www.wikidata.uk-ua.nina.az
U matematici dzeta funkciya Gurvica nazvana na chest Adolfa Gurvica odna z dzeta funkcij yaki ye uzagalnennyami dzeta funkciyi Rimana Formalno vona mozhe buti zadana stepenevim ryadom dlya kompleksnih argumentiv s pri Re s gt 1 i q Re q gt 0 z s q n 0 1 q n s displaystyle zeta s q sum n 0 infty frac 1 q n s Cej ryad ye absolyutno zbizhnim dlya zadanih znachen s i q Dzeta funkciya Rimana okremij vipadok dzeta funkciyi Gurvica pri q 1 Zmist 1 Analitichne prodovzhennya 2 Podannya u viglyadi ryadiv 3 Integralni podannya 4 Formula Gurvica 5 Funkcionalne rivnyannya 6 Ryad Tejlora 7 Ryad Lorana 8 Peretvorennya Fur ye 9 Zv yazok z mnogochlenami Bernulli 10 Zv yazok z teta funkciyeyu Yakobi 11 Zv yazok z L funkciyeyu Dirihle 12 Racionalni znachennya argumentiv 13 Zastosuvannya 14 Okremi vipadki i uzagalnennya 15 Div takozh 16 Primitki 17 Posilannya 18 LiteraturaAnalitichne prodovzhennya RedaguvatiDzeta funkciya Gurvica dopuskaye analitichne prodovzhennya do meromorfnoyi funkciyi viznachenoyi dlya vsih kompleksnih s pri s 1 U tochci s 1 vona maye prostij polyus iz lishkom rivnim 1 Postijnij chlen rozkladu v ryad Lorana v okoli tochki s 1 dorivnyuye lim s 1 z s q 1 s 1 G q G q ps q displaystyle lim s to 1 left zeta s q frac 1 s 1 right frac Gamma q Gamma q psi q nbsp de G x gamma funkciya i ps x digamma funkciya Podannya u viglyadi ryadiv RedaguvatiPodannya u viglyadi zbizhnogo stepenevogo ryadu dlya q gt 1 i dovilnogo kompleksnogo s 1 otrimav u 1930 roci Gelmut Gasse 1 z s q 1 s 1 n 0 1 n 1 k 0 n 1 k n k q k 1 s displaystyle zeta s q frac 1 s 1 sum n 0 infty frac 1 n 1 sum k 0 n 1 k n choose k q k 1 s nbsp Cej ryad ye rivnomirno zbizhnim na bud yakij kompaktnij pidmnozhini kompleksnoyi s ploshini do ciloyi funkciyi Vnutrishnya suma mozhe buti podana u viglyadi n yi skinchennoyi riznici dlya q 1 s displaystyle q 1 s nbsp tobto D n q 1 s k 0 n 1 n k n k q k 1 s displaystyle Delta n q 1 s sum k 0 n 1 nk n choose k q k 1 s nbsp de D operator skinchennoyi riznici Takim chinom z s q 1 s 1 n 0 1 n n 1 D n q 1 s displaystyle zeta s q frac 1 s 1 sum n 0 infty frac 1 n n 1 Delta n q 1 s nbsp 1 s 1 log 1 D D q 1 s displaystyle frac 1 s 1 log 1 Delta over Delta q 1 s nbsp dd dd Integralni podannya RedaguvatiDzeta funkciya Gurvica maye integralne podannya u viglyadi peretvorennya Mellina z s q 1 G s 0 t s 1 e q t 1 e t d t displaystyle zeta s q frac 1 Gamma s int 0 infty frac t s 1 e qt 1 e t dt nbsp dlya Re s gt 1 i Re q gt 0 Formula Gurvica Redaguvatiz 1 s x 1 2 s e i p s 2 b x s e i p s 2 b 1 x s displaystyle zeta 1 s x frac 1 2s left e i pi s 2 beta x s e i pi s 2 beta 1 x s right nbsp de b x s 2 G s 1 n 1 exp 2 p i n x 2 p n s 2 G s 1 2 p s Li s e 2 p i x displaystyle beta x s 2 Gamma s 1 sum n 1 infty frac exp 2 pi inx 2 pi n s frac 2 Gamma s 1 2 pi s mbox Li s e 2 pi ix nbsp Ce podannya dzeta funkciyi Gurvica ye pravilnim dlya 0 x 1 i s gt 1 Tut Li s z displaystyle text Li s z nbsp poznachaye polilogarifm Funkcionalne rivnyannya RedaguvatiDane funkcionalne rivnyannya pov yazuye znachennya dzeta funkciyi Gurvica livoruch i pravoruch vid pryamoyi Re s 1 2 v kompleksnij s ploshini Dlya naturalnih m i n takih sho m n rivnist z 1 s m n 2 G s 2 p n s k 1 n cos p s 2 2 p k m n Z s k n displaystyle zeta left 1 s frac m n right frac 2 Gamma s 2 pi n s sum k 1 n left cos left frac pi s 2 frac 2 pi km n right mathrm Z left s frac k n right right nbsp vikonuyetsya dlya vsih znachen s Ryad Tejlora RedaguvatiPohidna dzeta funkciyi Gurvica za drugim argumentom takozh virazhayetsya cherez dzeta funkciyu Gurvica q z s q s z s 1 q displaystyle frac partial partial q zeta s q s zeta s 1 q nbsp Takim chinom ryad Tejlora maye viglyad z s x y k 0 y k k k x k z s x k 0 s k 1 s 1 y k z s k x displaystyle zeta s x y sum k 0 infty frac y k k frac partial k partial x k zeta s x sum k 0 infty s k 1 choose s 1 y k zeta s k x nbsp Ryad Lorana RedaguvatiRozklad dzeta funkciyi Gurvica v ryad Lorana mozhna vikoristati dlya viznachennya konstant Stiltyesa en yaki z yavlyayutsya v rozkladi z s q 1 s 1 n 0 1 n n G n q S 1 n displaystyle zeta s q frac 1 s 1 sum n 0 infty frac 1 n n Gamma n q S 1 n nbsp Peretvorennya Fur ye RedaguvatiDiskretne peretvorennya Fur ye za zminnoyu s dzeta funkciyi Gurvica ye hi funkciyeyu Lezhandra 2 Zv yazok z mnogochlenami Bernulli RedaguvatiVvedena vishe funkciya b x n displaystyle beta x n nbsp uzagalnyuye mnogochleni Bernulli B n x R e i n b x n displaystyle B n x Re left i n beta x n right nbsp Z inshogo boku z n x B n 1 x n 1 displaystyle zeta n x B n 1 x over n 1 nbsp Zokrema pri n 0 displaystyle n 0 nbsp z 0 x 1 2 x displaystyle zeta 0 x frac 1 2 x nbsp Zv yazok z teta funkciyeyu Yakobi RedaguvatiYaksho ϑ z t displaystyle vartheta z tau nbsp teta funkciya Yakobi todi 0 ϑ z i t 1 t s 2 d t t p 1 s 2 G 1 s 2 z 1 s z z 1 s 1 z displaystyle int 0 infty left vartheta z it 1 right t s 2 frac dt t pi 1 s 2 Gamma left frac 1 s 2 right left zeta 1 s z zeta 1 s 1 z right nbsp Cya formula ye virnoyu dlya Re s gt 0 i bud yakogo kompleksnogo z yake ne ye cilim chislom Dlya cilogo z n formula sproshuyetsya 0 ϑ n i t 1 t s 2 d t t 2 p 1 s 2 G 1 s 2 z 1 s 2 p s 2 G s 2 z s displaystyle int 0 infty left vartheta n it 1 right t s 2 frac dt t 2 pi 1 s 2 Gamma left frac 1 s 2 right zeta 1 s 2 pi s 2 Gamma left frac s 2 right zeta s nbsp de z s dzeta funkciya Rimana Ostannij viraz ye funkcionalnim rivnyannyam dlya dzeta funkciyi Rimana Zv yazok z L funkciyeyu Dirihle RedaguvatiPri racionalnih znachennyah argumentu dzeta funkciya Gurvica mozhe buti podana u viglyadi linijnoyi kombinaciyi L funkcij Dirihle i navpaki Yaksho q n k pri k gt 2 n k gt 1 i 0 lt n lt k todi z s n k x x n L s x displaystyle zeta s n k sum chi overline chi n L s chi nbsp pri comu sumuvannya zdijsnyuyetsya za vsima harakterami Dirihle za modulem k I navpaki L s x 1 k s n 1 k x n Z s n k displaystyle L s chi frac 1 k s sum n 1 k chi n mathrm Z left s frac n k right nbsp Zokrema isnuye take podannya k s z s n 1 k z s n k displaystyle k s zeta s sum n 1 k zeta left s frac n k right nbsp sho uzagalnyuye p 0 q 1 z s a p q q s z s q a displaystyle sum p 0 q 1 zeta s a p q q s zeta s qa nbsp Yake ye pravilnim pri naturalnomu q i nenaturalnomu 1 qa Racionalni znachennya argumentiv RedaguvatiDzeta funkciya Gurvica zustrichayetsya v riznih spivvidnoshennyah dlya racionalnih znachen argumentiv 2 Zokrema dlya mnogochleniv EjleraE n x displaystyle E n x nbsp E 2 n 1 p q 1 n 4 2 n 1 2 p q 2 n k 1 q z 2 n 2 k 1 2 q cos 2 k 1 p p q displaystyle E 2n 1 left frac p q right 1 n frac 4 2n 1 2 pi q 2n sum k 1 q zeta left 2n frac 2k 1 2q right cos frac 2k 1 pi p q nbsp i E 2 n p q 1 n 4 2 n 2 p q 2 n 1 k 1 q z 2 n 1 2 k 1 2 q sin 2 k 1 p p q displaystyle E 2n left frac p q right 1 n frac 4 2n 2 pi q 2n 1 sum k 1 q zeta left 2n 1 frac 2k 1 2q right sin frac 2k 1 pi p q nbsp Krim togo rivnist z s 2 p 1 2 q 2 2 q s 1 k 1 q C s k q cos 2 p 1 p k q S s k q sin 2 p 1 p k q displaystyle zeta left s frac 2p 1 2q right 2 2q s 1 sum k 1 q left C s left frac k q right cos left frac 2p 1 pi k q right S s left frac k q right sin left frac 2p 1 pi k q right right nbsp vikonuyetsya dlya 1 p q displaystyle 1 leq p leq q nbsp TutC n x displaystyle C nu x nbsp i S n x displaystyle S nu x nbsp virazhayutsya cherez hi funkciiyu Lezhandra x n displaystyle chi nu nbsp yak C n x Re x n e i x displaystyle C nu x operatorname Re chi nu e ix nbsp i S n x Im x n e i x displaystyle S nu x operatorname Im chi nu e ix nbsp Zastosuvannya RedaguvatiDzeta funkciya Gurvica zustrichayetsya v riznih rozdilah matematiki zokrema v teoriyi chisel de yiyi teoriya ye najbilsh rozvinenoyu Takozh dzeta funkciya Gurvica zustrichayetsya v teoriyi fraktaliv i dinamichnih sistem Dzeta funkciya Gurvica zastosovuyetsya v matematichnij statistici v zakoni Cipfa U fizici elementarnih chastinok vikoristovuyetsya u formuli Shvingera 3 sho daye tochnij rezultat dlya pokaznika narodzhennya par v rivnyanni Diraka dlya stacionarnogo elektromagnitnogo polya Okremi vipadki i uzagalnennya RedaguvatiDzeta funkciya Gurvica pov yazana z poligamma funkciyeyu ps m z 1 m 1 m Z m 1 z displaystyle psi m z 1 m 1 m mathrm Z m 1 z nbsp Dzeta funkciya Lerhe uzagalnyuye dzeta funkciyu Gurvica F z s q k 0 z k k q s displaystyle Phi z s q sum k 0 infty frac z k k q s nbsp tobto z s q F 1 s q displaystyle zeta s q Phi 1 s q nbsp Div takozh RedaguvatiDzeta funkciyiPrimitki Redaguvati Helmut Hasse Ein Summierungsverfahren fur die Riemannsche z Reihe Mathematische Zeitschrift 1930 Nr 1 DOI 10 1007 BF01194645 a b Djurdje Cvijovic Jacek Klinowski Values of the Legendre chi and Hurwitz zeta functions at rational arguments Math Comp 1999 No 68 P 1623 1630 J Schwinger On gauge invariance and vacuum polarization Physical Review 1951 T 82 5 S 664 679 DOI 10 1103 PhysRev 82 664 Posilannya RedaguvatiJonathan Sondow and Eric W Weisstein Hurwitz Zeta Function angl na sajti Wolfram MathWorld Literatura RedaguvatiTom M Apostol Introduction to Analytic Number Theory Springer 1976 Milton Abramowitz and Irene A Stegun Handbook of Mathematical Functions 1964 Dover Publications New York ISBN 0 486 61272 4 Davenport Harold 1967 Multiplicative number theory Lectures in advanced mathematics 1 Chicago Markham Zbl 0159 06303 Miller Jeff Adamchik Victor S 1998 Derivatives of the Hurwitz Zeta Function for Rational Arguments Journal of Computational and Applied Mathematics 100 201 206 doi 10 1016 S0377 0427 98 00193 9 Arhiv originalu za 16 bereznya 2010 Procitovano 22 lyutogo 2018 Vepstas Linas The Bernoulli Operator the Gauss Kuzmin Wirsing Operator and the Riemann Zeta Arhiv originalu za 10 bereznya 2021 Procitovano 22 lyutogo 2018 Mezo Istvan Dil Ayhan 2010 Hyperharmonic series involving Hurwitz zeta function Journal of Number Theory 130 2 360 369 doi 10 1016 j jnt 2009 08 005 Otrimano z https uk wikipedia org w index php title Dzeta funkciya Gurvica amp oldid 36186806