www.wikidata.uk-ua.nina.az
U Vikipediyi ye statti pro inshi znachennya cogo termina Pi znachennya Chislo pi poznachayetsya p displaystyle pi matematichna konstanta sho viznachayetsya v Evklidovij geometriyi yak vidnoshennya dovzhini kola l displaystyle l do jogo diametra d displaystyle d Grecka litera pi p l d displaystyle pi frac l d abo yak plosha kruga odinichnogo radiusa Chislo p displaystyle pi viniklo v geometriyi yak vidnoshennya dovzhini kola do dovzhini jogo diametra prote vono z yavlyayetsya i v inshih galuzyah matematiki Vpershe poznachennyam cogo chisla greckoyu literoyu p skoristavsya britanskij vallijskij matematik Vilyam Dzhons 1706 a zagalnoprijnyatim vono stalo pislya robit Leonarda Ejlera 1737 1 Ce poznachennya pohodit vid pochatkovoyi bukvi greckih sliv perifereia otochennya periferiya ta perimetros perimetr Dovzhina kola dorivnyuye p yaksho jogo diametr 1 Oskilki p ye irracionalnim chislom jogo ne mozhna viraziti drobom abo sho te same jogo desyatkove predstavlennya ye neskinchennim ta neperiodichnim Prote drobi taki yak 22 7 displaystyle frac 22 7 i inshi chasto zastosovuyutsya dlya nablizhennya chisla p Vvazhayetsya sho rizni cifri u desyatkovomu predstavlenni chisla p zustrichayutsya odnakovo chasto tobto p ye normalnim chislom prote ce ne dovedeno Takozh p ye transcendentnim chislom tobto ne ye korenem zhodnogo nenulovogo polinoma z racionalnimi koeficiyentami Z cogo viplivaye sho nemozhlivo rozv yazati vidomu antichnu zadachu pro kvadraturu kruga za dopomogoyu cirkulya ta linijki Starodavni civilizaciyi koristuvalisya pribliznim znachennyam chisla p u praktichnih cilyah U V stolitti n e kitajski matematiki za dopomogoyu geometrichnih metodiv obchislyuvali jogo do somogo znaku pislya komi a indijski do p yatogo Pershoyu zruchnoyu formuloyu dlya nablizhenogo obchislennya chisla p ye formula sho gruntuyetsya na sumi zbizhnogo chislovogo ryadu yaka nazivayetsya formuloyu Lejbnica 2 3 Zmist 1 Irracionalnist i transcendentnist 2 Spivvidnoshennya 3 Istoriya rozrahunkiv 3 1 Antichnist 3 2 Druge tisyacholittya nashoyi eri 3 3 Obchislennya v epohu komp yuteriv 3 3 1 Formula brativ Chudnovskih 3 4 Podannya u viglyadi lancyugovogo drobu 4 Nablizhennya 5 Vikoristannya u fizici 6 Vidkriti problemi 7 U kulturi 7 1 Rekordi 8 Div takozh 9 Primitki 10 Dzherela 11 PosilannyaIrracionalnist i transcendentnist RedaguvatiIrracionalnist chisla p displaystyle pi nbsp bula vpershe dovedena Jogannom Lambertom u 1761 roci shlyahom rozkladu funkciyi tangens tg x displaystyle operatorname tg x nbsp u neperervnij drib Vodnochas jogo dovedennya ne bulo strogim za suchasnimi mirkami bo unikalo pitannya zbizhnosti neperervnih drobiv 4 U 1794 mu Lezhandr dav strogishe dovedennya irracionalnosti chisel p i p2 dzherelo U 1882 roci profesorovi Kenigsberzkogo piznishe Myunhenskogo universitetiv Ferdinandu fon Lindemanu vdalosya dovesti transcendentnist chisla p Dovedennya cogo faktu sprostiv Feliks Klejn v 1894 r Jogo mirkuvannya buli u praci Pitannya elementarnoyi i vishoyi matematiki ch 1 sho vijshla v Gettingeni v 1908 r Oskilki v Evklidovij geometriyi plosha kruga i dovzhina kola ye funkciyami chisla p to dovedennya transcendentnosti p poklalo kraj superechci pro kvadraturu kruga sho trivala ponad 2 5 tisyachi rokiv Spivvidnoshennya RedaguvatiNajvidomishimi formulami z chislom p displaystyle pi nbsp ye taki Fransua Viyet 1593 2 p 2 2 2 2 2 2 2 2 2 displaystyle frac 2 pi frac sqrt 2 2 cdot frac sqrt 2 sqrt 2 2 cdot frac sqrt 2 sqrt 2 sqrt 2 2 cdot ldots nbsp dd Div takozh Vkladeni radikali Okremi vipadki Formula Vallisa 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 p 2 displaystyle frac 2 1 cdot frac 2 3 cdot frac 4 3 cdot frac 4 5 cdot frac 6 5 cdot frac 6 7 cdot frac 8 7 cdot frac 8 9 cdots frac pi 2 nbsp dd Ryad Lejbnica 1 1 1 3 1 5 1 7 1 9 p 4 displaystyle frac 1 1 frac 1 3 frac 1 5 frac 1 7 frac 1 9 cdots frac pi 4 nbsp dd Formula G V Lejbnicap 4 8 k 1 1 4 k 1 4 k 1 displaystyle pi 4 8 sum k 1 infty left frac 1 4k 1 4k 1 right nbsp Totozhnist Ejlera e p i 1 0 displaystyle e pi i 1 0 nbsp dd Tak zvanij integral Puassona abo integral Gaussa e x 2 d x p displaystyle int infty infty e x 2 dx sqrt pi nbsp dd Virazhennya cherez dilogarifm 5 p 6 ln 2 2 12 Li 2 1 2 displaystyle pi sqrt 6 ln 2 2 12 operatorname Li 2 left frac 1 2 right nbsp dd Istoriya rozrahunkiv RedaguvatiAntichnist Redaguvati Najranishi pisemni nablizheni znachennya chisla p displaystyle pi nbsp datuyutsya majzhe 1900 rokom do n e ce 256 81 displaystyle frac 256 81 nbsp 3 160 Yegipet i 25 8 displaystyle frac 25 8 nbsp 3 125 Vavilon obidva v mezhah 1 vidsotka istinnogo znachennya 6 Indijskij tekst Shatapatha Brahmana daye znachennya p displaystyle pi nbsp yak 339 108 displaystyle frac 339 108 nbsp 3 139 Vvazhayetsya sho u paragrafi iz Pershoyi knigi Cariv 7 23 i Drugoyi Hronik 4 2 v yakomu opisuyetsya ceremonialnij basejn u hrami Carya Solomona diametrom v desyat liktiv i perimetrom v tridcyat liktiv jdetsya pro chislo p displaystyle pi nbsp priblizno rivnim trom sho pevni vcheni namagalis poyasniti cherez rizni pripushennya taki yak shestikutnij basejn abo vignutij nazovni obidok 7 nbsp Diagrami obchislennya chisla pi ArhimedomArhimed 287 212 do n e mozhlivo pershim zaproponuvav metod obchislennya p displaystyle pi nbsp matematichnim sposobom Dlya cogo vin vpisuvav u kolo i opisuvav bilya nogo pravilni bagatokutniki Prijmayuchi diametr kola za odinicyu Arhimed rozglyadav perimetr vpisanogo bagatokutnika yak nizhnyu ocinku dovzhini kola a perimetr opisanogo bagatokutnika yak verhnyu ocinku Takim chinom dlya shestikutnika vihodit 3 lt p lt 2 3 displaystyle 3 lt pi lt 2 sqrt 3 nbsp Rozglyadayuchi pravilnij 96 kutnik Arhimed otrimav ocinku 3 10 71 lt p lt 3 1 7 displaystyle 3 frac 10 71 lt pi lt 3 frac 1 7 nbsp Ptolomej v svoyemu Almagesti daye znachennya 3 1416 yake vin mig otrimati v Apolloniya z Pergi 8 Blizko 265 roku n e matematik Lyu Huej znajshov prostij i tochnij sposib iteracijnogo algoritmu rozrahunku chisla p displaystyle pi nbsp z bud yakoyu tochnistyu Vin osobisto doviv rozrahunok do 3072 kutnika i otrimav nablizhene znachennya p displaystyle pi nbsp 3 1416 9 Piznishe Lyu Huej vinajshov shvidkij sposib rozrahunku p displaystyle pi nbsp i otrimav nablizhene znachennya 3 14 provivshi rozrahunok tilki dlya 96 kutnika 9 ta skoristavsya z togo faktu sho riznicya v ploshi mizh seriyeyu bagatokutnikiv utvoryuyut geometrichnu progresiyu kratnu 4 Blizko 480 roku kitajskij matematik Cu Chunchzhi prodemonstruvav sho p displaystyle pi nbsp 355 113 displaystyle frac 355 113 nbsp 3 1415929 i pokazav sho 3 1415926 lt p displaystyle pi nbsp lt 3 1415927 9 vikoristavshi algoritm Lyu Hueya doviv rozrahunok do 12288 kutnika Ce znachennya zalishalos najtochnishim nablizhennyam p displaystyle pi nbsp protyagom 900 rokiv V Indiyi Ariabhata i Bhaskara vikoristovuvali nablizhennya 62832 20000 displaystyle frac 62832 20000 nbsp 3 1416 Druge tisyacholittya nashoyi eri Redaguvati nbsp Zovnishni videofajli nbsp 1 Vidkrittya yake zminilo obchislennya p displaystyle pi nbsp Kanal Cikava nauka na YouTube 16 kvitnya 2021 Do drugogo tisyacholittya n e chislo p displaystyle pi nbsp bulo rozrahovane z tochnistyu ne bilshoyu nizh 10 cifr v zapisi chisla Nastupnij velikij postup u vivchenni chisla p displaystyle pi nbsp prijshov z rozvitkom neskinchennih ryadiv i vidpovidno z vidkrittyam matematichnogo analizu sho dozvolilo rozrahovuvati p displaystyle pi nbsp z bud yakoyu bazhanoyu tochnistyu rozglyadayuchi neobhidnu kilkist chleniv takogo ryadu Blizko 1400 roku Madhava zi Sangamagrami znajshov pershij z takih ryadiv p 4 k 0 1 k 2 k 1 4 1 4 3 4 5 4 7 4 9 4 11 displaystyle pi 4 sum k 0 infty frac 1 k 2k 1 frac 4 1 frac 4 3 frac 4 5 frac 4 7 frac 4 9 frac 4 11 cdots nbsp Zaraz cej ryad vidomij yak ryad Madhavi Lejbnica 3 10 abo ryad Gregori Lejbnica oskilki jogo znovu vidkrili Dzhejms Gregori ta Gotfrid Lejbnic u 17 tomu stolitti Prote shvidkist shodzhennya zanadto povilna shob rozrahuvati bagato znachushih cifr na praktici treba dodati blizko 4000 chleniv ryadu shob vdoskonaliti nablizhennya Arhimeda Prote peretvorivshi ryad u takij viglyad p 12 k 0 3 k 2 k 1 12 k 0 1 3 k 2 k 1 12 1 1 3 3 1 5 3 2 1 7 3 3 displaystyle begin aligned pi amp sqrt 12 sum k 0 infty frac 3 k 2k 1 sqrt 12 sum k 0 infty frac frac 1 3 k 2k 1 amp sqrt 12 left 1 1 over 3 cdot 3 1 over 5 cdot 3 2 1 over 7 cdot 3 3 cdots right end aligned nbsp Madhava zmig rozrahuvati p displaystyle pi nbsp yak 3 14159265359 sho pravilno z tochnistyu do 11 desyatkovih cifr Cej rekord pobiv Perskij matematik Dzhamshid al Kashi yakij rozrahuvav p displaystyle pi nbsp z tochnistyu do 16 desyatkovih cifr 11 Pershij znachnij yevropejskij vnesok z chasiv Arhimeda zrobiv nimeckij matematik Ludolf van Cejlen 1536 1610 Vin vitrativ desyat rokiv na obchislennya chisla p displaystyle pi nbsp z 20 ma desyatkovimi ciframi cej rezultat buv opublikovanij u 1596 roci Zastosuvavshi metod Arhimeda vin doviv podvoyennya do n kutnika de n 60 229 Viklavshi svoyi rezultati v tvori Pro kolo Van den Cirkel Ludolf zakinchiv jogo slovami U kogo ye bazhannya haj jde dali Pislya smerti v jogo rukopisah bulo viyavleno she 15 tochnih cifr chisla p displaystyle pi nbsp Ludolf zapoviv shob znajdeni nim znaki buli visicheni na jogo nadgrobnomu kameni 12 Na chest jogo chislo p displaystyle pi nbsp inodi nazivali ludolfovim chislom Priblizno v toj samij chas v Yevropi z yavilis metodi rozrahunku neskinchennih ryadiv ta dobutkiv Pershim takim predstavlennyam bula formula Viyeta 2 p 2 2 2 2 2 2 2 2 2 displaystyle frac 2 pi frac sqrt 2 2 cdot frac sqrt 2 sqrt 2 2 cdot frac sqrt 2 sqrt 2 sqrt 2 2 cdot cdots nbsp yaku znajshov Fransua Viyet v 1593 roci Inshij vidomij rezultat ce formula Vallisa p 2 k 1 2 k 2 2 k 2 1 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 4 3 16 15 36 35 64 63 displaystyle frac pi 2 prod k 1 infty frac 2k 2 2k 2 1 frac 2 1 cdot frac 2 3 cdot frac 4 3 cdot frac 4 5 cdot frac 6 5 cdot frac 6 7 cdot frac 8 7 cdot frac 8 9 cdots frac 4 3 cdot frac 16 15 cdot frac 36 35 cdot frac 64 63 cdots nbsp znajdena Dzhonom Vallisom v 1655 Isaak Nyuton viviv arcsin ryad dlya p displaystyle pi nbsp v 1665 66 i rozrahuvav 15 cifr p 6 arcsin 1 2 6 1 2 1 1 1 2 1 2 3 3 1 3 2 4 1 2 5 5 1 3 5 2 4 6 1 2 7 7 3 n 0 2 n n 16 n 2 n 1 3 1 8 9 640 15 7168 35 98304 189 2883584 693 54525952 429 167772160 displaystyle begin aligned pi amp 6 arcsin frac 1 2 amp 6 left frac 1 2 1 cdot 1 left frac 1 2 right frac 1 2 3 cdot 3 left frac 1 cdot 3 2 cdot 4 right frac 1 2 5 cdot 5 left frac 1 cdot 3 cdot 5 2 cdot 4 cdot 6 right frac 1 2 7 cdot 7 cdots right amp 3 sum n 0 infty frac binom 2n n 16 n 2n 1 amp 3 frac 1 8 frac 9 640 frac 15 7168 frac 35 98304 frac 189 2883584 frac 693 54525952 frac 429 167772160 cdots end aligned nbsp hocha vin piznishe viznav Meni soromno kazati yak bagato raziv ya vikonav ci rozrahunki ne robiv niyakih inshih sprav uves cej chas 13 Vin shoditsya linijno do p displaystyle pi nbsp z shvidkistyu shodzhennya m yaka dodaye shonajmenshe tri desyatkovi cifri za kozhnih 5 dodankiv Koli n pryamuye u neskinchennist m nablizhayetsya 1 4 displaystyle frac 1 4 nbsp i 1 m displaystyle frac 1 mu nbsp nablizhayetsya do 4 m 2 n 1 2 8 n 2 n 1 1 m 8 n 2 n 1 2 n 1 2 displaystyle mu frac 2n 1 2 8n 2n 1 frac 1 mu frac 8n 2n 1 2n 1 2 nbsp V 1706 Dzhon Mechin buv pershim hto rozrahuvav 100 desyatkovih cifr chisla p displaystyle pi nbsp vikoristovuyuchi ryadi arctan u formuli p 4 4 a r c t g 1 5 a r c t g 1 239 displaystyle frac pi 4 4 mathrm arctg frac 1 5 mathrm arctg frac 1 239 nbsp de arctan x k 0 1 k x 2 k 1 2 k 1 x x 3 3 x 5 5 x 7 7 displaystyle arctan x sum k 0 infty frac 1 k x 2k 1 2k 1 x frac x 3 3 frac x 5 5 frac x 7 7 cdots nbsp Rozklavshi arktangens u ryad Tejlora mozhna otrimati ryad sho shvidko zbigayetsya i pridatnij dlya obchislennya chisla p displaystyle pi nbsp z bilshoyu tochnistyu Ejler avtor poznachennya p displaystyle pi nbsp otrimav 153 pravilnih znakiv U 1777 roci Byuffon zaproponuvav statistichnij metod obchislennya chisla pi vidomij yak priklad Byuffona U 1873 roci angliyec V Shenks pislya 15 rokiv praci obchisliv 707 znakiv shopravda cherez pomilku tilki pershi 527 z nih buli pravilnimi Shob zapobigti podibnih pomilok suchasni obrahuvannya takogo rodu zdijsnyuyutsya dvichi Yaksho rezultati zbigayutsya to voni zi znachnoyu jmovirnistyu pravilni Pomilku Shenksa bulo viyavleno u 1948 roci odnim iz pershih komp yuteriv nim zhe za dekilka godin bulo virahuvano 808 znakiv p displaystyle pi nbsp Teoretichni dosyagnennya v 18 mu stolittya priveli do osyagnennya prirodi chisla p displaystyle pi nbsp chogo ne vdalos bi dosyagnuti tilki samimi chislovimi rozrahunkami Jogann Genrih Lambert doviv irracionalnist p displaystyle pi nbsp 1761 roku a Adriyen Mari Lezhandr 1774 roku doviv irracionalnist p displaystyle pi nbsp 2 Todi yak Leonard Ejler 1735 roku rozv yazav znamenitu Bazelsku zadachu i v rezultati znajshov tochne znachennya Rimanovoyi dzeta funkciyi dlya chisla 2 z 2 k 1 1 k 2 1 1 2 1 2 2 1 3 2 1 4 2 displaystyle zeta 2 sum k 1 infty frac 1 k 2 frac 1 1 2 frac 1 2 2 frac 1 3 2 frac 1 4 2 cdots nbsp sho dorivnyuye p displaystyle pi nbsp 2 6 tak vin vidkriv odnu z najvidomishih formul prirodnogo zv yazku mizh p displaystyle pi nbsp ta prostimi chislami Oboye Lezhandr ta Ejler peredbachali sho chislo p displaystyle pi nbsp maye buti transcendentne sho zreshtoyu doviv Ferdinand fon Lindeman 1882 roku Obchislennya v epohu komp yuteriv Redaguvati Praktichno fizikam potribno tilki 39 cifr chisla p displaystyle pi nbsp shob obrahuvati ob yem vsesvitu z tochnistyu do rozmiru atoma vodnyu 14 Nastannya epohi cifrovih komp yuteriv v XX stolitti prizvelo do zrostannya kilkosti novih rekordiv v rozrahunku chisla p displaystyle pi nbsp Dzhon fon Nejman ta jogo komanda vikoristali ENIAC shob rozrahuvati 2037 cifr chisla p displaystyle pi nbsp 1949 roku cej rozrahunok trivav 70 godin 15 Dodatkovi tisyachi desyatkovih rozryadiv otrimali v nastupni desyatirichchya a rubizh v miljon cifr peretnuli v 1973 roci 1995 roku otrimano vzhe 6 442 450 000 znakiv 16 Progres buv sprichinenij ne tilki shvidshimi komp yuterami ale j novimi algoritmami Odin z najznachnishih proriviv bulo vidkrittya shvidkogo peretvorennya Fur ye v 1960 h sho dalo mozhlivist komp yuteram robiti shvidko arifmetichni diyi z nadzvichajno velikimi chislami Na pochatku XX stolittya indijskij matematik Srinivasa Ramanudzhan vidkriv bagato novih formul dlya chisla p displaystyle pi nbsp deyaki z nih stali znameniti cherez svoyu elegantnist ta matematichnu glibinu 17 Obchislyuvalni algoritmi zasnovani na formulah Ramanudzhana pracyuyut duzhe shvidko Odna z cih formul 1 p 2 2 9801 k 0 4 k 1103 26390 k k 4 396 4 k displaystyle frac 1 pi frac 2 sqrt 2 9801 sum k 0 infty frac 4k 1103 26390k k 4 396 4k nbsp de k ce faktorial kA os takozh dobirka inshih formul 18 19 p 1 Z displaystyle pi frac 1 Z nbsp Z n 0 2 n 3 42 n 5 n 6 16 3 n 1 displaystyle Z sum n 0 infty frac 2n 3 42n 5 n 6 16 3n 1 nbsp p 4 Z displaystyle pi frac 4 Z nbsp Z n 0 1 n 4 n 21460 n 1123 n 4 441 2 n 1 2 10 n 1 displaystyle Z sum n 0 infty frac 1 n 4n 21460n 1123 n 4 441 2n 1 2 10n 1 nbsp p 4 Z displaystyle pi frac 4 Z nbsp Z n 0 6 n 1 1 2 n 3 4 n n 3 displaystyle Z sum n 0 infty frac 6n 1 left frac 1 2 right n 3 4 n n 3 nbsp p 32 Z displaystyle pi frac 32 Z nbsp Z n 0 5 1 2 8 n 42 n 5 30 n 5 5 1 1 2 n 3 64 n n 3 displaystyle Z sum n 0 infty left frac sqrt 5 1 2 right 8n frac 42n sqrt 5 30n 5 sqrt 5 1 left frac 1 2 right n 3 64 n n 3 nbsp p 27 4 Z displaystyle pi frac 27 4Z nbsp Z n 0 2 27 n 15 n 2 1 2 n 1 3 n 2 3 n n 3 displaystyle Z sum n 0 infty left frac 2 27 right n frac 15n 2 left frac 1 2 right n left frac 1 3 right n left frac 2 3 right n n 3 nbsp p 15 3 2 Z displaystyle pi frac 15 sqrt 3 2Z nbsp Z n 0 4 125 n 33 n 4 1 2 n 1 3 n 2 3 n n 3 displaystyle Z sum n 0 infty left frac 4 125 right n frac 33n 4 left frac 1 2 right n left frac 1 3 right n left frac 2 3 right n n 3 nbsp p 85 85 18 3 Z displaystyle pi frac 85 sqrt 85 18 sqrt 3 Z nbsp Z n 0 4 85 n 133 n 8 1 2 n 1 6 n 5 6 n n 3 displaystyle Z sum n 0 infty left frac 4 85 right n frac 133n 8 left frac 1 2 right n left frac 1 6 right n left frac 5 6 right n n 3 nbsp p 5 5 2 3 Z displaystyle pi frac 5 sqrt 5 2 sqrt 3 Z nbsp Z n 0 4 125 n 11 n 1 1 2 n 1 6 n 5 6 n n 3 displaystyle Z sum n 0 infty left frac 4 125 right n frac 11n 1 left frac 1 2 right n left frac 1 6 right n left frac 5 6 right n n 3 nbsp p 2 3 Z displaystyle pi frac 2 sqrt 3 Z nbsp Z n 0 8 n 1 1 2 n 1 4 n 3 4 n n 3 9 n displaystyle Z sum n 0 infty frac 8n 1 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 9 n nbsp p 3 9 Z displaystyle pi frac sqrt 3 9Z nbsp Z n 0 40 n 3 1 2 n 1 4 n 3 4 n n 3 49 2 n 1 displaystyle Z sum n 0 infty frac 40n 3 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 49 2n 1 nbsp p 2 11 11 Z displaystyle pi frac 2 sqrt 11 11Z nbsp Z n 0 280 n 19 1 2 n 1 4 n 3 4 n n 3 99 2 n 1 displaystyle Z sum n 0 infty frac 280n 19 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 99 2n 1 nbsp p 2 4 Z displaystyle pi frac sqrt 2 4Z nbsp Z n 0 10 n 1 1 2 n 1 4 n 3 4 n n 3 9 2 n 1 displaystyle Z sum n 0 infty frac 10n 1 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 9 2n 1 nbsp p 4 5 5 Z displaystyle pi frac 4 sqrt 5 5Z nbsp Z n 0 644 n 41 1 2 n 1 4 n 3 4 n n 3 5 n 72 2 n 1 displaystyle Z sum n 0 infty frac 644n 41 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 5 n 72 2n 1 nbsp p 4 3 3 Z displaystyle pi frac 4 sqrt 3 3Z nbsp Z n 0 1 n 28 n 3 1 2 n 1 4 n 3 4 n n 3 3 n 4 n 1 displaystyle Z sum n 0 infty frac 1 n 28n 3 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 3 n 4 n 1 nbsp p 4 Z displaystyle pi frac 4 Z nbsp Z n 0 1 n 20 n 3 1 2 n 1 4 n 3 4 n n 3 2 2 n 1 displaystyle Z sum n 0 infty frac 1 n 20n 3 left frac 1 2 right n left frac 1 4 right n left frac 3 4 right n n 3 2 2n 1 nbsp p 72 Z displaystyle pi frac 72 Z nbsp Z n 0 1 n 4 n 260 n 23 n 4 4 4 n 18 2 n displaystyle Z sum n 0 infty frac 1 n 4n 260n 23 n 4 4 4n 18 2n nbsp p 3528 Z displaystyle pi frac 3528 Z nbsp Z n 0 1 n 4 n 21460 n 1123 n 4 4 4 n 882 2 n displaystyle Z sum n 0 infty frac 1 n 4n 21460n 1123 n 4 4 4n 882 2n nbsp de x n displaystyle x n nbsp ce simvol Pokhemera dlya spadnogo faktoriala Formula brativ Chudnovskih Redaguvati Pov yazanu formulu vidkrili brati Chudnovski 1987 roku 1 p 12 k 0 1 k 6 k 13591409 545140134 k 3 k k 3 640320 3 k 3 2 displaystyle frac 1 pi 12 sum k 0 infty frac 1 k 6k 13591409 545140134k 3k k 3 640320 3k 3 2 nbsp yakij daye 14 cifr za odin chlen ryadu 17 Chudnovski vikoristali cyu formulu shob vstanoviti kilka rekordiv z obchislennya chisla p displaystyle pi nbsp v kinci 1980 h vklyuchno z pershim obchislennyam ponad 1 milyard 1 011 196 691 znakiv 1989 roku Cya formula zalishayetsya dobrim viborom dlya rozrahunku p displaystyle pi nbsp dlya program sho pracyuyut na personalnomu komp yuteri na protivagu superkomp yuteram yaki vikoristovuyut dlya vstanovlennya suchasnih rekordiv Todi yak ryadi zazvichaj pidvishuyut tochnist na pevnu kilkist rozryadiv za kozhen chlen ryadu isnuyut takozh algoritmi sho bagatokratno zbilshuyut kilkist pravilnih cifr za kozhen pidhid z tim nedolikom sho kozhen krok vimagaye znachnoyi kilkosti obchislyuvalnih resursiv Proriv buv zroblenij 1975 roku koli Richard Brent ta Yudzhin Salamin nezalezhno odin vid odnogo vidkrili algoritm Brenta Salamina v yakomu vikoristovuyutsya tilki arifmetichni diyi dlya podvoyennya kilkosti pravilnih cifr za kozhen krok 20 Na pochatkovomu etapi algoritmu vstanovimo taki vihidni znachennya a 0 1 b 0 1 2 t 0 1 4 p 0 1 displaystyle a 0 1 quad quad quad b 0 frac 1 sqrt 2 quad quad quad t 0 frac 1 4 quad quad quad p 0 1 nbsp i provodimo iteraciyi a n 1 a n b n 2 b n 1 a n b n displaystyle a n 1 frac a n b n 2 quad quad quad b n 1 sqrt a n b n nbsp t n 1 t n p n a n a n 1 2 p n 1 2 p n displaystyle t n 1 t n p n a n a n 1 2 quad quad quad p n 1 2p n nbsp do tih pir poki an and bn ne stanut dostatno blizki Todi ocinka znachennya p displaystyle pi nbsp provoditsya za formuloyu p a n b n 2 4 t n displaystyle pi approx frac a n b n 2 4t n nbsp Pracyuyuchi za ciyeyu shemoyu dostatno zrobiti 25 iteracij shob dosyagti tochnosti 45 miljoniv pravilnih znakiv Shozhij algoritm sho vchetvero zbilshuye tochnist za kozhen krok znajshli Dzhonatan ta Piter Boruejni 21 Cej metod vikoristovuvali Yasumasa Kanada ta jogo komanda shob vstanoviti bilshist rekordiv z rozrahunku chisla p displaystyle pi nbsp pochinayuchi z 1980 roku azh do rozrahunku 206 158 430 000 desyatkovih znakiv chisla p displaystyle pi nbsp 1999 roku U 2002 roci Kanada ta jogo grupa vstanovili novij rekord 1 241 100 000 000 Hocha bilshist poperednih rekordiv buli vstanovleni za dopomogoyu algoritmu Brenta Salamina pri rozrahunkah 2002 roku vikoristovuvali formuli tipu Mechinovskih yaki hoch i potrebuvali bilshe iteracij zate radikalno znizhuvali vikoristannya pam yati Rozrahunki robili na superkomp yuteri Hitachi z 64 vuzliv ta z 1 terabajtom operativnoyi pam yati yakij buv zdatnij vikonuvati 2 triljoni operacij v sekundu V sichni 2010 roku rekord buv majzhe 2 7 triljoniv znakiv jogo vstanoviv francuzkij programist Fabris Bellar na personalnomu komp yuteri 22 Ce pobilo poperednij rekord 2 576 980 370 000 znakiv sho vstanoviv Dajzuke Takahashi na T2K Tsukuba System superkomp yuter universitetu Cukuba sho v Tokio 23 6 serpnya 2010 roku v PhysOrg com opublikovano novinu sho yaponskij ta amerikanskij komp yuterni fahivci Shigeru Kondo ta Oleksandr Ji zayavili sho voni rozrahuvali znachennya p displaystyle pi nbsp do 5 triljoniv znakiv na personalnomu komp yuteri podvoyivshi poperednij rekord 24 U serpni 2021 roku ogolosheno pro vstanovlennya nastupnogo rekordu Shvejcarski vcheni z Universitetu prikladnih nauk Graubyundena za 108 dniv i 9 godin za dopomogoyu superkomp yutera obchislili 62 8 trln desyatkovih znakiv chisla p displaystyle pi nbsp Ostanni 10 obchislenih cifr 7817924264 25 26 U 1997 roci Dejvid H Bejli Piter Boruejn i Sajmon Plaff vinajshli sposib 27 shvidkogo obchislennya dovilnoyi dvijkovoyi cifri chisla p displaystyle pi nbsp bez obchislennya poperednih cifr zasnovanij na formuli p i 0 1 16 i 4 8 i 1 2 8 i 4 1 8 i 5 1 8 i 6 displaystyle pi sum i 0 infty frac 1 16 i left frac 4 8i 1 frac 2 8i 4 frac 1 8i 5 frac 1 8i 6 right nbsp Podannya u viglyadi lancyugovogo drobu Redaguvati Poslidovnist z chastkovih znamennikiv prostogo lancyugovogo drobu dlya p displaystyle pi nbsp ne daye niyakoyi ochevidnoyi shemi p 3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2 1 84 displaystyle pi 3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2 1 84 cdots nbsp chi p 3 1 7 1 15 1 1 1 292 1 1 1 1 1 1 displaystyle pi 3 textstyle cfrac 1 7 textstyle cfrac 1 15 textstyle cfrac 1 1 textstyle cfrac 1 292 textstyle cfrac 1 1 textstyle cfrac 1 1 textstyle cfrac 1 1 ddots nbsp Prote yaksho vikoristovuvati uzagalneni lancyugovi drobi to otrimayemo pevni zakonomirnosti 28 p 4 1 1 2 2 3 2 2 5 2 2 7 2 2 9 2 2 3 1 2 6 3 2 6 5 2 6 7 2 6 9 2 6 4 1 1 2 3 2 2 5 3 2 7 4 2 9 displaystyle pi textstyle cfrac 4 1 textstyle cfrac 1 2 2 textstyle cfrac 3 2 2 textstyle cfrac 5 2 2 textstyle cfrac 7 2 2 textstyle cfrac 9 2 2 ddots 3 textstyle cfrac 1 2 6 textstyle cfrac 3 2 6 textstyle cfrac 5 2 6 textstyle cfrac 7 2 6 textstyle cfrac 9 2 6 ddots textstyle cfrac 4 1 textstyle cfrac 1 2 3 textstyle cfrac 2 2 5 textstyle cfrac 3 2 7 textstyle cfrac 4 2 9 ddots nbsp Nablizhennya RedaguvatiNablizhene znachennya z tochnistyu do 1000 desyatkovih znakiv 3 14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 Prostij metod zapam yatati chislo p displaystyle pi nbsp z tochnistyu do shesti znachushih cifr pislya komi vipishemo parami pershi tri naturalnih neparnih chisla 113355 rozdilimo spisok napolovinu ta podilimo druge chislo na pershe 355 113 3 141592 displaystyle 355 over 113 3 141592 ldots nbsp Bezposeredno z oznachennya chisla p displaystyle pi nbsp yak vidnoshennya dovzhini kola do jogo diametra distayemo odin z mozhlivih metodiv obchislennya cogo chisla Viznachivshi dovzhinu dugi kola i jogo diametr a potim podilivshi pershe chislo na druge distanemo nablizhene znachennya chisla p displaystyle pi nbsp Ale tochnist znajdenogo takim metodom znachennya chisla p displaystyle pi nbsp zalezhit vid tochnosti vimiryuvannya dovzhini dug i vidrizkiv krim togo mi nikoli ne mayemo spravi z idealnim kolom Vikoristannya u fizici RedaguvatiChislo pi hocha j ne ye fizichnoyu konstantoyu duzhe chasto figuruye u fizichnih formulah zavdyaki tomu sho u nih chasto neyavno zakladeni vlastivosti kola osoblivo u vipadku simetriyi pri yakij zruchno vikoristovuvati polyarnu cilindrichnu abo sferichnu sistemu koordinat Inshim dzherelom poyavi chisla pi u fizichnih formulah ye vikoristannya normalnogo rozpodilu f x m s 1 s 2 p exp x m 2 2 s 2 displaystyle f x mu sigma frac 1 sigma sqrt 2 pi exp left frac x mu 2 2 sigma 2 right nbsp ta peretvoren Fur ye zasnovanih na spivvidnoshenni e i w w t d t 2 p d w w displaystyle int infty infty e i omega prime omega t dt 2 pi delta omega prime omega nbsp de d x displaystyle delta x nbsp delta funkciya Diraka Bilsh glibokij matematichnij rozglyad daye pidstavi stverdzhuvati sho taki vlastivosti tezh pov yazani z kolom i polyarnoyu abo sferichnoyu simetriyeyu napriklad cherez trigonometrichni funkciyi Vidkriti problemi RedaguvatiNevidoma tochna mira irracionalnosti dlya chisel p displaystyle pi nbsp i p 2 displaystyle pi 2 nbsp ale vidomo sho dlya p displaystyle pi nbsp vona ne perevishuye 7 6063 29 30 Nevidoma mira irracionalnosti dlya zhodnogo z takih chisel p e p e p e p e p e p 2 ln p p p e p 2 displaystyle pi e pi e pi cdot e frac pi e pi e pi sqrt 2 ln pi pi pi e pi 2 nbsp Dlya zhodnogo z nih nevidomo navit chi ye vono racionalnim chislom algebrichnim irracionalnim chi transcendentnim chislom Otzhe nevidomo chi ye chisla p displaystyle pi nbsp i e displaystyle e nbsp algebrichno nezalezhnimi 31 32 33 34 35 Nevidomo chi ye n p displaystyle n pi nbsp cilim chislom za pevnogo dodatnogo cilogo n displaystyle n nbsp div Tetraciya Donini nichogo nevidomo pro normalnist chisla p displaystyle pi nbsp nevidomo navit yaki z cifr 0 9 zustrichayutsya v desyatkovomu podanni chisla p displaystyle pi nbsp neskinchennu kilkist raziv Komp yuterna perevirka 200 mlrd desyatkovih znakiv p displaystyle pi nbsp pokazala sho vsi 10 cifr zustrichayutsya v comu zapisi praktichno odnakovo chasto 36 Cifra Skilki razivz yavlyayetsya0 20 000 030 8411 19 999 914 7112 20 000 013 6973 20 000 069 3934 19 999 921 6915 19 999 917 0536 19 999 881 5157 19 999 967 5948 20 000 291 0449 19 999 869 180Odnak stroge dovedennya vidsutnye Nevidomo chi nalezhit 1 p displaystyle frac 1 pi nbsp do kilcya periodiv U kulturi RedaguvatiU bagatoh universitetah SShA vidznachayetsya Den chisla Pi yakij pripadaye na 14 bereznya oskilki u amerikanskij formi zapisu dat vona maye viglyad 3 14 Cikavim faktom ye te sho Den chisla Pi zbigayetsya z dnem narodzhennya vidatnogo naukovcya Alberta Ejnshtejna 37 14 bereznya 1592 roku 6 53 58 ce idealnij chas Dnya chisla Pi Yaksho cyu datu i chas zapisati v amerikanskomu formati 3 14 1592 6 53 58 to zapisanij poryadok cifr zbigayetsya z pershimi 12 ciframi v chisli Pi 1 U Palaci vidkrittiv fr muzej nauki v Parizhi isnuye krugova kimnata yaka nazivayetsya pi kimnata Na yiyi stini vpisano 707 cifr p Ci cifri bulo zasnovano na rozrahunku 1853 roku anglijskogo matematika Vilyama Shenksa en yakij mistiv pomilku pochinayuchi z 528 yi cifri Cyu pomilku bulo viyavleno 1946 roku j vipravleno 1949 roku 38 39 Rekordi Redaguvati U serpni 2009 roku yaponski vcheni virahuvali chislo pi z tochnistyu do 2 triljoniv 576 milyardiv 980 miljoniv 377 tisyach 524 znakiv pislya komi 40 Radzhvir Mina u 2015 roci vstanoviv svitovij rekord iz zapam yatovuvannya chisla pi pravilno nazvavshi z pam yati 67 890 cifr pislya komi U sviti trivaye zmagannya sered programistiv chij komp yuter viznachit najbilshe cifr chisla pi Rekordsmenom zaraz ye Oleksandr Dzhej Ji yakij u 2014 roci viznachiv azh 13 300 000 000 000 znakiv pislya komi Dlya cogo jogo komp yuter bezupinno pracyuvav 208 dniv Artem Garin uvijshov do knigi rekordiv Ukrayini zapam yatavshi najbilshu kilkist cifr chisla Pi 41 Div takozh RedaguvatiDen piPrimitki Redaguvati a b Sogodni Den chisla Pi Arhivovano 2017 03 14 u Wayback Machine zik ua 14 03 2017 George E Andrews Richard Askey Ranjan Roy 1999 Special Functions Cambridge University Press s 58 ISBN 0 521 78988 5 a b Gupta R C 1992 On the remainder term in the Madhava Leibniz s series Ganita Bharati 14 1 4 68 71 Laczkovich M 1997 On Lambert s Proof of the Irrationality of p The American Mathematical Monthly 104 5 s 439 443 ISSN 0002 9890 doi 10 2307 2974737 Procitovano 8 lyutogo 2022 Weisstein Eric W Pi Squared angl na sajti Wolfram MathWorld About Pi Ask Dr Math FAQ Arhiv originalu za 23 chervnya 2013 Procitovano 29 zhovtnya 2007 Borwein Jonathan M David H Bailey 2 edition 27 Oct 2008 Mathematics by Experiment Plausible Reasoning in the 21st Century A K Peters s 103 136 137 ISBN 978 1568814421 C Boyer A History of Mathematics Wiley p 168 a b v C Boyer A History of Mathematics Wiley p 202 George E Andrews Richard Askey Ranjan Roy 1999 Special Functions Cambridge University Press s 58 ISBN 0521789885 Joseph George Gheverghese October 2010 1991 The Crest of the Peacock Non European Roots of Mathematics vid 3rd Princeton University Press ISBN 978 0 691 13526 7 Charles Hutton 1811 Mathematical Tables Containing the Common Hyperbolic and Logistic Logarithms London Rivington s 13 Gleick James 8 bereznya 1987 Even Mathematicians Can Get Carried Away New York Times Arhiv originalu za 23 chervnya 2013 Procitovano 29 sichnya 2011 Young Robert M 1992 Excursions in Calculus Washington Mathematical Association of America MAA s 417 ISBN 0883853175 An ENIAC Determination of pi and e to more than 2000 Decimal Places Mathematical Tables and Other Aids to Computation 4 29 pp 11 15 January 1950 Statistical Treatment of Values of First 2 000 Decimal Digits of e and of pi Calculated on the ENIAC Mathematical Tables and Other Aids to Computation 4 30 pp 109 111 April 1950 ftp pi super computing org README our last record 6b nedostupne posilannya a b The constant p displaystyle pi nbsp Ramanujan type formulas Arhiv originalu za 23 chervnya 2013 Procitovano 4 listopada 2007 Simon Plouffe David Bailey The world of Pi Pi314 net Arhiv originalu za 23 chervnya 2013 Procitovano 29 sichnya 2011 Collection of series for pi Numbers computation free fr Arhiv originalu za 23 chervnya 2013 Procitovano 29 sichnya 2011 Brent Richard 1975 Multiple precision zero finding methods and the complexity of elementary function evaluation U Traub J F Analytic Computational Complexity New York Academic Press s 151 176 Arhiv originalu za 23 lipnya 2008 Procitovano 8 veresnya 2007 Borwein Jonathan M Borwein Peter Berggren Lennart 2004 Pi A Source Book Springer ISBN 0387205713 Pi calculated to record number of digits bbc co uk 6 sichnya 2010 Procitovano 6 sichnya 2010 Pi obsessed Japanese reach 2 5 trillion digits Arhivovano 2012 02 03 u Wayback Machine 2009 08 20 5 Trillion Digits of Pi New World Record Meilenstein zum Pi Stellen Weltrekord erreicht News FH Graubunden www fhgr ch Procitovano 17 serpnya 2021 Vus Olena 17 serpnya 2021 Vcheni vstanovili novij rekord z obchislennya chisla Pi TSN ukr Procitovano 17 serpnya 2021 ON THE RAPID COMPUTATION OF VARIOUS POLYLOGARITHMIC CONSTANTS Arhiv originalu za 29 lyutogo 2008 Procitovano 26 kvitnya 2008 Lange L J May 1999 An Elegant Continued Fraction for p displaystyle pi nbsp The American Mathematical Monthly 106 5 456 458 doi 10 2307 2589152 Weisstein Eric W Mera irracionalnosti angl na sajti Wolfram MathWorld Max A Alekseyev On convergence of the Flint Hills series 2011 Weisstein Eric W Irracionalne chislo angl na sajti Wolfram MathWorld Weisstein Eric W Pi angl na sajti Wolfram MathWorld Some unsolved problems in number theory Weisstein Eric W Transcendentne chislo angl na sajti Wolfram MathWorld An introduction to irrationality and transcendence methods Arhiv originalu za 17 travnya 2013 Procitovano 13 sichnya 2021 Vezdesushee chislo pi 2007 s 67 69 Den chisla Pi 14 bereznya svyatkuyut najmatematichnishe svyato svitu 24 Kanal 24 Kanal Procitovano 18 bereznya 2018 Posamentier Alfred S Lehmann Ingmar 2004 Pi A Biography of the World s Most Mysterious Number Prometheus Books s 118 ISBN 978 1 59102 200 8 angl Arndt Jorg Haenel Christoph 2006 Pi Unleashed Springer Verlag s 50 ISBN 978 3 540 66572 4 Procitovano 5 chervnya 2013 English translation by Catriona and David Lischka angl Yaponci pobili rekord z tochnosti obchislennya chisla Pi ros Sumchanin z fenomenalnoyu pam yattyuDzherela RedaguvatiBeckmann Petr 1989 A History of Pi Barnes amp Noble Publishing ISBN 0 88029 418 3 angl Zhukov A V Vezdesushee chislo pi Izd 3 2009 ros Kuzko Kuzyakin Sho take matematika Harkiv Yunisoft 2018 r ISBN 978 966 935 593 5 Posilannya Redaguvati nbsp Portal Matematika Chislo p z tochnistyu do miljonogo znaku pislya komi Filippova Mariya 22 grudnya 2022 Cikavi fakti ta istoriya pro chislo Pi ukr Procitovano 22 bereznya 2023 Otrimano z https uk wikipedia org w index php title Chislo pi amp oldid 39638880