www.wikidata.uk-ua.nina.az
U Vikipediyi ye statti pro inshi znachennya cogo termina Metod neviznachenih mnozhnikiv Funkciya Lagranzha L f i displaystyle mathcal L varphi i fizichnoyi sistemi funkciya uzagalnenih koordinat f i s displaystyle varphi i s sho vikoristovuyetsya u fizici dlya pobudovi cherez pevnij variacijnij princip rivnyan ruhu yaki opisuyut evolyuciyu fizichnoyi sistemi Napriklad rivnyannya ruhu klasichnoyi mehaniki v comu pidhodi otrimuyutsya z principu najmenshoyi diyi sho zapisuyetsya yak d S d f i 0 displaystyle frac delta mathcal S delta varphi i 0 de diya S displaystyle mathcal S funkcional yakij viznachayetsya cherez funkciyu Lagranzha yak S f i L f i s d n s displaystyle mathcal S varphi i int mathcal L varphi i s d n s a f i displaystyle varphi i uzagalneni koordinati napriklad koordinati chastinok abo polovi zminni s j displaystyle s j oznachaye mnozhinu parametriv sistemi u vipadku klasichnoyi mehaniki nezalezhni prostorovi koordinati i chas a bilsh shiroko takozh elektrichni abo inshi fizichni parametri Funkciyu Langranzha nazivayut takozh lagranzhianom odnak takij vzhitok maye zhargonnij vidtinok oskilki zazvichaj sufiks ian zastosovuyetsya do kvantovih analogiv klasichnih funkcij napriklad funkciya Gamiltona gamiltonian funkciya Lagranzha lagranzhian Lagranzhianom takozh chasto nazivayut gustinu funkciyi Lagranzha div nizhche Rivnyannya otrimani z pririvnyuvannya do nulya funkcionalnoyi pohidnoyi funkcionala po vsih napryamkah identichni do zvichajnih rivnyan Ejlera Lagranzha Dinamichni sistemi rivnyannya dlya yakih mozhut buti otrimani z principu najmenshoyi diyi dlya zruchno vibranoyi funkciyi Lagranzha vidomi yak dinamichni sistemi Lagranzha Isnuye bagato prikladiv dinamichnih sistem Lagranzha pochinayuchi z klasichnoyi versiyi Standartnoyi modeli v fizici elementarnih chastinok i zakinchuyuchi rivnyannyami Nyutona v klasichnij mehanici Takozh do ciyeyi oblasti vidnosyatsya chisto matematichni problemi taki yak zadacha znahodzhennya geodezichnih rivnyan i problema Plato en Ponyattya nazvane na chest Zhozefa Luyi Lagranzha Zmist 1 Priklad z klasichnoyi mehaniki 2 Funkciya Lagranzha shvidkoyi chastinki 3 Teoriya polya 4 Elektromagnitnij lagranzhian 2 4 1 Elektrostatika 4 2 Elektrodinamika 4 2 1 Trivimirne formulyuvannya 4 2 2 Chotirivimirne formulyuvannya 5 Lagranzhian kvantovoyi teoriyi polya 5 1 Lagranzhian kvantovoyi elektrodinamiki 5 2 Lagranzhian Diraka 5 3 Lagranzhian kvantovoyi hromodinamiki 6 Primitki 7 PosilannyaPriklad z klasichnoyi mehaniki RedaguvatiPonyattya funkciyi Lagranzha pochatkovo bulo vvedene dlya pereformulyuvannya klasichnoyi mehaniki u viglyadi vidomomu yak mehanika Lagranzha V comu konteksti funkciya Lagranzha zazvichaj beretsya u viglyadi riznici kinetichnoyi i potencialnoyi energiyi mehanichnoyi sistemi Dlya materialnoyi tochki u trivimirnomu prostori funkciya Lagranzha mozhe buti zapisana u viglyadi L 1 2 m x 2 V x displaystyle mathcal L frac 1 2 m dot vec x 2 V vec x nbsp de pohidna po chasu poznachayetsya krapkoyu nad diferencijovanoyu velichinoyu x displaystyle vec x nbsp radius vektor chastinki m yiyi masa i V potencialna energiya Todi rivnyannya Ejlera Lagranzha bude m x V 0 displaystyle m ddot vec x nabla V 0 nbsp de displaystyle nabla nbsp gradiyent Cej pidhid ekvivalentnij do rivnyan Nyutona Sila virazhayetsya cherez potencial yak F V x displaystyle vec F nabla V x nbsp Todi rivnyannya F m x displaystyle vec F m ddot vec x nbsp yake ye analogichnim do rivnyannya Nyutona dlya tila z postijnoyu masoyu Prosti obchislennya vedut do virazu F d p d t displaystyle vec F d vec p dt nbsp sho ye zapisom drugogo zakonu Nyutona v uzagalnenij formi Dlya trivimirnoyi sistemi zi sferichnimi koordinatami r 8 f z funkciyeyu Lagranzha m 2 r 2 r 2 8 2 r 2 sin 2 8 f 2 V r displaystyle frac m 2 dot r 2 r 2 dot theta 2 r 2 sin 2 theta dot varphi 2 V r nbsp mozhna otrimati nastupni rivnyannya Ejlera Lagranzha m r m r 8 2 sin 2 8 f 2 V 0 displaystyle m ddot r mr dot theta 2 sin 2 theta dot varphi 2 V 0 nbsp d d t m r 2 8 m r 2 sin 8 cos 8 f 2 0 displaystyle frac d dt mr 2 dot theta mr 2 sin theta cos theta dot varphi 2 0 nbsp d d t m r 2 sin 2 8 f 0 displaystyle frac d dt mr 2 sin 2 theta dot varphi 0 nbsp Funkciya Lagranzha shvidkoyi chastinki RedaguvatiDlya relyativistskoyi chastinki funkciya Lagranzha zbigayetsya zi shvidkistyu zrostannya dovzhini yiyi svitovoyi liniyi v prostori Minkovskogo abo vlasnogo chasu z tochnistyu do stalogo mnozhnika L m c 2 d t d t m c 2 1 v 2 c 2 displaystyle mathcal L mc 2 d tau dt mc 2 sqrt 1 v 2 c 2 nbsp de v zvichajna trivimirna shvidkist chastinki c shvidkist svitla m masa chastinki Za dopomogoyu ciyeyi funkciyi Lagranzha mozhna otrimati rivnyannya klasichnoyi dinamiki relyativistskih chastinok Teoriya polya RedaguvatiV teoriyi polya rozriznyayut funkciyu Lagranzha L displaystyle mathcal L nbsp cherez yaku diya virazhayetsya yak integral tilki po chasu S L d t displaystyle S int mathcal L dt nbsp i gustinu funkciyi Lagranzha L displaystyle Lambda nbsp yaku potribno integruvati po vsomu chotirivimirnomu 1 prostoru chasu S f i L f i x d 4 x displaystyle S varphi i int Lambda varphi i x d 4 x nbsp Todi funkciya Lagranzha ce integral po prostorovih zminnih vid gustini funkciyi Lagranzha I te j inshe chasto nazivayut lagranzhianom ostannim chasom perevazhno same gustinu funkciyi Lagranzha L displaystyle Lambda nbsp Ce korisno v relyativistskih teoriyah oskilki gustina funkciyi Lagranzha viznachena lokalno Kvantovi teoriyi polya u fizici elementarnih chastinok taki yak kvantova elektrodinamika zazvichaj opisuyutsya v terminah L displaystyle Lambda nbsp Cya forma zruchna oskilki legko perevoditsya v pravila sho vikoristovuyutsya dlya ocinki diagram Fejnmana Elektromagnitnij lagranzhian 2 RedaguvatiElektrostatika Redaguvati Elektrostatika fizika statichnih tobto povilnozminnih elektrichnih poliv yaki mozhna priblizno abo tochno opisati skalyarnim 3 potencialom i zaryadzhenoyi rechovini sho dosit povilno ruhayetsya i takim chinom pidkoryayetsya Nyutonivskij mehanici mozhe buti v cilomu opisana praktichno v ramkah klasichnoyi mehaniki V klasichnij mehanici lagranzhian ce L T V displaystyle mathcal L T V nbsp de T kinetichna energiya i V potencialna energiya Dlya zaryadzhenoyi chastinki masoyu m i zaryadom q sho znahoditsya v elektrichnomu elektrostatichnomu poli zi skalyarnim potencialom f kinetichna energiya zadayetsya virazom T s 1 2 m v v displaystyle T s 1 over 2 m mathbf v cdot mathbf v nbsp dlya odniyeyi chastinki dlya bagatoh beretsya suma Energiya vzayemodiyi polya z zaryadzhenoyu rechovinoyu maye viglyad V q ϕ displaystyle V q phi nbsp dlya odnogo tochkovogo zaryadu dlya bagatoh sumuyetsya abo V r ϕ d x d y d z displaystyle V int rho phi dxdydz nbsp viglyad dlya neperervnogo rozpodilu zaryadu I toj i inshij viglyad korisno vipisati okremo hocha zvichajno voni zvodyatsya odin do odnogo yaksho vikoristovuvati delta funkciyu Energiya polya vhodit v chlen kinetichnoyi energiyi razom z kinetichnoyu energiyeyu chastinok 4 zapisuyuchis yak T f 1 2 ϰ ϕ 2 d x d y d z displaystyle T f int 1 over 2 varkappa nabla phi 2 dxdydz nbsp de ϰ displaystyle varkappa nbsp silova konstanta sho vhodit v kincevomu varianti v zakon Kulona Takim chinom lagranzhian elektrostatiki sho vklyuchaye v sebe i kinetichnu energiyu povilnogo ruhu zaryadzhenih chastinok maye takij viglyad L T f V T s displaystyle mathcal L T f V T s nbsp kozhen jogo chlen vipisanij nizhche Zvichajno cej lagranzhian mozhe buti pri neobhidnosti dopovnenij inshimi chlenami sho opisuyut neelektrichni sili napriklad energiyeyu pruzhnosti i t in Provariyuvavshi diyu z opisanim v comu paragrafi lagranzhianom 5 legko otrimati rivnyannya polya dlya elektrostatiki rivnyannya Puassona 2 ϕ ϰ r displaystyle nabla 2 phi varkappa rho nbsp i rivnyannya ruhu chastinki v elektrostatichnomu poli sho v cilomu zbigayetsya z otrimanim v prikladi dlya klasichnoyi chastinki na pochatku statti m v q ϕ displaystyle m dot mathbf v q nabla phi nbsp Elektrodinamika Redaguvati Trivimirne formulyuvannya Redaguvati U vipadku elektrodinamiki dovoditsya koristuvatisya vzhe ne klasichnoyu potencialnoyu energiyeyu a uzagalnenoyu zalezhnoyu takozh vid shvidkostej potencialnoyu energiyeyu energiyeyu vzayemodiyi V q ϕ q c v A displaystyle V q phi q over c mathbf v cdot mathbf A nbsp abo V r ϕ 1 c j A d x d y d z displaystyle V int rho phi 1 over c mathbf j cdot mathbf A dxdydz nbsp de c shvidkist svitla v shvidkist chastinki j vektor gustini strumu Energiya elektromagnitnogo polya takozh povinna vklyuchati porivnyano z vipadkom elektrostatiki she j energiyu magnitnogo polya 6 T f 1 2 ϰ E 2 H 2 d x d y d z displaystyle T f int frac 1 2 varkappa E 2 H 2 dxdydz nbsp de E i H sliduye vvazhati virazhenimi cherez elektrichnij potencial f i vektornij potencial A E ϕ 1 c A t H r o t A displaystyle mathbf E nabla phi 1 over c frac partial mathbf A partial t mathbf H mathbf rot mathbf A nbsp Todi elektromagnitnij lagranzhian zapishetsya u viglyadi L T f q ϕ q c v A T s displaystyle L T f q phi q over c mathbf v cdot mathbf A T s nbsp abo L T f r ϕ 1 c j A d x d y d z T s displaystyle L T f int rho phi 1 over c mathbf j cdot mathbf A dxdydz T s nbsp Tut yak lagranzhian rechovini T s displaystyle T s nbsp mozhna vikoristovuvati nablizhenij viraz dlya povilnih chastinok yak opisano v paragrafi pro elektrostatiku a mozhna vikoristovuvati tak yak dlya elektrodinamiki neobmezhenoyi povilnimi ruhami ce aktualno relyativistskij lagranzhian dlya shvidkih chastinok T s m c 2 d t d t m c 2 1 v 2 displaystyle T s mc 2 d tau dt mc 2 sqrt 1 v 2 nbsp Yak i u vipadku elektrostatiki pri neobhidnosti do cogo lagranzhianu mozhut buti dopisani dodatkovi chleni sho opisuyut neelektromagnitni sili inshi polya i t d sho zagalom vihodit za ramki zadachi opisu elektromagnitnogo lagranzhianu Strogo kazhuchi vipisuvannya kinetichnoyi energiyi rechovini takozh vihodit za ci ramki odnak mi jogo vipisali shob opis zberigav cilisnist Pri variyuvanni diyi z cim lagranzhianom po f i po A x A y A z displaystyle A x A y A z nbsp nezalezhno po kozhnomu vikoristovuyuchi drugu formu zapisu lagranzhianu vihodyat rivnyannya Maksvela a pri variyuvanni po koordinatah zaryadzhenih chastinok vikoristovuyuchi pershu formu zapisu rivnyannya ruhu zaryadzhenih chastinok v poli sho zvoditsya do d p d t F L displaystyle d mathbf p dt mathbf F L nbsp de p trivimirnij impuls chastinki F L displaystyle mathbf F L nbsp sila Lorenca vklyuchayuchi elektrichnij chlen Odnak prostishe i shvidshe take vivedennya vihodit v chotirivimirnomu formulyuvanni div dali Chotirivimirne formulyuvannya Redaguvati V chotirivimirnomu formulyuvanni gustina lagranzhianu elektromagnitnogo polya jogo vzayemodiyi z zaryadzhenoyu rechovinoyu i samoyi rechovini viglyadaye tak vikoristovuyuchi sistemu odinic c 1 L 1 4 ϰ F i k F i k A i j i L s displaystyle L frac 1 4 varkappa F ik F ik A i j i L s nbsp Drugij chlen sho opisuye vzayemodiyu mozhna perepisati tak sho vidpovidna diya bude S i n t q A i d x i displaystyle S int int qA i dx i nbsp Chlen L s displaystyle L s nbsp zvichajna gustina lagranzhianu shvidkoyi v zagalnomu vipadku chastinki yavno yiyi mozhna ne vipisuvati oskilki dlya klasichnoyi teoriyi vona ne potribna tak yak dlya neyi potriben lagranzhian takoyi chastinki vipisanij yak zavzhdi div vishe a ne jogo gustina Tut c shvidkist svitla F i k displaystyle F ik nbsp tenzor elektromagnitnogo polya v lagranzhian vhodit jogo zgortka kvadrat A i displaystyle A i nbsp 4 potencial j i displaystyle j i nbsp chotirivimirna gustina strumu d x i displaystyle dx i nbsp 4 peremishennya mayetsya na uvazi notaciya Ejnshtejna sumuvannya po povtoryuvanomu indeksu Variyuvannyam po A i displaystyle A i nbsp legko otrimuyutsya rivnyannya Maksvela v chotirivimirnij formi i F i k ϰ j k displaystyle partial i F ik varkappa j k nbsp a variyuvannyam po x i displaystyle x i nbsp rivnyannya ruhu dlya chastinki d p i d t q F i k u k displaystyle dp i d tau qF ik u k nbsp de p i m u i displaystyle p i mu i nbsp 4 impuls u k displaystyle u k nbsp 4 shvidkist Lagranzhian kvantovoyi teoriyi polya RedaguvatiLagranzhian kvantovoyi teoriyi polya v principi zbigayetsya z klasichnim za vinyatkom vipadkiv koli dlya deyakoyi chastini polovih zminnih vazhko vvesti klasichni analogi abo yih korektno interpretuvati hocha i todi zazvichaj mozhna hocha b chisto formalno otrimati te sho nazivayetsya klasichnim rivnyannyam ruhu vikoristavshi zamist tiyeyi abo inshoyi proceduri kvantuvannya polya z danim lagranzhianom nablizhennya stacionarnoyi fazi stacionarnoyi diyi tobto znajshovshi klasichne nablizhennya opisu sistemi Takim chinom lagranzhiani vipisani nizhche ne ye u viznachenomu sensi specifichnimi tilki dlya kvantovoyi teoriyi vidpovidnih poliv tim ne menshe voni v kvantovij teoriyi polya vikoristovuyutsya buduchi v deyakomu vidnoshenni yiyi osnovoyu Lagranzhian kvantovoyi elektrodinamiki Redaguvati Gustina lagranzhianu dlya KED L ps i D m ps 1 4 F m n F m n displaystyle mathcal L bar psi i not D m psi 1 over 4 F mu nu F mu nu nbsp de ps bispinor ps ps g 0 displaystyle bar psi psi dagger gamma 0 nbsp jogo dirakovske spryazhennya F m n displaystyle F mu nu nbsp 4 tenzor elektromagnitnogo polya D kalibruvalna kovariantna pohidna i D displaystyle not D nbsp poznachennya Fejnmana dlya g s D s displaystyle gamma sigma D sigma nbsp Lagranzhian Diraka Redaguvati Gustina lagranzhianu dlya dirakovskogo polya L ps i m ps displaystyle mathcal L bar psi i not partial m psi nbsp Lagranzhian kvantovoyi hromodinamiki Redaguvati Gustina lagranzhianu dlya kvantovoyi hromodinamiki 1 Arhivovano 9 lipnya 2011 u Wayback Machine L 1 4 F a m n F a m n n ps n D m m n ps n displaystyle mathcal L 1 over 4 F alpha mu nu F alpha mu nu sum n bar psi n not D mu m n psi n nbsp de D m displaystyle D mu nbsp kalibruvalna kovariantna pohidna KHD i F a m n displaystyle F alpha mu nu nbsp tenzor napruzhenosti glyuonnogo polya Primitki Redaguvati a v deyakih teoriyah i bilsh bagatovimirnomu V comu punkti jde mova pro chisto klasichnu ne kvantovu elektrodinamiku osoblivo ce stosuyetsya zaryadzhenoyi rechovini z yakoyu vzayemodiye elektromagnitne pole tobto i chlena vzayemodiyi i lagranzhiana vlasne rechovini a lagranzhian vilnogo elektromagnitnogo polya v cilomu toj samij dlya klasichnoyi i kvantovoyi teoriyi Tut zazvichaj mayetsya na uvazi skalyar zvichajnogo trivimirnogo prostoru a ne invariant peretvoren Lorenca Ce viznachayetsya znakom yakij povinen vijti v rezultati v rivnyannyah ruhu i tim sho z pevnih mirkuvan energiyu polya hochetsya mati dodatnoyu Vse ce mozhe buti bilsh mensh strogo obgruntovano ale tut mi obmezhimos shojno navedenimi prostimi mirkuvannyami Dlya otrimannya rivnyannya polya zruchnishe vikoristovuvati lagranzhian vzayemodiyi virazhenij cherez r displaystyle rho nbsp dlya otrimannya rivnyannya ruhu chastinki v poli cherez polozhennya tochkovoyi chastinki cherez q ϕ displaystyle q phi nbsp Pitannya pro znaki yak ce bulo zrobleno vishe dlya elektrostatichnogo polya ne budemo tut detalno obgovoryuvati hocha dostatno stroge obgruntuvannya j isnuye obmezhimos znovu zauvazhennyam sho same taki znaki dayut potribni znaki v gotovih rivnyannyah Posilannya RedaguvatiChristoph Schiller 2005 Global descriptions of motion the simplicity of complexity Motion Mountain David Tong Classical Dynamics Arhivovano 14 kvitnya 2021 u Wayback Machine Cambridge lecture notes Otrimano z https uk wikipedia org w index php title Lagranzhian amp oldid 38785255