha int 1 n frac 1 x alpha dx right nbsp dlya 0 lt a lt 1 displaystyle 0 lt alpha lt 1 nbsp de g displaystyle gamma nbsp ye osoblivim vipadkom pri a 1 displaystyle alpha 1 nbsp 46 Podalshi uzagalnennya mayut viglyad c f lim n k 1 n f k 1 n f x d x displaystyle c f lim n to infty left sum k 1 n f k int 1 n f x dx right nbsp dlya deyakoyi dovilnoyi spadnoyi funkciyi f displaystyle f nbsp Napriklad f n x log x n x displaystyle f n x frac log x n x nbsp privodit do konstant Stiltyesa a f a x x a displaystyle f a x x a nbsp daye g f a a 1 z a 1 a 1 displaystyle gamma f a frac a 1 zeta a 1 a 1 nbsp de znovu z yavlyayetsya granicya g lim a 1 z a 1 a 1 displaystyle gamma lim a to 1 left zeta a frac 1 a 1 right nbsp Dvovimirnim granichnim uzagalnennyam ye konstanta Massera Gremena Stali Ejlera Lemera viznachayutsya shlyahom pidsumovuvannya obernenih chisel u zagalnomu klasi za modulem g a q lim x 0 lt n x n a mod q 1 n log x q displaystyle gamma a q lim x to infty left sum 0 lt n leq x atop n equiv a pmod q frac 1 n frac log x q right nbsp Osnovnimi vlastivostyami yakih ye g 0 q g log q q a 0 q 1 g a q g q g a q g j 1 q 1 e 2 p a i j q log 1 e 2 p i j q displaystyle begin aligned gamma 0 q amp frac gamma log q q sum a 0 q 1 gamma a q amp gamma q gamma a q amp gamma sum j 1 q 1 e frac 2 pi aij q log left 1 e frac 2 pi ij q right end aligned nbsp i yaksho 47 to q g a q q d g a d q d log d displaystyle q gamma a q frac q d gamma left frac a d frac q d right log d nbsp Opublikovani desyatkovi rozkladi dlya g displaystyle gamma RedaguvatiSpochatku Ejler obchisliv znachennya konstanti z tochnistyu do 6 znakiv pislya komi U 1781 roci vin obchisliv jogo do 16 znakiv pislya komi Maskeroni sprobuvav obchisliti konstantu z tochnistyu do 32 znakiv pislya komi ale dopustiv pomilku v 20 22 i 31 32 znakah pislya komi pochinayuchi z 20 yi cifri vin obchisliv 1811209008239 displaystyle dots 1811209008239 nbsp hocha pravilne znachennya dorivnyuye 0651209008240 displaystyle dots 0651209008240 nbsp Published Decimal Expansions of g Date Decimal digits Author Sources1734 5 Leonard Ejler1735 15 Leonard Ejler1781 16 Leonard Ejler1790 32 Lorenco Maskeroni 20 22 i 31 32 nepravilni1809 22 Jogann Georg fon Zoldner1811 22 Karl Fridrih Gauss1812 40 Fridrih Bernhard Gotfrid Nikolaj1857 34 Kristian Fredrik Lindman1861 41 Lyudvig Ottinger1867 49 Vilyam Shenks1871 99 Dzhon Kauch Adams1871 101 Vilyam Shenks1877 262 Dzhon Kauch Adams1952 328 Dzhon Rench1961 1050 Gelmut Fisher i Karl Celler1962 1271 Donald Knut 48 1962 3566 Dura V Suyini1973 4879 Vilyam A Bejyer i Majkl S Uoterman1977 20700 Richard P Brent1980 30100 Richard P Brent i Edvin M Makmillan1993 172000 Dzhonatan Borvejn1999 108000 000 Patrik Demishel i Ksav ye GurdonMarch 13 2009 29844 489 545 Oleksandr Dzh Ji ta Rejmond Chan 49 50 December 22 2013 119377 958 182 Oleksandr Dzh 49 50 March 15 2016 160000 000 000 Piter Trub 49 50 May 18 2016 250000 000 000 Ron Uotkins 49 50 August 23 2017 477511 832 674 Ron Uotkins 49 50 May 26 2020 600000 000 100 Kim Sinmin i Yan Katress 49 50 51 Primitki Redaguvati a b Sloane N J A Decimal expansion of Euler s constant gamma Lagarias Jeffrey C October 2013 Euler s constant Euler s work and modern development Bretschneider 1837 g c 0 577215 664901 532860 618112 090082 3 on p 260 De Morgan Augustus 1836 1842 The differential and integral calculus Caves Carlton M Fuchs Christopher A 1996 Quantum information How much information in a state vector Connallon T Hodgins K A 2021 Allen Orr and the genetics of adaptation Evolution 75 2624 2640 https doi org 10 1111 evo 14372 Haible Bruno Papanikolaou Thomas 1998 Buhler Joe P ed Fast multiprecision evaluation of series of rational numbers Algorithmic Number Theory Papanikolaou T 1997 Entwurf und Entwicklung einer objektorientierten Bibliothek fur algorithmische Zahlentheorie See also Sondow Jonathan 2003 Criteria for irrationality of Euler s constant Proceedings of the American Mathematical Society Mahler Kurt Mordell Louis Joel 4 June 1968 Applications of a theorem by A B Shidlovski Aptekarev A I 28 February 2009 On linear forms containing the Euler constan Rivoal Tanguy 2012 On the arithmetic nature of the values of the gamma function Euler s constant and Gompertz s constant Ram Murty and Saradha 2010 Murty M Ram Zaytseva Anastasia 2013 Transcendence of Generalized Euler Constants The American Mathematical Monthly Kramer Stefan 2005 Die Eulersche Konstante g displaystyle gamma nbsp und verwandte Zahlen Sondow Jonathan 1998 An antisymmetric formula for Euler s constant Sondow Jonathan 2005 Double integrals for Euler s constant and log 4 p displaystyle log frac 4 pi nbsp and an analog of Hadjicostas s formula American Mathematical Monthly 112 1 61 65 arXiv math CA 0211148 doi 10 2307 30037385 JSTOR 30037385 Sondow Jonathan 1 August 2005a New Vacca type rational series for Euler s constant and its alternating analog log 4 p displaystyle log frac 4 pi nbsp arXiv math NT 0508042 Sondow Jonathan Zudilin Wadim 2006 Euler s constant q displaystyle q nbsp logarithms and formulas of Ramanujan and Gosper DeTemple Duane W May 1993 A Quicker Convergence to Euler s Constant Havil 2003 pp 75 78 Blagouchine 2016 Kramer Stefan 2005 Die Eulersche Konstante Vacca G 1910 A new analytical expression for the number p displaystyle pi nbsp and some historical considerations Bulletin of the American Mathematical Society 16 368 369 doi 10 1090 S0002 9904 1910 01919 4 Glaisher James Whitbread Lee 1910 On Dr Vacca s series for g displaystyle gamma nbsp Q J Pure Appl Math 41 365 368 Hardy G H 1912 Note on Dr Vacca s series for g displaystyle gamma nbsp Q J Pure Appl Math 43 215 216 Vacca G 1926 Nuova serie per la costante di Eulero C 0 577 displaystyle C 0 577 dots nbsp Rendiconti Accademia Nazionale dei Lincei Roma Classe di Scienze Fisiche Matematiche e Naturali in Italian 6 3 19 20 Kluyver J C 1927 On certain series of Mr Hardy Q J Pure Appl Math 50 185 192 Blagouchine Iaroslav V 2016 Expansions of generalized Euler s constants into the series of polynomials in p 2 displaystyle pi 2 nbsp and into the formal enveloping series with rational coefficients only J Number Theory 158 365 396 arXiv 1501 00740 doi 10 1016 j jnt 2015 06 012 Blagouchine Iaroslav V 2014 Rediscovery of Malmsten s integrals their evaluation by contour integration methods and some related results Kramer Stefan 2005 Die Eulersche Konstante g displaystyle gamma nbsp und verwandte Zahlen Blagouchine Iaroslav V 2016 Expansions of generalized Euler s constants into the series of polynomials in p 2 displaystyle pi 2 nbsp and into the formal enveloping series with rational coefficients only Blagouchine Iaroslav V 2018 Three notes on Ser s and Hasse s representations for the zeta functions k 1 2 dots a b Alabdulmohsin Ibrahim M 2018 Summability Calculus A Comprehensive Theory of Fractional Finite Sums Sloane N J A ed Sequence A302120 Absolute value of the numerators of a series converging to Euler s constant Sloane N J A ed Sequence A302121 Denominators of a series converging to Euler s constant Blagouchine Iaroslav V 2018 Three notes on Ser s and Hasse s representations for the zeta functions Weisstein Eric W Mertens Constant Sloane N J A ed Sequence A073004 Decimal expansion of exp gamma Sondow Jonathan 2003 An infinite product for e g displaystyle rm e gamma nbsp via hypergeometric formulas for Euler s constant g displaystyle gamma nbsp hoi Junesang Srivastava H M 1 September 2010 Integral Representations for the Euler Mascheroni Constant g displaystyle gamma nbsp Integral Transforms and Special Functions Papanikolaou T 1997 Entwurf und Entwicklung einer objektorientierten Bibliothek fur algorithmische Zahlentheorie gamma Havil 2003 pp 117 118 gcd a q d Knuth Donald E July 1962 Euler s Constant to 1271 Places a b v g d e Yee Alexander J 7 March 2011 Large Computations a b v g d e Yee Alexander J Records Set by y cruncher www numberworld org Retrieved 30 April 2018 Yee Alexander J Euler Mascheroni Constant Literatura RedaguvatiGrigorij Mihajlovich Fihtengolc Kurs diferencialnogo ta integralnogo chislennya 2023 1300 s ukr Bretschneider Carl Anton 1837 1835 Theoriae logarithmi integralis lineamenta nova Crelle s Journal in Latin 17 257 285 Ram Murty M Saradha N 2010 Euler Lehmer constants and a conjecture of Erdos Journal of Number Theory 130 12 2671 2681 doi 10 1016 j jnt 2010 07 004 ISSN 0022 314X Dodatkova literatura RedaguvatiBorwein Jonathan M David M Bradley Richard E Crandall 2000 Computational Strategies for the Riemann Zeta Function Journal of Computational and Applied Mathematics 121 1 2 11 Bibcode 2000JCoAM 121 247B doi 10 1016 s0377 0427 00 00336 8 Derives g as sums over Riemann zeta functions Gerst I 1969 Some series for Euler s constant Amer Math Monthly 76 3 237 275 JSTOR 2316370 doi 10 2307 2316370 Glaisher James Whitbread Lee 1872 On the history of Euler s constant Messenger of Mathematics 1 25 30 JFM 03 0130 01 Gourdon Xavier Sebah P 2002 Collection of formulae for Euler s constant g Gourdon Xavier Sebah P 2004 The Euler constant g Karatsuba E A 1991 Fast evaluation of transcendental functions Probl Inf Transm 27 44 339 360 Karatsuba E A 2000 On the computation of the Euler constant g Journal of Numerical Algorithms 24 1 2 83 97 doi 10 1023 A 1019137125281 Knuth Donald 1997 The Art of Computer Programming Vol 1 vid 3rd Addison Wesley s 75 107 114 619 620 ISBN 0 201 89683 4 Lehmer D H 1975 Euler constants for arithmetical progressions Acta Arith 27 1 125 142 doi 10 4064 aa 27 1 125 142 Lerch M 1897 Expressions nouvelles de la constante d Euler Sitzungsberichte der Koniglich Bohmischen Gesellschaft der Wissenschaften 42 5 Mascheroni Lorenzo 1790 Adnotationes ad calculum integralem Euleri in quibus nonnulla problemata ab Eulero proposita resolvuntur Galeati Ticini Sondow Jonathan 2002 A hypergeometric approach via linear forms involving logarithms to irrationality criteria for Euler s constant Mathematica Slovaca 59 307 314 Bibcode 2002math 11075S arXiv math NT 0211075 doi 10 2478 s12175 009 0127 2 with an Appendix by Sergey ZlobinZovnishni linki RedaguvatiHazewinkel Michiel red 2001 Euler constant Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Weisstein Eric W Euler Mascheroni constant angl na sajti Wolfram MathWorld Jonathan Sondow Fast Algorithms and the FEE Method E A Karatsuba 2005 Further formulae which make use of the constant Gourdon and Sebah 2004 Div takozh RedaguvatiFormula sumuvannya Abelya nbsp Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Otrimano z https uk wikipedia org w index php title Stala Ejlera Maskeroni amp oldid 40456096