www.wikidata.uk-ua.nina.az
Zadacha Keplera zagalom ye zadacheyu vidshukannya ruhu dvoh sferichno simetrichnih til sho vzayemodiyut gravitacijno V klasichnij teoriyi tyazhinnya rozv yazok ciyeyi problemi znajshov sam Isaak Nyuton viyavilosya sho tila budut ruhatisya po konichnih peretinah zalezhno vid pochatkovih umov po elipsah parabolah abo giperbolah U ramkah zagalnoyi teoriyi vidnosnosti ZTV z puristichnoyi tochki zoru cya zadacha vidayetsya pogano postavlenoyu oskilki model absolyutno tverdogo tila nemozhliva v relyativistskij fizici div Paradoks Bella Tverdist za Bornom a ne absolyutno tverdi tila ne budut pid chas vzayemodiyi sferichno simetrichnimi Inshij pidhid vklyuchaye perehid do tochkovih til pravomirnij v nyutonivskij fizici ale viklikaye problemi v ZTV Krim cogo krim polozhen i shvidkostej til neobhidno zadati takozh i pochatkove gravitacijne pole metriku u vsomu prostori problema pochatkovih umov v ZTV V silu zaznachenih prichin tochnogo analitichnogo rozv yazku zadachi Keplera v ZTV ne isnuye analogichno zadachi troh til v nyutonivskij teoriyi tyazhinnya ale ye kompleks metodiv sho dozvolyayut rozrahuvati povedinku til u ramkah ciyeyi zadachi z neobhidnoyu tochnistyu nablizhennya probnogo tila postnyutonivskij formalizm chiselna vidnosnist Zmist 1 Istorichnij kontekst 2 Nablizhennya probnogo tila 2 1 Geometrichnij vstup 2 2 Metrika Shvarcshilda 2 3 Rivnyannya geodezichnih 2 3 1 Nablizhena formula dlya vidhilennya svitla 2 3 2 Zv yazok z klasichnoyu mehanikoyu i precesiya eliptichnih orbit 2 3 3 Kolovi orbiti i yih stijkist 2 3 4 Precesiya eliptichnih orbit 2 4 Tochnij rozv yazok dlya orbiti v eliptichnih funkciyah 2 4 1 Yakisnij harakter mozhlivih orbit 2 4 1 1 Kvazieliptichni orbiti 2 4 1 1 1 Stabilni kolovi orbiti 2 4 1 1 2 Infinitni orbiti 2 4 1 1 3 Asimptotichno krugovi orbiti 2 4 1 2 Padinnya na centr 2 5 Vivedennya rivnyannya orbit 2 5 1 Z rivnyannya Gamiltona Yakobi 2 5 2 Z rivnyan Lagranzha 2 5 3 Z principu Gamiltona 3 Postnyutonivski pidhodi 3 1 Popravki do geodezichnogo rozv yazku 3 1 1 Viprominyuvannya gravitacijnih hvil i vtrata energiyi i momentu impulsu 4 Chiselna vidnosnist 5 Div takozh 6 Primitki ta posilannya 7 LiteraturaIstorichnij kontekst Redaguvati nbsp Za vidsutnosti dodatkovih zovnishnih sil chastinka sho obertayetsya navkolo centralnogo tila pid diyeyu nyutonivskoyi sili gravitaciyi postijno ruhayetsya po odnomu j tomu zh elipsu Prisutnist zburen napriklad gravitacijnoyi diyi inshih planet zminyuye trayektoriyu chastinki yaku mozhna vvazhati elipsom ale z postijno zminnimi parametrami Obertannya cogo elipsa nazivane precesiyeyu orbiti mozhna vimiryati z visokoyu tochnistyu a takozh peredbachiti teoretichno vihodyachi z vidomih velichin i napryamkiv zburyuvalnih sil Hocha teoriya gravitaciyi Nyutona mozhe poyasniti 99 26 sposterezhuvanogo zsuvu perigeliyu Merkuriya zalishok velichinoyu priblizno 40 na stolittya nemozhlivo poyasniti v yiyi ramkah yak ce vidkrito Lever ye v 1859 roci 1859 roku francuzkij astronom direktor Parizkoyi observatoriyi Urben Lever ye viyaviv sho precesiya orbiti Merkuriya viznachena zi sposterezhen ne zovsim zbigayetsya z teoretichno peredbachenoyu perigelij orbiti ruhayetsya trohi shvidshe nizh viplivaye z teoriyi Nyutona pislya urahuvannya vsih mizhplanetnih zburen 1 Efekt buv malim 38 na stolittya ale znachno perevishuvav pohibki vimiryuvan priblizno 1 Znachennya vidkrittya bulo velikim i bagato fizikiv astronomi i nebesni mehaniki XIX stolittya zajmalisya cim pitannyam Zaproponovano bezlich rishen u ramkah klasichnoyi fiziki najvidomishimi buli nayavnist nevidimoyi hmari mizhplanetnogo pilu poblizu Soncya splyusnutistyu kvadrupolnij moment Soncya neznajdenij suputnik Merkuriya abo nova blizhcha do Soncya planeta Vulkan 2 3 Oskilki zhodne z cih poyasnen ne vitrimalo perevirki sposterezhennyami deyaki fiziki pochali visuvati radikalnishi gipotezi sho neobhidno zminyuvati sam zakon tyazhinnya napriklad minyati v nomu pokaznik stepenya abo dodavati v potencial chleni zalezhni vid shvidkosti til 4 Odnak bilshist takih sprob viyavilisya superechlivimi U pracyah z nebesnoyi mehaniki 5 Laplas pokazav sho yaksho gravitacijna vzayemodiya mizh dvoma tilami ne diye mittyevo sho ekvivalentno vvedennyu potencialu yakij zalezhit vid shvidkostej to v sistemi ruhomih planet ne bude zberigatisya impuls chastina impulsu bude peredavatisya gravitacijnomu polyu analogichno tomu yak ce vidbuvayetsya za elektromagnitnoyi vzayemodiyi zaryadiv v elektrodinamici Z nyutonovoyi tochki zoru yaksho gravitacijnij vpliv peredayetsya zi skinchennoyu shvidkistyu i ne zalezhit vid shvidkostej til to vsi tochki planeti mayut prityagatisya do tochki de Sonce bulo desho ranishe a ne do teperishnogo jogo roztashuvannya Na cij pidstavi Laplas pokazav sho ekscentrisitet i veliki pivosi orbit u zadachi Keplera zi skinchennoyu shvidkistyu gravitaciyi povinni rosti z chasom zaznavati vikovih zmin Z verhnih mezh na zmini cih velichin sho viplivayut zi stijkosti Sonyachnoyi sistemi i ruhu Misyacya Laplas pokazav sho shvidkist poshirennya gravitacijnoyi nyutonovoyi vzayemodiyi ne mozhe buti nizhchoyu vid 50 mln shvidkostej svitla 2 4 Chi peredayetsya tyazhinnya vid odnogo tila do inshogo mittyevo Chas peredavannya yakbi vin buv dlya nas pomitnim viyavivsya b perevazhno vikovim priskorennyam u rusi Misyacya Ya proponuvav cej zasib dlya poyasnennya priskorennya pomichenogo v zgadanomu rusi i znajshov sho dlya zadovolennya sposterezhennyami slid pripisati prityagalnij sili shvidkist u sim miljoniv raziv bilshu nizh shvidkist svitlovogo promenya A oskilki nini prichina vikovogo rivnyannya Misyacya dobre vidoma to mi mozhemo stverdzhuvati sho tyazhinnya peredayetsya zi shvidkistyu sho prinajmni v p yatdesyat miljoniv raziv perevishuye shvidkist svitla Tomu ne poboyuyuchis bud yakoyi pomitnoyi pohibki mi mozhemo vvazhati peredavannya tyazhinnya mittyevim Originalnij tekst ros Soobshaetsya li prityazhenie ot odnogo tela k drugomu mgnovenno Vremya peredachi esli by ono bylo dlya nas zametno obnaruzhilos by preimushestvenno vekovym uskoreniem v dvizhenii Luny Ya predlagal eto sredstvo dlya obyasneniya uskoreniya zamechennogo v upomyanutom dvizhenii i nashyol chto dlya udovletvoreniya nablyudeniyam dolzhno pripisat prityagatelnoj sile skorost v sem millionov raz bolshuyu chem skorost svetovogo lucha A tak kak nyne prichina vekovogo uravneniya Luny horosho izvestna to my mozhem utverzhdat chto prityazhenie peredayotsya so skorostyu po krajnej mere v pyatdesyat millionov raz prevoshodyashej skorost sveta Poetomu ne opasayas kakoj libo zametnoj pogreshnosti my mozhem prinimat peredachu tyagoteniya za mgnovennuyu P S Laplas Vikladennya sistemi Svitu Parizh 1797 6 Metod Laplasa korektnij dlya pryamih uzagalnen nyutonovoyi gravitaciyi ale mozhe buti ne zastosovnim do skladnishih modelej Tak napriklad v elektrodinamici ruhomi zaryadi prityaguyutsya vidshtovhuyutsya ne vid vidimih polozhen inshih zaryadiv a vid polozhen yaki voni zajmali b u danij chas yakbi ruhalisya vid vidimih polozhen rivnomirno i pryamolinijno ce ye vlastivistyu potencialiv Lienara Viherta 7 Analogichnij rozglyad u ramkah zagalnoyi teoriyi vidnosnosti prizvodit do takogo zh rezultatu z tochnistyu do chleniv poryadku v c 3 displaystyle v c 3 nbsp 8 U sprobah uniknuti vikladenih problem mizh 1870 i 1900 rokami bagato vchenih namagalisya vikoristovuvati zakoni gravitacijnoyi vzayemodiyi zasnovani na elektrodinamichnih potencialah Vebera Gaussa Rimana i Maksvella 9 U 1890 roci Levi vdalosya otrimati stabilni orbiti i potribnu velichinu zsuvu perigeliyu shlyahom kombinaciyi zakoniv Vebera i Rimana Inshu uspishnu sprobu zrobiv P Gerber u 1898 roci Prote oskilki vihidni elektrodinamichni potenciali viyavilisya nepravilnimi napriklad zakon Vebera ne vvijshov do ostatochnoyi teoriyi elektromagnetizmu Maksvella ci gipotezi vidkinuli yak dovilni 10 Deyaki inshi sprobi taki yak teoriya G Lorenca 1900 rik yaki vzhe vikoristovuvali teoriyu Maksvella davali zanadto malu precesiyu 2 11 Blizko 1904 1905 rokiv roboti G Lorenca A Puankare i A Ejnshtejna zaklali fundament specialnoyi teoriyi vidnosnosti viklyuchivshi mozhlivist poshirennya bud yakih vzayemodij shvidshe nizh zi shvidkistyu svitla Takim chinom postalo zavdannya zaminiti nyutonivskij zakon gravitaciyi inshim sumisnim z principom vidnosnosti ale takim sho daye za malih shvidkostej i gravitacijnih poliv majzhe nyutonivski efekti Taki sprobi zrobiv A Puankare 1905 i 1906 G Minkovskij 1908 i A Zommerfeld 1910 Odnak usi rozglyanuti modeli davali zanadto malu velichinu zsuvu perigeliyu 11 12 1907 roku Ejnshtejn prijshov do visnovku sho dlya opisu gravitacijnogo polya neobhidno uzagalniti todishnyu teoriyu vidnosnosti zaraz zvanu specialnoyu Vid 1907 do 1915 roku Ejnshtejn poslidovno jshov do novoyi teoriyi vikoristovuyuchi yak dorogovkaz svij princip vidnosnosti Zgidno z cim principom odnoridne gravitacijne pole diye odnakovo na vsyu materiyu i otzhe ne mozhe buti znajdene sposterigachem yakij vilno padaye Vidpovidno vsi lokalni gravitacijni efekti ye vidtvoryuvanimi v sistemi vidliku sho ruhayetsya z priskorenyam i navpaki Tomu gravitaciya diye yak sila inerciyi sho vinikaye cherez priskorennya sistemi vidliku taka yak vidcentrova sila abo sila Koriolisa podibno do vsih cih sil gravitacijna sila proporcijna inertnij masi Naslidkom ciyeyi obstavini ye te sho v riznih tochkah prostoru chasu inercialni sistemi vidliku mayut priskorennya odna vidnosno inshoyi Ce mozhlivo opisati tilki yaksho pozhertvuvati klasichnim pripushennyam pro te sho nash prostir opisuyetsya evklidovoyu geometriyeyu i perejti do vikrivlenogo prostoru rimanovoyi geometriyi Bilshe togo vikrivlenim viyavlyayetsya zv yazok prostoru i chasu yakij i proyavlyayetsya yak sila gravitaciyi za zvichajnih umov 13 Pislya vosmi rokiv roboti 1907 1915 Ejnshtejn znajshov zakon yakij pokazuye yak prostir chas vikrivlyayetsya nayavnoyu v nomu materiyeyu rivnyannya Ejnshtejna Gravitaciya vidriznyayetsya vid sil inerciyi tim sho viklikayetsya krivinoyu prostoru chasu yaku mozhna vimiryati invariantno Pershi zh rozv yazki otrimanih rivnyan znajdeni Ejnshtejnom nablizheno i Shvarcshildom tochno poyasnili anomalnu precesiyu Merkuriya i peredbachili podvoyenu velichinu vidhilennya svitla porivnyano z poperednimi evristichnimi ocinkami Ce proroctvo teoriyi pidtverdili v 1919 roci anglijski astronomi Nablizhennya probnogo tila Redaguvati nbsp Orbita probnoyi chastinki za pochatkovoyi shvidkosti sho dorivnyuye 126 vid krugovoyi shvidkosti i pochatkovij vidstani rivnij 10 radiusam Shvarcshilda Zliva zgidno z nyutonivskoyu mehanikoyu pravoruch zgidno z metrikoyu Shvarcshilda Natisnit shob pobachiti animaciyu V comu pidhodi vvazhayetsya sho masa odnogo tila m znehtovno mala porivnyano z masoyu drugogo M ce nepogane nablizhennya navit dlya planet sho obertayutsya navkolo Soncya i praktichno idealne dlya kosmichnih aparativ U takomu vipadku mozhna vvazhati sho pershe tilo ye probnim tobto vono ne vnosit zburen u gravitacijne pole drugogo tila a lishe ruhayetsya po geodezichnih liniyah sformovanogo drugim tilom prostoru chasu Oskilki zazvichaj zadacha dvoh til rozglyadayetsya v masshtabah znachno menshih vid kosmologichnih to vplivom lyambda chlena na metriku mozhna znehtuvati i gravitacijne pole bud yakogo sferichno simetrichnogo tila bude davatisya rozv yazkom Shvarcshilda Ruh legkogo tila zvanogo dali chastinkoyu takim chinom vidbuvayetsya po geodezichnih liniyah prostoru Shvarcshilda yaksho znehtuvati priplivnimi silami i reakciyeyu gravitacijnogo viprominyuvannya Same v comu nablizhenni Ejnshtejn vpershe obchisliv anomalnu precesiyu perigeliyu Merkuriya sho stalo pershim pidtverdzhennyam zagalnoyi teoriyi vidnosnosti j rozv yazalo odnu z najvidomishih na toj moment problem nebesnoyi mehaniki Ce zh nablizhennya dosit tochno opisuye vidhilennya svitla inshe znamenite yavishe peredbachene zagalnoyu teoriyeyu vidnosnosti Razom z tim jogo ne dostatno dlya opisu procesu relyativistskogo skorochennya orbit cherez gravitacijne viprominyuvannya Geometrichnij vstup Redaguvati U zvichajnij evklidovij geometriyi vikonuyetsya teorema Pifagora yaka stverdzhuye sho kvadrat vidstani ds2 mizh dvoma neskinchenno blizkimi tochkami prostoru dorivnyuye sumi kvadrativ diferencialiv koordinat d s 2 d x 2 d y 2 d z 2 displaystyle ds 2 dx 2 dy 2 dz 2 nbsp de dx dy i dz neskinchenno mali riznici mizh koordinatami tochok po osyah x y i z dekartovoyi sistemi koordinat Teper uyavimo sobi svit v yakomu ce vzhe nepravilno a vidstani zadayutsya spivvidnoshennyam d s 2 F x y z d x 2 G x y z d y 2 H x y z d z 2 displaystyle ds 2 F x y z dx 2 G x y z dy 2 H x y z dz 2 nbsp de F G i H deyaki funkciyi polozhennya Ce nevazhko uyaviti oskilki mi zhivemo v takomu sviti poverhnya Zemli zignuta tak sho yiyi ne mozhna bez spotvoren podati na ploskij karti Nedekartovi koordinatni sistemi takozh mozhut buti prikladom u sferichnih koordinatah r 8 f evklidova vidstan zapisuyetsya yak d s 2 d r 2 r 2 d 8 2 r 2 sin 2 8 d f 2 displaystyle ds 2 dr 2 r 2 d theta 2 r 2 sin 2 theta d varphi 2 nbsp Nareshti v zagalnomu vipadku mi mayemo dopustiti sho linijki mozhut zminyuvati svoyu koordinatnu dovzhinu ne tilki pid chas zmini polozhennya ale j pri povorotah Ce prizvodit do poyavi perehresnih chleniv u virazi dlya dovzhini d s 2 g x x d x 2 g x y d x d y g x z d x d z g y y d y 2 g y z d y d z g z z d z 2 displaystyle ds 2 g xx dx 2 g xy dxdy g xz dxdz g yy dy 2 g yz dydz g zz dz 2 nbsp de 6 funkcij gxx gxy i tak dali peretvoryuyutsya pri zmini koordinat yak komponenti tenzora zvanogo metrichnim abo prosto metrikoyu yakij viznachaye vsi harakteristiki prostoru v cij uzagalnenij rimanovij geometriyi U sferichnih koordinatah napriklad u metrici nemaye perehresnih chleniv a yedini yiyi nenulovi komponenti ce grr 1 g88 r2 i gff r2 sin2 8 Zaznachimo okremo sho pislya zadannya metrichnogo tenzora v yakijs sistemi koordinat vsya geometriya rimanovogo prostoru viyavlyayetsya zhorstko zadanoyu i ne zminyuyetsya pri peretvorennyah koordinat Prostishe kazhuchi koordinati ce dovilni chisla yaki lishe vkazuyut na tochku prostoru a vidstan vimiryana fizichnoyu linijkoyu mizh dvoma zafiksovanimi tochkami ne zalezhit vid togo yaki koordinati mi prisvoyuyemo yim ye invariantom pri zmini koordinatnih sitok U specialnij teoriyi vidnosnosti Albert Ejnshtejn pokazav sho vidstan ds mizh dvoma tochkami v prostori ne ye invariantom a zalezhit vid ruhu sposterigacha Cya vidstan viyavlyayetsya proyekciyeyu na odnochasnij prostir istinno invariantnoyi velichini intervalu sho ne zalezhit vid ruhu sposterigacha ale vklyuchaye krim prostorovih takozh i chasovu koordinatu tochok prostoru chasu zvanih pri comu podiyami d s 2 c 2 d t 2 d x 2 d y 2 d z 2 displaystyle ds 2 c 2 dt 2 dx 2 dy 2 dz 2 nbsp Analogichno mozhna perepisati interval u sferichnih koordinatah d s 2 c 2 d t 2 d r 2 r 2 d 8 2 r 2 sin 2 8 d f 2 displaystyle ds 2 c 2 dt 2 dr 2 r 2 d theta 2 r 2 sin 2 theta d varphi 2 nbsp Cya formula yavlyaye soboyu prirodne uzagalnennya teoremi Pifagora i spravedliva za vidsutnosti krivini prostoru chasu U zagalnij zhe teoriyi vidnosnosti prostir chas vikrivleno tak sho vidstan virazhayetsya zagalnoyu formuloyu d s 2 g m n d x m d x n displaystyle ds 2 g mu nu dx mu dx nu nbsp de zastosovane pravilo pidsumovuvannya Ejnshtejna za indeksom sho zustrichayetsya vgori i vnizu mayetsya na uvazi pidsumovuvannya za vsima jogo znachennyami v comu vipadku chotirma troma prostorovimi i odniyeyu chasovoyu koordinatoyu Tochni znachennya komponent metriki viznachayutsya rozpodilom gravituyuchoyi rechovini yiyi masi energiyi ta impulsu cherez rivnyannya Ejnshtejna Ejnshtejn viviv ci rivnyannya vihodyachi z vidomih zakoniv zberezhennya energiyi ta impulsu odnak rozv yazki cih rivnyan peredbachili yavisha yaki ranishe ne sposterigalis na zrazok vidhilennya svitla pidtverdzheni piznishe Metrika Shvarcshilda Redaguvati Yedinim rozv yazkom rivnyan Ejnshtejna bez kosmologichnoyi staloyi dlya zovnishnogo gravitacijnogo polya sferichno simetrichno rozpodilenoyi materiyi energiyi impulsu ye metrika Shvarcshilda d s 2 1 r s r c 2 d t 2 d r 2 1 r s r r 2 d 8 2 r 2 sin 2 8 d f 2 displaystyle ds 2 left 1 frac r s r right c 2 dt 2 frac dr 2 1 frac r s r r 2 d theta 2 r 2 sin 2 theta d varphi 2 nbsp de c shvidkist svitla v metrah na sekundu t chasova koordinata v sekundah sho zbigayetsya z chasom vidlichuvanim neskinchenno viddalenim neruhomim godinnikom r radialna koordinata v metrah viznachayetsya yak dovzhina kola z centrom u tochci simetriyi podilena na 2p 8 i f kuti v sistemi sferichnih koordinat u radianah rs radius Shvarcshilda v metrah sho harakterizuye tilo masoyu M i dorivnyuyer s 2 G M c 2 displaystyle r s frac 2GM c 2 nbsp dd de G gravitacijna stala 14 Klasichna teoriya gravitaciyi Nyutona ye granichnim vipadkom za malih rs r Na praktici ce vidnoshennya majzhe zavzhdi duzhe male Napriklad dlya Zemli radius Shvarcshilda stanovit priblizno 9 milimetriv todi yak suputnik na geostacionarnij orbiti mistitsya na r 42164 displaystyle r simeq 42164 nbsp km Dlya Sonyachnoyi sistemi ce vidnoshennya ne perevershuye 2 miljonnih i lishe dlya dilyanok poblizu chornih dir i nejtronnih zir vono staye istotno bilshim do dekilkoh desyatih Rivnyannya geodezichnih Redaguvati Zgidno z zagalnoyu teoriyeyu vidnosnosti chastinki znehtovno maloyi masi ruhayutsya po geodezichnih liniyah prostoru chasu 15 V nevikrivlenomu prostori daleko vid bud yakih prityaguvalnih til ci geodezichni yavlyayut soboyu pryami liniyi V prisutnosti dzherel gravitaciyi ce vzhe ne tak i rivnyannya geodezichnih zapisuyutsya tak 16 d 2 x m d q 2 G n l m d x n d q d x l d q 0 displaystyle frac d 2 x mu dq 2 Gamma nu lambda mu frac dx nu dq frac dx lambda dq 0 nbsp de G simvoli Kristofelya a zminna q parametrizuye shlyah chastinki kriz prostir chas yiyi svitovu liniyu i nazivayetsya kanonichnim parametrom geodezichnoyi liniyi Simvoli Kristofelya zalezhat tilki vid metrichnogo tenzora gmn tochnishe vid togo yak vin zminyuyetsya vid tochki do tochki Dlya chasopodibnih geodezichnih po yakih ruhayutsya masivni chastinki parametr q zbigayetsya z vlasnim chasom t z tochnistyu do stalogo mnozhnika yakij zazvichaj berut rivnim 1 Dlya chasopodibnih svitovih linij bezmasovih chastinok takih yak fotoni parametr q ne mozhna vzyati rivnim vlasnomu chasu oskilki vin dorivnyuye nulyu ale forma geodezichnih vse odno opisuyetsya cim rivnyannyam Krim togo svitlopodibni geodezichni mozhna otrimati yak granichnij vipadok chasopodibnih pri pryamuvanni masi chastinki do 0 yaksho zberigati staloyu energiyu chastinki Mozhna sprostiti zadachu skoristavshis yiyi simetriyeyu tak mi viklyuchimo z rozglyadu odnu zminnu V bud yakomu sferichno simetrichnomu vipadku ruh vidbuvayetsya v ploshini yaku mozhna vibrati za ploshinu 8 p 2 Metrika v cij ploshini maye viglyad d s 2 1 r s r c 2 d t 2 d r 2 1 r s r r 2 d f 2 displaystyle ds 2 left 1 frac r s r right c 2 dt 2 frac dr 2 1 frac r s r r 2 d varphi 2 nbsp Oskilki vona ne zalezhit vid f displaystyle varphi nbsp i t displaystyle t nbsp to isnuyut dva integrali ruhu div visnovok nizhche r 2 d f d t L m displaystyle r 2 frac d varphi d tau frac L m nbsp 1 r s r d t d t E m c 2 displaystyle left 1 frac r s r right frac dt d tau frac E mc 2 nbsp Pidstavivshi ci integrali v metriku mayemo c 2 1 r s r c 2 d t d t 2 1 1 r s r d r d t 2 r 2 d f d t 2 displaystyle c 2 left 1 frac r s r right c 2 left frac dt d tau right 2 frac 1 1 frac r s r left frac dr d tau right 2 r 2 left frac d varphi d tau right 2 nbsp tak sho rivnyannya ruhu chastinki stayut takimi d r d t 2 E 2 m 2 c 2 1 r s r c 2 L 2 m 2 r 2 displaystyle left frac dr d tau right 2 frac E 2 m 2 c 2 left 1 frac r s r right left c 2 frac L 2 m 2 r 2 right nbsp Zalezhnist vid vlasnogo chasu mozhna viklyuchiti skoristavshis integralom L d r d f 2 d r d t 2 d t d f 2 d r d t 2 m r 2 L 2 displaystyle left frac dr d varphi right 2 left frac dr d tau right 2 left frac d tau d varphi right 2 left frac dr d tau right 2 left frac mr 2 L right 2 nbsp tomu rivnyannya orbit staye takim d r d f 2 r 4 b 2 1 r s r r 4 a 2 r 2 displaystyle left frac dr d varphi right 2 frac r 4 b 2 left 1 frac r s r right left frac r 4 a 2 r 2 right nbsp de dlya stislosti vvedeno dvi harakterni dovzhini a i b a L m c displaystyle a frac L mc nbsp b c L E displaystyle b frac cL E nbsp Te zh rivnyannya mozhna vivesti z lagranzhevogo pidhodu 17 abo skoristavshis rivnyannyam Gamiltona Yakobi 18 div dali Rozv yazok rivnyannya orbit dayetsya virazom f d r r 2 1 b 2 1 r s r 1 a 2 1 r 2 displaystyle varphi int frac dr r 2 sqrt frac 1 b 2 left 1 frac r s r right left frac 1 a 2 frac 1 r 2 right nbsp nbsp Vidhilennya svitla zir gravitacijnim polem Soncya vimiryane astronomichnoyu ekspediciyeyu Eddingtona 1919 rik i yak viyavilosya uzgodzhene iz zagalnoyu teoriyeyu vidnosnosti poklalo pochatok shirokomasshtabnomu viznannyu teoriyi Ejnshtejna Nablizhena formula dlya vidhilennya svitla Redaguvati V granici masi chastinki m sho pryamuye do nulya abo ekvivalentno a displaystyle a rightarrow infty nbsp rivnyannya orbiti perehodit u f d r r 2 1 b 2 1 r s r 1 r 2 displaystyle varphi int frac dr r 2 sqrt frac 1 b 2 left 1 frac r s r right frac 1 r 2 nbsp Rozkladayuchi cej viraz za stepenyami vidnoshennya rs r u pershomu nablizhenni otrimuyemo vidhilennya df bezmasovoyi chastinki pri proloti povz gravituyuchij centru d f 2 r s b 4 G M c 2 b displaystyle delta varphi approx frac 2r s b frac 4GM c 2 b nbsp Konstantu b tut mozhna interpretuvati yak pricilnij parametr vidstan najbilshogo nablizhennya Nablizhennya vikoristane pri vivedenni ciyeyi formuli dosit tochne dlya bilshosti praktichnih zastosuvan zokrema dlya vimiryuvannya gravitacijnogo linzuvannya Dlya svitla sho prohodit poblizu sonyachnoyi poverhni vidhilennya stanovit blizko 1 75 kutovoyi sekundi Zv yazok z klasichnoyu mehanikoyu i precesiya eliptichnih orbit Redaguvati nbsp Efektivnij potencial dlya riznih znachen momentu impulsu Za malih r potencial zmenshuyetsya na vidminu vid klasichnoyi zadachi Keplera dozvolyayuchi chastinci padinnya na centr Prote pri a r s L m c r s gt 3 displaystyle a r s L mcr s gt sqrt 3 nbsp narodzhena zovni chastinka ne mozhe podolati potencialnij bar yer i unikaye zahoplennya Pri granichnomu normovanomu kutovomu momenti a r s 3 displaystyle a r s sqrt 3 nbsp isnuye metastabilna kolova orbita poznachena zelenim kolom i ye neskinchenno nakruchuvana na neyi i skruchuvna z neyi spiralni orbiti Za malih a r s displaystyle a r s nbsp chastinka zahoplyuyetsya i padaye na centr Rivnyannya ruhu chastinki v poli Shvarcshilda d r d t 2 E 2 m 2 c 2 c 2 r s c 2 r L 2 m 2 r 2 r s L 2 m 2 r 3 displaystyle left frac dr d tau right 2 frac E 2 m 2 c 2 c 2 frac r s c 2 r frac L 2 m 2 r 2 frac r s L 2 m 2 r 3 nbsp mozhna perepisati vikoristovuyuchi viznachennya gravitacijnogo radiusa rs 1 2 m d r d t 2 E 2 2 m c 2 1 2 m c 2 G M m r L 2 2 m r 2 G M L 2 c 2 m r 3 displaystyle frac 1 2 m left frac dr d tau right 2 left frac E 2 2mc 2 frac 1 2 mc 2 right frac GMm r frac L 2 2mr 2 frac GML 2 c 2 mr 3 nbsp sho ekvivalentno ruhu nerelyativistskoyi chastinki z energiyeyu E 2 2 m c 2 1 2 m c 2 displaystyle frac E 2 2mc 2 frac 1 2 mc 2 nbsp v odnovimirnomu efektivnomu potenciali V r G M m r L 2 2 m r 2 G M L 2 c 2 m r 3 displaystyle V r frac GMm r frac L 2 2mr 2 frac GML 2 c 2 mr 3 nbsp Pershi dva chleni vidpovidayut vidomim klasichnim gravitacijnomu potencialu tyazhinnya Nyutona i vidcentrovomu potencialu vidshtovhuvannya i tilki tretij chlen ne maye analoga v klasichnij zadachi Keplera Yak pokazano nizhche i v inshij statti takij chlen privodit do precesiyi eliptichnih orbit na kut df za kozhen oborot d f 6 p G M c 2 A 1 e 2 displaystyle delta varphi approx frac 6 pi GM c 2 A left 1 e 2 right nbsp de A velika pivvis orbiti a e yiyi ekscentrisitet Tretij chlen maye harakter prityagannya ta zminyuye povedinku potencialu za malih r zamist togo shob jti v displaystyle infty nbsp pereshkodzhayuchi padinnyu chastinki na centr yak ce bulo v klasichnij zadachi Keplera potencial jde na displaystyle infty nbsp dozvolyayuchi chastinci padati div detalnishe padinnya v chornu diru Kolovi orbiti i yih stijkist Redaguvati nbsp Radiusi stijkih sinya kriva i nestijkih chervona kriva orbit v zalezhnosti vid normovanogo kutovogo momentu a rs L mcrs Grafiki zustrichayutsya v yedinij tochci obvedenij zelenim kolom de a r s L m c r s 3 displaystyle a r s L mcr s sqrt 3 nbsp Dlya porivnyannya navedeno takozh radiusi zavzhdi stijkih orbit klasichnoyi zadachi Keplera chorna kriva Efektivnij potencial V mozhna perepisati cherez parametri dovzhini a i b V r m c 2 2 r s r a 2 r 2 r s a 2 r 3 displaystyle V r frac mc 2 2 left frac r s r frac a 2 r 2 frac r s a 2 r 3 right nbsp Krugovi orbiti mozhlivi za efektivnoyi sili sho dorivnyuye nulyu F d V d r m c 2 2 r 4 r s r 2 2 a 2 r 3 r s a 2 0 displaystyle F frac dV dr frac mc 2 2r 4 left r s r 2 2a 2 r 3r s a 2 right 0 nbsp tobto koli dvi prityagalni sili nyutonova gravitaciya pershij chlen i yiyi relyativistska popravka tretij chlen tochno zbalansovani vidcentrovoyu siloyu vidshtovhuvannya drugij chlen Isnuyut dva radiusi na yakih dosyagayetsya cya kompensaciya r o u t e r a 2 r s 1 1 3 r s 2 a 2 displaystyle r mathrm outer frac a 2 r s left 1 sqrt 1 frac 3r s 2 a 2 right nbsp r i n n e r a 2 r s 1 1 3 r s 2 a 2 3 a 2 r o u t e r displaystyle r mathrm inner frac a 2 r s left 1 sqrt 1 frac 3r s 2 a 2 right frac 3a 2 r mathrm outer nbsp yaki pryamo vivodyatsya z kvadratnogo rivnyannya vishe Vnutrishnij radius rinner viyavlyayetsya nestijkim za bud yakih znachennyah a oskilki sila tyazhinnya tam roste shvidshe nizh sila vidshtovhuvannya tomu bud yake zburennya prizvodit do padinnya chastinki na centr Orbiti zovnishnogo radiusa stijki tam relyativistske tyazhinnya nevelike i yih harakter majzhe zbigayetsya z trayektoriyami nerelyativistskoyi zadachi Keplera Koli a nabagato bilshe za rs klasichnij vipadok rozmiri orbit pryamuyut do r o u t e r 2 a 2 r s displaystyle r mathrm outer approx frac 2a 2 r s nbsp r i n n e r 3 2 r s displaystyle r mathrm inner approx frac 3 2 r s nbsp Pidstavlyayuchi viznachennya a i rs v router otrimuyemo klasichnu formulu dlya chastinki na kolovij orbiti navkolo gravituyuchogo centra masoyu M r o u t e r 3 G M w f 2 displaystyle r mathrm outer 3 approx frac GM omega varphi 2 nbsp de wf orbitalna kutova shvidkist chastinki Koli a2 pryamuye do 3rs2 zverhu zovnishnij i vnutrishnij radiusi zmikayutsya do r o u t e r r i n n e r 3 r s displaystyle r mathrm outer rightarrow r mathrm inner rightarrow 3r s nbsp Rozv yazok kvadratnogo rivnyannya garantuye sho router zavzhdi bilshe 3rs a rinner lezhit mizh 3 2 rs i 3rs Krugovi orbiti z radiusom menshe 3 2 rs nemozhlivi Sama orbita rinner 3 2 rs ye granichnim vipadkom dlya bezmasovih chastinok koli a displaystyle a rightarrow infty nbsp tomu sferu cogo radiusa inodi nazivayut fotonnoyu sferoyu Precesiya eliptichnih orbit Redaguvati nbsp V nerelyativistskij zadachi Keplera chastinka ruhayetsya zavzhdi po odnomu j tomu zh idealnomu elipsu chervona orbita Zagalna teoriya vidnosnosti zminyuye silu sho diye na chastinku tak sho tyazhinnya zrostaye shvidshe nizh u teoriyi Nyutona v shvarcshildovih koordinatah Ce zburennya viklikaye obertannya majzhe eliptichnoyi orbiti blakitna precesiyu v napryamku obertannya planeti cej efekt nadijno vimiryanij dlya Merkuriya Veneri i Zemli Zhovta tochka yavlyaye soboyu centr tyazhinnya napriklad Sonce Shvidkist precesiyi orbiti mozhna vivesti z efektivnogo potencialu V Male vidhilennya za radiusom vid orbiti kola r router bude oscilyuvati z chastotoyu w r 2 1 m d 2 V d r 2 r r o u t e r c 2 r s 2 r o u t e r 4 r o u t e r r i n n e r w f 2 1 3 r s 2 a 2 displaystyle omega r 2 frac 1 m left frac d 2 V dr 2 right r r mathrm outer left frac c 2 r s 2r mathrm outer 4 right left r mathrm outer r mathrm inner right omega varphi 2 sqrt 1 frac 3r s 2 a 2 nbsp Rozkladannya v ryad daye w r w f 1 3 r s 2 4 a 2 displaystyle omega r omega varphi left 1 frac 3r s 2 4a 2 cdots right nbsp Mnozhennya na period obertannya T privodit do precesiyi na odnomu oboroti d f T w f w r 2 p 3 r s 2 4 a 2 3 p m 2 c 2 2 L 2 r s 2 displaystyle delta varphi T left omega varphi omega r right approx 2 pi left frac 3r s 2 4a 2 right frac 3 pi m 2 c 2 2L 2 r s 2 nbsp de wfT 2p i vikoristano viznachennya a Pidstavlyayuchi rs otrimuyemo d f 3 p m 2 c 2 2 L 2 4 G 2 M 2 c 4 6 p G 2 M 2 m 2 c 2 L 2 displaystyle delta varphi approx frac 3 pi m 2 c 2 2L 2 left frac 4G 2 M 2 c 4 right frac 6 pi G 2 M 2 m 2 c 2 L 2 nbsp Vikoristovuyuchi veliku pivvis orbiti A i ekscentrisitet e pov yazani spivvidnoshennyam L 2 G M m 2 A 1 e 2 displaystyle frac L 2 GMm 2 A left 1 e 2 right nbsp mi prihodimo do najvidomishoyi formuli precesiyi d f 6 p G M c 2 A 1 e 2 displaystyle delta varphi approx frac 6 pi GM c 2 A left 1 e 2 right nbsp Tochnij rozv yazok dlya orbiti v eliptichnih funkciyah Redaguvati Vvodyachi bezrozmirnu zminnu z r s 4 r 1 12 displaystyle zeta frac r s 4r frac 1 12 nbsp rivnyannya orbiti d r d f 2 r 4 b 2 1 r s r r 4 a 2 r 2 displaystyle left frac dr d varphi right 2 frac r 4 b 2 left 1 frac r s r right left frac r 4 a 2 r 2 right nbsp mozhna zvesti do sproshenogo viglyadu d z d f 2 4 z 3 g 2 z g 3 displaystyle left frac d zeta d varphi right 2 4 zeta 3 g 2 zeta g 3 nbsp de stali bezrozmirni koeficiyenti g2 i g3 viznacheni yak g 2 1 12 r s 2 4 a 2 g 3 1 216 r s 2 24 a 2 r s 2 16 b 2 displaystyle begin aligned g 2 amp frac 1 12 frac r s 2 4a 2 g 3 amp frac 1 216 frac r s 2 24a 2 frac r s 2 16b 2 end aligned nbsp Rozv yazok cogo rivnyannya dlya orbiti zadayetsya u viglyadi neviznachenogo integrala f f 0 d z 4 z 3 g 2 z g 3 displaystyle varphi varphi 0 int frac d zeta sqrt 4 zeta 3 g 2 zeta g 3 nbsp Zvidsi viplivaye sho z tochnistyu do fazovogo zsuvu z f f 0 displaystyle zeta wp varphi varphi 0 nbsp de displaystyle wp nbsp eliptichna funkciya Veyershtrassa z parametrami g2 i g3 i f0 stala integruvannya mozhlivo kompleksna Yakisnij harakter mozhlivih orbit Redaguvati Povnij yakisnij analiz mozhlivih orbit u poli Shvarcshilda vpershe proviv Yu Hagihara v 1931 roci Trayektoriyi v poli Shvarcshilda opisuyutsya rivnyannyam ruhu d z d f 2 4 z 3 g 2 z g 3 displaystyle left frac d zeta d varphi right 2 4 zeta 3 g 2 zeta g 3 nbsp Yaksho diskriminant D g 2 3 27 g 3 2 displaystyle Delta g 2 3 27g 3 2 nbsp bilshij vid 0 to kubichne rivnyannya G z 4 z 3 g 2 z g 3 0 displaystyle G zeta 4 zeta 3 g 2 zeta g 3 0 nbsp maye tri riznih dijsnih koreni e1 e2 i e3 yaki mozhna vporyadkuvati za spadannyam e 1 gt e 2 gt e 3 displaystyle e 1 gt e 2 gt e 3 nbsp U takomu razi rozv yazok z f f 0 displaystyle zeta wp varphi varphi 0 nbsp ye eliptichnoyu funkciyeyu z dvoma pivperiodami odnim chisto dijsnim w 1 e 1 d z 4 z 3 g 2 z g 3 displaystyle omega 1 int e 1 infty frac dz sqrt 4z 3 g 2 z g 3 nbsp i drugim chisto uyavnim w 3 i e 3 d z 4 z 3 g 2 z g 3 displaystyle omega 3 i int e 3 infty frac dz sqrt 4z 3 g 2 z g 3 nbsp Promizhnij korin sho zalishivsya viznachaye kompleksnij pivperiod w2 w1 w3 Ci velichini pov yazani z vidpovidnimi korenyami rivnyannyam w i e i displaystyle wp omega i e i nbsp i 1 2 3 Otzhe pri f f 0 n w i displaystyle varphi varphi 0 n omega i nbsp n cile chislo pohidna z obertayetsya v 0 tobto trayektoriya dosyagaye periastru abo apoastru tochki najbilshogo nablizhennya i viddalennya vidpovidno d z d ϕ 0 w h e n z w i e i displaystyle frac d zeta d phi 0 mathrm when zeta wp omega i e i nbsp oskilki d z d f 2 G z 4 z 3 g 2 z g 3 4 z e 1 z e 2 z e 3 displaystyle left frac d zeta d varphi right 2 G zeta 4 zeta 3 g 2 zeta g 3 4 left zeta e 1 right left zeta e 2 right left zeta e 3 right nbsp Yakisnij harakter orbiti zalezhit vid viboru f0 Rozv yazki iz f0 w2 vidpovidayut abo orbitam sho kolivayutsya vid z e2 do z e3 abo trayektoriyami sho jdut u neskinchennist z 1 12 Navpaki rozv yazki z f0 rivnim w1 abo bud yakomu inshomu dijsnomu chislu opisuyut orbiti sho shodyatsya do centru oskilki dijsne z ne mozhe buti menshim vid e1 i tomu bude neminuche zrostati do neskinchennosti Kvazieliptichni orbiti Redaguvati Rozv yazki z ϕ ϕ 0 displaystyle zeta wp phi phi 0 nbsp v yakih f0 w2 dayut dijsni znachennya z za umovi sho energiya E zadovolnyaye nerivnosti E2 lt m2c4 V takomu razi z prijmaye znachennya v intervali e3 z e2 Yaksho obidva koreni bilshi vid 1 12 to z ne mozhe nabuti cogo znachennya yake vidpovidaye vidhodu chastinki na neskinchennist tomu tilo bude zdijsnyuvati finitnij ruh yakij mozhna uyaviti yak ruh po precesuyuchomu elipsu Radialna koordinata tila bude neskinchenno kolivatisya mizh r m i n 3 r s 1 12 e 2 displaystyle r min frac 3r s 1 12e 2 nbsp i r m a x 3 r s 1 12 e 1 displaystyle r max frac 3r s 1 12e 1 nbsp yaki vidpovidayut ekstremalnim znachennyam z Dijsnij period eliptichnoyi funkciyi Veyershtrassa stanovit 2w1 takim chinom chastinka povertayetsya do togo zh radiusa koli kutova koordinata zrostaye na 2w1 sho vzagali kazhuchi vidriznyayetsya vid 2p Tomu orbita yak pravilo precesuye odnak pri r m i n r g displaystyle r min ll r g nbsp kut precesiyi za odin oborot 2w1 2p dosit malij Stabilni kolovi orbiti Redaguvati Osoblivij vipadok 2e2 2e3 e3 vidpovidaye rozv yazku z z const e2 e3 Vihodit kolova orbita z r router ne menshim 3rs Taki orbiti stijki oskilki mali zburennya parametriv prizvodyat do rozsheplennya koreniv privodyachi do kvazieliptichnih orbit Napriklad yaksho chastinku trohi pidshtovhnuti v radialnomu napryamku to vona stane kolivatisya poblizu nezburenogo radiusa opisuyuchi precesuyuchij elips Infinitni orbiti Redaguvati Pri r sho pryamuye do neskinchennosti z pryamuye do 1 12 Tomu orbiti sho neobmezheno viddalyayutsya abo nablizhayutsya z neskinchennosti do centralnogo tila vidpovidayut periodichnim rozv yazkam u yakih 1 12 potraplyaye v dostupnij z interval tobto pri e3 1 12 z e2 Asimptotichno krugovi orbiti Redaguvati Inshij osoblivij vipadok vidpovidaye e3 2e2 2e1 tobto dva koreni G z dodatni i dorivnyuyut odin odnomu a tretij vid yemnij Orbiti v takomu vipadku ye spiralyami yaki skruchuyutsya abo nakruchuyutsya pri pryamuvanni f do neskinchennosti ne vazhlivo dodatnoyi chi vid yemnoyi na kolo radiusa r yake viznachayetsya spivvidnoshennyam r s 4 r 1 12 e displaystyle frac r s 4r frac 1 12 e nbsp Poznachivshi povtoryuvanij korin e n2 3 otrimayemo rivnyannya orbiti yake legko pereviriti bezposerednoyu pidstanovkoyu z r s 4 r 1 12 e n 2 cosh 2 n f displaystyle zeta frac r s 4r frac 1 12 e frac n 2 cosh 2 n varphi nbsp V takih vipadkah radialna koordinata chastinki ukladena mizh 2rs i 3rs Rivnyannya takih orbit mozhna otrimati z virazu eliptichnoyi funkciyi Veyershtrassa cherez eliptichni funkciyi Yakobi z ϕ ϕ 0 e 1 e 1 e 3 c n 2 w s n 2 w displaystyle zeta wp phi phi 0 e 1 left e 1 e 3 right frac mathrm cn 2 w mathrm sn 2 w nbsp de w ϕ ϕ 0 e 1 e 3 displaystyle w phi phi 0 sqrt e 1 e 3 nbsp i modul k e 2 e 3 e 1 e 3 displaystyle k sqrt frac e 2 e 3 e 1 e 3 nbsp V granici zbigu e2 i e1 modul pryamuye do odinici a w perehodit v n f f0 Vibirayuchi f0 uyavnim rivnim i K displaystyle iK prime nbsp chvert periodu prihodimo do navedenoyi vishe formuli Padinnya na centr Redaguvati U dijsnih rozv yazkah z ϕ ϕ 0 displaystyle zeta wp phi phi 0 nbsp v yakih f0 dorivnyuye w1 abo deyakim inshim dijsnim chislam z ne mozhe stati menshim vid e1 Cherez rivnyannya ruhu d z d f 2 4 z 3 g 2 z g 3 4 z e 1 z e 2 z e 3 displaystyle left frac d zeta d varphi right 2 4 zeta 3 g 2 zeta g 3 4 left zeta e 1 right left zeta e 2 right left zeta e 3 right nbsp z bezmezhno zrostaye sho vidpovidaye padinnyu na centr r 0 pislya neskinchennogo chisla obertiv navkolo nogo Vivedennya rivnyannya orbit Redaguvati Z rivnyannya Gamiltona Yakobi Redaguvati Perevaga cogo vivedennya polyagaye v tomu sho vono zastosovne i do ruhu chastinok i do poshirennya hvil sho legko privodit do virazu dlya vidhilennya svitla v gravitacijnomu poli pri vikoristanni principu Ferma Osnovna ideya polyagaye v tomu sho zavdyaki gravitacijnomu upovilnennyu chasu chastini hvilovogo frontu roztashovani blizhche do gravituyuchoyi masi ruhayutsya povilnishe nizh roztashovani dali sho prizvodit do vikrivlennya poshirennya hvilovogo frontu V silu zagalnoyi kovariantnosti rivnyannya Gamiltona Yakobi dlya odniyeyi chastinki v dovilnih koordinatah mozhna zapisati u viglyadi g m n S x m S x n m 2 c 2 displaystyle g mu nu frac partial S partial x mu frac partial S partial x nu m 2 c 2 nbsp U metrici Shvarcshilda ce rivnyannya nabude viglyadu 1 c 2 1 r s r S t 2 1 r s r S r 2 1 r 2 S f 2 m 2 c 2 displaystyle frac 1 c 2 left 1 frac r s r right left frac partial S partial t right 2 left 1 frac r s r right left frac partial S partial r right 2 frac 1 r 2 left frac partial S partial varphi right 2 m 2 c 2 nbsp de ploshina vidliku 8 displaystyle theta nbsp sferichnoyi sistemi koordinat roztashovana v ploshini orbiti Chas t i dovgota f ciklichni koordinati tomu rozv yazok dlya funkciyi diyi S zapishetsya u viglyadi S E t L f S r r displaystyle S Et L varphi S r r nbsp de E energiya chastinki L yiyi kutovij moment Rivnyannya Gamiltona Yakobi privodit do integralnogo rozv yazku dlya radialnoyi chastini Sr r S r r L d r 1 r s r 1 b 2 1 r s r 1 a 2 1 r 2 displaystyle S r r int frac Ldr 1 frac r s r sqrt frac 1 b 2 left 1 frac r s r right left frac 1 a 2 frac 1 r 2 right nbsp Diferenciyuyuchi funkciyu S zvichajnim chinom S L f S r L c o n s t a n t displaystyle frac partial S partial L varphi frac partial S r partial L mathrm constant nbsp prihodimo do rivnyannya orbiti otrimanogo ranishe d r d f 2 r 4 b 2 1 r s r r 4 a 2 r 2 displaystyle left frac dr d varphi right 2 frac r 4 b 2 left 1 frac r s r right left frac r 4 a 2 r 2 right nbsp Cej pidhid mozhna vikoristovuvati dlya elegantnogo vivedennya shvidkosti precesiyi orbiti 19 V granici nulovoyi masi m abo sho ekvivalentno neskinchennogo a radialna chastina diyi S staye rivnoyu S r r E c d r r 2 r r s 2 b 2 r r r s displaystyle S r r frac E c int dr sqrt frac r 2 left r r s right 2 frac b 2 r left r r s right nbsp z cogo virazu vivoditsya rivnyannya dlya vidhilennya promenya svitla 19 Z rivnyan Lagranzha Redaguvati V zagalnij teoriyi vidnosnosti vilni chastinki zi znehtovno maloyu masoyu m pidkoryayuchis principu ekvivalentnosti ruhayutsya po geodezichnih u prostori chasi stvoryuvanomu masami sho tyazhiyut Geodezichni prostoru chasu viznachayutsya yak krivi mali variaciyi yakih za fiksovanih pochatkovij i kincevij tochkah ne zminyuyut yih dovzhini s Ce mozhna viraziti matematichno za dopomogoyu variacijnogo chislennya 0 d s d d s d g m n d x m d t d x n d t d t d 2 T d t displaystyle 0 delta s delta int ds delta int sqrt g mu nu frac dx mu d tau frac dx nu d tau d tau delta int sqrt 2T d tau nbsp de t vlasnij chas s ct dovzhina v prostori chasi i velichina T viznachena yak 2 T c 2 d s d t 2 g m n d x m d t d x n d t 1 r s r c 2 d t d t 2 1 1 r s r d r d t 2 r 2 d f d t 2 displaystyle 2T c 2 left frac ds d tau right 2 g mu nu frac dx mu d tau frac dx nu d tau left 1 frac r s r right c 2 left frac dt d tau right 2 frac 1 1 frac r s r left frac dr d tau right 2 r 2 left frac d varphi d tau right 2 nbsp za analogiyeyu z kinetichnoyu energiyeyu Yaksho pohidnu za vlasnim chasu dlya stislosti poznachiti krapkoyu x m d x m d t displaystyle dot x mu frac dx mu d tau nbsp to T mozhna zapisati u viglyadi 2 T c 2 1 r s r c 2 t 2 1 1 r s r r 2 r 2 f 2 displaystyle 2T c 2 left 1 frac r s r right c 2 left dot t right 2 frac 1 1 frac r s r left dot r right 2 r 2 left dot varphi right 2 nbsp Stali velichini taki yak c abo korin kvadratnij z dvoh ne vplivayut na vidpovid variacijnoyi zadachi i takim chinom perenosyachi variaciyu pid integral prihodimo do variacijnogo principu Gamiltona 0 d 2 T d t d T 2 T d t 1 c d T d t displaystyle 0 delta int sqrt 2T d tau int frac delta T sqrt 2T d tau frac 1 c delta int Td tau nbsp Rozv yazok variacijnoyi zadachi dayut rivnyannya Lagranzha d d t T x s T x s displaystyle frac d d tau left frac partial T partial dot x sigma right frac partial T partial x sigma nbsp Koli voni zastosovuyutsya do t i f ci rivnyannya privodyat do isnuvannya velichin yaki zberigayutsya d d t r 2 d f d t 0 displaystyle frac d d tau left r 2 frac d varphi d tau right 0 nbsp d d t 1 r s r d t d t 0 displaystyle frac d d tau left left 1 frac r s r right frac dt d tau right 0 nbsp sho mozhna zapisati yak rivnyannya dlya L i E r 2 d f d t L m displaystyle r 2 frac d varphi d tau frac L m nbsp 1 r s r d t d t E m c 2 displaystyle left 1 frac r s r right frac dt d tau frac E mc 2 nbsp Yak pokazano vishe pidstanovka cih rivnyan u viznachennya metriki Shvarcshilda privodit do rivnyannya orbit Z principu Gamiltona Redaguvati Integral diyi dlya chastinki v gravitacijnomu poli maye viglyad S m c 2 d t m c c d t d q d q m c g m n d x m d q d x n d q d q displaystyle S int mc 2 d tau mc int c frac d tau dq dq mc int sqrt g mu nu frac dx mu dq frac dx nu dq dq nbsp de t vlasnij chas i q gladka parametrizaciya svitovoyi liniyi chastinki Yaksho zastosuvati variacijne chislennya to z cogo virazu negajno viplivayut rivnyannya dlya geodezichnih Obchislennya mozhna sprostiti yaksho vzyati variaciyu vid kvadrata pidintegralnogo virazu V poli Shvarcshilda cej kvadrat dorivnyuye c d t d q 2 g m n d x m d q d x n d q 1 r s r c 2 d t d q 2 1 1 r s r d r d q 2 r 2 d f d q 2 displaystyle left c frac d tau dq right 2 g mu nu frac dx mu dq frac dx nu dq left 1 frac r s r right c 2 left frac dt dq right 2 frac 1 1 frac r s r left frac dr dq right 2 r 2 left frac d varphi dq right 2 nbsp Porahuvavshi variaciyu otrimayemo d c d t d q 2 2 c 2 d t d q d d t d q d 1 r s r c 2 d t d q 2 1 1 r s r d r d q 2 r 2 d f d q 2 displaystyle delta left c frac d tau dq right 2 2c 2 frac d tau dq delta frac d tau dq delta left left 1 frac r s r right c 2 left frac dt dq right 2 frac 1 1 frac r s r left frac dr dq right 2 r 2 left frac d varphi dq right 2 right nbsp Vzyavshi variaciyu tilki za dovgotoyu f 2 c 2 d t d q d d t d q 2 r 2 d f d q d d f d q displaystyle 2c 2 frac d tau dq delta frac d tau dq 2r 2 frac d varphi dq delta frac d varphi dq nbsp podilimo na 2 c d t d q displaystyle 2c frac d tau dq nbsp shob otrimati variaciyu pidintegralnogo virazu c d d t d q r 2 c d f d t d d f d q r 2 c d f d t d d f d q displaystyle c delta frac d tau dq frac r 2 c frac d varphi d tau delta frac d varphi dq frac r 2 c frac d varphi d tau frac d delta varphi dq nbsp Takim chinom 0 d c d t d q d q c d d t d q d q r 2 c d f d t d d f d q d q displaystyle 0 delta int c frac d tau dq dq int c delta frac d tau dq dq int frac r 2 c frac d varphi d tau frac d delta varphi dq dq nbsp i integruvannya chastinami privodit do 0 r 2 c d f d t d f d d q r 2 c d f d t d f d q displaystyle 0 frac r 2 c frac d varphi d tau delta varphi int frac d dq left frac r 2 c frac d varphi d tau right delta varphi dq nbsp Variaciya za dovgotoyu znikaye v granichnih tochkah i pershij dodanok zanulyuyetsya Integral mozhna zrobiti rivnim nulyu pri dovilnomu vibori df tilki yaksho inshi mnozhniki pid integralom zavzhdi dorivnyuyut nulyu Takim chinom mi prihodimo do rivnyannya ruhu d d q r 2 c d f d t 0 displaystyle frac d dq left frac r 2 c frac d varphi d tau right 0 nbsp Pri variaciyi za chasom t otrimayemo 2 c 2 d t d q d d t d q 2 1 r s r c 2 d t d q d d t d q displaystyle 2c 2 frac d tau dq delta frac d tau dq 2 left 1 frac r s r right c 2 frac dt dq delta frac dt dq nbsp sho pislya podilu na 2 c d t d q displaystyle 2c frac d tau dq nbsp daye variaciyu pidintegralnogo virazhennya c d d t d q c 1 r s r d t d t d d t d q c 1 r s r d t d t d d t d q displaystyle c delta frac d tau dq c left 1 frac r s r right frac dt d tau delta frac dt dq c left 1 frac r s r right frac dt d tau frac d delta t dq nbsp Zvidsi 0 d c d t d q d q c 1 r s r d t d t d d t d q d q displaystyle 0 delta int c frac d tau dq dq int c left 1 frac r s r right frac dt d tau frac d delta t dq dq nbsp i znovu integruvannya chastinami privodit do virazu 0 c 1 r s r d t d t d t d d q c 1 r s r d t d t d t d q displaystyle 0 c left 1 frac r s r right frac dt d tau delta t int frac d dq left c left 1 frac r s r right frac dt d tau right delta tdq nbsp z yakogo viplivaye rivnyannya ruhu d d q c 1 r s r d t d t 0 displaystyle frac d dq left c left 1 frac r s r right frac dt d tau right 0 nbsp Yaksho prointegruvati ci rivnyannya ruhu i viznachiti stali integruvannya mi znovu prijdemo do rivnyannya r 2 d f d t L m displaystyle r 2 frac d varphi d tau frac L m nbsp 1 r s r d t d t E m c 2 displaystyle left 1 frac r s r right frac dt d tau frac E mc 2 nbsp Ci dva rivnyannya dlya integraliv ruhu L i E mozhna poyednati v odne yake bude pracyuvati navit dlya fotona ta inshih bezmasovih chastinok dlya yakih vlasnij chas uzdovzh geodezichnoyi dorivnyuye nulyu r 2 b c d f d t 1 r s r displaystyle frac r 2 bc frac d varphi dt 1 frac r s r nbsp Postnyutonivski pidhodi RedaguvatiOskilki v realnih zadachah nablizhennya probnogo tila inodi maye nedostatnyu tochnist to isnuyut pidhodi dlya jogo utochnennya odnim z yakih ye zastosuvannya postnyutonivskogo formalizmu PN formalizmu rozvinenogo v pracyah Eddingtona Foka Damura ta inshih vchenih relyativistiv Desho sprosheno mozhna skazati sho v comu pidhodi vidbuvayetsya rozkladannya rivnyan ruhu til oderzhuvanih z rivnyan Ejnshtejna v ryadi za malim PN parametrom 1 c 2 displaystyle 1 c 2 nbsp ta vrahuvannya chleniv lishe do pevnogo stepenya cogo parametra Vzhe zastosuvannya 2 5PN rivnya 1 c 5 displaystyle 1 c 5 nbsp privodit do prognozu gravitacijnogo viprominyuvannya i vidpovidnogo zmenshennya periodu obertannya gravitacijno pov yazanoyi sistemi Popravki bilsh visokogo poryadku takozh proyavlyayutsya v rusi ob yektiv napriklad podvijnih pulsariv Ruh planet ta yih suputnikiv asteroyidiv a takozh kosmichnih aparativ Sonyachnoyi sistemi zaraz rozrahovuyetsya v pershomu PN nablizhenni Popravki do geodezichnogo rozv yazku Redaguvati Viprominyuvannya gravitacijnih hvil i vtrata energiyi i momentu impulsu Redaguvati nbsp Eksperimentalno vimiryane zmenshennya periodu obertannya podvijnogo pulsara PSR B1913 16 sini tochki z visokoyu tochnistyu vidpovidaye prognozam ZTV chorna kriva Vidpovidno do zagalnoyi teoriyi vidnosnosti dva tila sho obertayutsya odna navkolo odnoyi vipuskayut gravitacijni hvili sho prizvodit do vidminnosti orbit geodezichnih rozrahovanih vishe Dlya planet Sonyachnoyi sistemi cej efekt nadzvichajno malij ale vin mozhe vidigravati istotnu rol v evolyuciyi tisnih podvijnih zir Zminennya orbit sposterigayetsya v dekilkoh sistemah najvidomishoyu z nih ye podvijnij pulsar vidomij pid nazvoyu PSR B1913 16 za doslidzhennya yakogo Alan Gals i Dzhozef Tejlor otrimali Nobelivsku premiyu z fiziki 1993 roku Dvi nejtronni zori v cij sistemi roztashovani duzhe blizko odna vid odnoyi i zdijsnyuyut obert za 465 hv Yih orbita vityagnutij elips z ekscentrisitetom 0 62 Vidpovidno do zagalnoyi teoriyi vidnosnosti korotkij period obertannya i visokij ekscentrisitet robit sistemu chudovim dzherelom gravitacijnih hvil sho sprichinyaye vtrati energiyi i zmenshennya periodu obertannya Sposterezhuvani zmini periodu protyagom tridcyati rokiv dobre uzgodzhuyutsya z peredbachennyami zagalnoyi teoriyi vidnosnosti z najkrashogo dosyazhnoyu zaraz tochnistyu blizko 0 2 stanom na 2009 rik nbsp Dvi nejtronni zori sho shvidko obertayutsya odna navkolo odnoyi vtrachayut energiyu shlyahom vipuskannya gravitacijnogo viprominyuvannya Cherez vtratu energiyi voni vse bilshe zblizhuyutsya i chastota obertannya zrostayeFormulu sho opisuye vtratu energiyi ta kutovogo momentu cherez gravitacijne viprominyuvannya vid dvoh til u zadachi Keplera otrimano v 1963 roci 20 Shvidkist vtrati energiyi userednena za period zadayetsya u viglyadi 21 d E d t 32 G 4 m 1 2 m 2 2 m 1 m 2 5 c 5 a 5 1 e 2 7 2 1 73 24 e 2 37 96 e 4 displaystyle left langle frac dE dt right rangle frac 32G 4 m 1 2 m 2 2 left m 1 m 2 right 5c 5 a 5 left 1 e 2 right 7 2 left 1 frac 73 24 e 2 frac 37 96 e 4 right nbsp de e ekscentrisitet a a velika pivvis eliptichnoyi orbiti Kutovi duzhki v livij chastini virazu oznachayut userednennya za odniyeyu orbitoyu Analogichno dlya vtrati kutovogo momentu mozhna zapisati d L z d t 32 G 7 2 m 1 2 m 2 2 m 1 m 2 5 c 5 a 7 2 1 e 2 2 1 7 8 e 2 displaystyle left langle frac dL z dt right rangle frac 32G 7 2 m 1 2 m 2 2 sqrt m 1 m 2 5c 5 a 7 2 left 1 e 2 right 2 left 1 frac 7 8 e 2 right nbsp Vtrati energiyi ta kutovogo momentu znachno zrostayut yaksho ekscentrisitet pryamuye do 1 tobto yaksho elips ye duzhe vityagnutim Intensivnist viprominyuvannya zbilshuyetsya pri zmenshenni rozmiru a orbiti Vtrata momentu impulsu pri viprominyuvanni taka sho z chasom ekscentrisitet orbiti zmenshuyetsya i vona pryamuye do kolovoyi z postijno zmenshuvanim radiusom Potuzhnist gravitacijnogo viprominyuvannya planetnih sistem mizerno mala napriklad dlya Sonyachnoyi sistemi 5 kVt z yakih blizko 90 pripadaye na sistemu Sonce Yupiter Ce mizerno malo porivnyano z kinetichnoyu energiyeyu planet ochikuvanij chas zhittya Sonyachnoyi sistemi na 13 poryadkov bilshij vid viku Vsesvitu Znachno bilshe viprominyuvannya tisnih podvijnih zir napriklad zgadanij podvijnij pulsar Galsa Tejlora PSR B1913 16 komponenti yakogo rozdileni vidstannyu poryadku radiusa Soncya viprominyuye gravitacijni hvili potuzhnistyu 7 35 1024 Vt sho stanovit 2 potuzhnosti Soncya Cherez vtrati energiyi vidstan mizh komponentami ciyeyi podvijnoyi sistemi zmenshuyetsya na 3 5 m rik i cherez 300 mln rokiv zori zillyutsya v odnu V miru zblizhennya komponentiv podvijnoyi zori potuzhnist gravitacijnogo viprominyuvannya zrostaye oberneno proporcijno p yatomu stepenyu vidstani mizh nimi i bezposeredno pered zlittyam potuzhnist dosyagaye znachnih velichin energiya ekvivalentna kilkom masam Soncya viprominyuyetsya protyagom desyatih chastok sekundi sho vidpovidaye potuzhnosti 1047 Vt Ce na 21 poryadok bilshe svitnosti Soncya i v milyardi raziv bilshe svitnosti nashoyi Galaktiki same taka velika potuzhnist dozvolyaye reyestruvati gravitacijni hvili pid chas zlittya nejtronnih zir na vidstani soten miljoniv svitlovih rokiv Potuzhnist gravitacijnih hvil zlittya chornih dir she bilsha v ostanni milisekundi pered zlittyam vona v desyatki raziv perevishuye svitnist usih zir u sposterezhuvanij chastini Vsesvitu Chiselna vidnosnist RedaguvatiDokladnishe Chiselna vidnosnistYaksho tila ye nastilki kompaktnimi sho mozhut ruhatisya okremo navit koli orbitalna shvidkist dohodit do istotnoyi chastki shvidkosti svitla postnyutonivske rozkladannya perestaye pracyuvati nadijno Ce mozhlivo na ostannih stadiyah evolyuciyi podvijnih sistem sho skladayutsya z nejtronnih zir abo chornih dir cherez gravitacijne viprominyuvannya komponenti opuskayutsya vse blizhche i blizhche odne do odnogo i vreshti resht zlivayutsya V comu vipadku tila vzhe nemozhlivo uyavlyati tochkovimi abo sferichno simetrichnimi i potribno zastosovuvati metodi tochnogo trivimirnogo chiselnogo rozv yazuvannya rivnyan Ejnshtejna i v razi nejtronnih zir relyativistskoyi magnitogidrodinamiki sho nosyat najmenuvannya chiselnoyi vidnosnosti Pershoyu eksperimentalnoyu perevirkoyu yaka z tochnistyu do 94 pidtverdila peredbachennya zagalnoyi teoriyi vidnosnosti ta metodiv chiselnoyi vidnosnosti stalo vidkrittya gravitacijnih hvil u veresni 2015 roku Div takozh RedaguvatiZadacha Keplera Metrika Shvarcshilda Peredbachennya zagalnoyi teoriyi vidnosnosti Vektor Laplasa Runge Lenca Gravitacijna zadacha N tilPrimitki ta posilannya Redaguvati Le Verrier U J J Sur la theorie de Mercure et sur le mouvement du perihelie de cette planete Comptes rendus hebdomadaires des seances de l Academie des sciences en magazine 1859 Vol 49 20 octobre P 379 383 a b v Pais 1982 Mari Antuanett Tonnela fr OSNOVY ELEKTROMAGNETIZMA I TEORII OTNOSITELNOSTI MOSKVA IZDATELSTVO INOSTRANNOJ LITERATURY 1962 Glava II 1 2 a b A F Bogorodskij Vsemirnoe tyagotenie Kiev Naukova dumka 1971 Glava 2 P S Laplace Mecanique celeste 4 livre X Paris 1805 Cituyetsya za knigoyu Boris Nikolaevich Voroncov Velyaminov Laplas Moskva Zhurgazob edinenie 1937 Fejnman razbiraet etu problemu v 6 tome Fejnmanovskih lekcij po fizike glava 21 1 A F Bogorodskij Ibid Glava 5 paragraf 15 Treder G Yu de Glava I Otnositelnost inercii Hans Jurgen Treder Die Relativitat der Tragheit Berlin 1972 Per s nem K A Bronnikova Pod redakciej prof K P Stanyukovicha M Atomizdat 1975 128 s 6600 prim Zenneck J en Gravitation Encyklopadie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen 1903 Bd 5 20 Oktober S 25 67 Arhivovano z dzherela 12 bereznya 2021 Procitovano 2020 11 18 a b Vizgin V P Glava I razdel 2 Relyativistskaya teoriya tyagoteniya istoki i formirovanie 1900 1915 gg Moskva Nauka 1981 352 s 2000 prim Walter S 2007 Breaking in the 4 vectors the four dimensional movement in gravitation 1905 1910 U Renn J The Genesis of General Relativity Berlin Springer 3 193 252 Nyutonovskuyu teoriyu tyagoteniya mozhno sformulirovat kak iskrivlenie etoj svyazi sm Mizner Ch Torn K Uiler Dzh Gravitaciya M Mir 1977 Tom 1 Arhivovano 9 kvitnya 2016 u Wayback Machine Glava 12 Landau 1975 Eto spravedlivo dlya chastic pylevidnoj materii i dlya ne slishkom bystro vrashayushihsya tel kak pokazano v 4 i 7 IV glavy knigi Dzh L Singa Obshaya teoriya otnositelnosti Moskva IL 1963 Weinberg 1972 Whittaker 1937 Landau and Lifshitz 1975 pp 306 309 a b Landau L D Lifshic E M Teoreticheskaya fizika Ucheb posob Dlya vuzov V 10 t T II Teoriya polya 8 e izd stereot M FIZMATLIT 2003 536 s ISBN 5 9221 0056 4 T II 101 Peters P C Mathews J Gravitational Radiation from Point Masses in a Keplerian Orbit Physical Review 1963 Vol 131 20 October P 435 440 DOI 10 1103 PhysRev 131 435 Landau and Lifshitz p 356 357 Literatura RedaguvatiAdler R Bazin M and Schiffer M Introduction to General Relativity New York McGraw Hill Education 1965 S 177 193 ISBN 978 0 07 000420 7 Albert Einstein The Meaning of Relativity 5th Princeton NJ Princeton University Press 1956 S 92 97 ISBN 978 0 691 02352 6 Hagihara Y Theory of the relativistic trajectories in a gravitational field of Schwarzschild Japanese Journal of Astronomy and Geophysics journal 1931 Vol 8 20 October P 67 176 ISSN 0368 346X Lanczos C en The Variational Principles of Mechanics 4th New York Dover Publications 1986 S 330 338 ISBN 978 0 486 65067 8 Landau L D Lifshic E M Teoreticheskaya fizika Ucheb posob Dlya vuzov V 10 t T II Teoriya polya 8 e izd stereot M FIZMATLIT 2003 536 s ISBN 5 9221 0056 4 101 Misner CW Kip S Thorne and Wheeler JA Gravitation San Francisco W H Freeman en 1973 S Chapter 25 pp 636 687 33 5 pp 897 901 and 40 5 pp 1110 1116 ISBN 978 0 7167 0344 0 Div Gravitaciya Pais A Subtle is the Lord The Science and the Life of Albert Einstein Oxford University Press 1982 S 253 256 ISBN 0 19 520438 7 Pauli W Theory of Relativity New York Dover Publications 1958 S 40 41 166 169 ISBN 978 0 486 64152 2 Rindler W en Essential Relativity Special General and Cosmological revised 2nd New York Springer Verlag 1977 S 143 149 ISBN 978 0 387 10090 6 Rouzver N T 1 Roseveare N T Mercury s perigelion from Le Verrier to Einstein Per s angl A S Rastorgueva pod red V K Abalakina Moskva Mir 1985 246 s 10 000 prim Arhivovano z dzherela 1 zhovtnya 2020Dzhon Lajton Sing Relativity The General Theory Amsterdam North Holland Publishing 1960 S 289 298 ISBN 978 0 7204 0066 3 Robert Wald en General Relativity Chicago The University of Chicago Press 1984 S 136 146 ISBN 978 0 226 87032 8 Walter S Breaking in the 4 vectors the four dimensional movement in gravitation 1905 1910 The Genesis of General Relativity Renn J Berlin Springer 2007 T 3 S 193 252 Weinberg S Gravitation and Cosmology New York John Wiley and Sons 1972 S 185 201 ISBN 978 0 471 92567 5 Whittaker ET A Treatise on the Analytical Dynamics of Particles and Rigid Bodies with an Introduction to the Problem of Three Bodies 4th New York Dover Publications 1937 S 389 393 ISBN 978 1 114 28944 4 Otrimano z https uk wikipedia org w index php title Zadacha Keplera v zagalnij teoriyi vidnosnosti amp oldid 39350059