www.wikidata.uk-ua.nina.az
Pri ncip najme nshoyi di yi u fizici stverdzhuye sho iz usih mozhlivih shlyahiv sistemi u konfiguracijnomu prostori realizuyetsya toj yakij vidpovidaye minimalnomu znachennyu diyi Princip najmenshoyi diyi ye universalnim fizichnim zakonom i vikoristovuyetsya dlya vivedennya rivnyan ruhu Zmist 1 Formulyuvannya Gamiltona 2 Formulyuvannya Mopertyuyi 3 Variaciya 4 Div takozh 5 DzherelaFormulyuvannya Gamiltona RedaguvatiU formulyuvanni Gamiltona takozh vidomomu pid nazvoyu princip Gamiltona Ostrogradskogo diya dorivnyuye S t 1 t 2 L q i q i t d t displaystyle S int t 1 t 2 mathcal L q i dot q i t dt nbsp de L displaystyle mathcal L nbsp funkciya Lagranzha Rozglyadayutsya vsi mozhlivi trayektoriyi yaki pochinayutsya v pevnij tochci konfiguracijnogo prostoru j zakinchuyutsya v moment chasu t 2 displaystyle t 2 nbsp Formulyuvannya Mopertyuyi RedaguvatiU vipadku koli funkciya Gamiltona yavno ne zalezhit vid chasu pri vikonanni zakonu zberezhennya energiyi dlya znahodzhennya energiyi E displaystyle mathcal E nbsp vikoristovuyut funkciyu Lagranzha L p q E displaystyle mathcal L mathbf p cdot dot mathbf q mathcal E nbsp de q displaystyle mathbf q nbsp ye uzagalneni koordinati a p displaystyle mathbf p nbsp ye uzagalneni impulsi Cherez funkciyu Lagranzha mozhna zapisati funkcional diyi u viglyadi S t 1 t 2 L d t t 1 t 2 p q d t E t 2 t 1 S 0 E t 2 t 1 displaystyle mathcal S int t 1 t 2 mathcal L mathrm d t int t 1 t 2 mathbf p cdot dot mathbf q mathrm d t mathcal E t 2 t 1 mathbf S 0 mathcal E t 2 t 1 nbsp de S 0 displaystyle mathbf S 0 nbsp oznachaye redukovanu skorochenu diyu Variaciya funkcionalu diyi S displaystyle mathcal S nbsp daye d S d S 0 E d t 2 d t 1 displaystyle delta mathcal S delta mathcal S 0 mathcal E delta t 2 delta t 1 nbsp Oskilki variaciya diyi pri postijnij energiyi privodit do d S E d t 2 d t 1 displaystyle delta mathcal S mathcal E delta t 2 delta t 1 nbsp tomu variaciya redukovanoyi diyi bude d S 0 d k p d q 0 displaystyle delta mathcal S 0 delta int k mathbf p cdot mathrm d mathbf q 0 nbsp de k displaystyle k nbsp ye kriva v fazovomu prostori sho spoluchaye pochatkovu ta kincevu tochki ruhu sistemi Oskilki uzagalnena koordinata v zagalnomu vipadku ye funkciya zalezhna vid konkretinogo shlyahu s displaystyle s nbsp tobto q q s displaystyle mathbf q mathbf q s nbsp tomu uzagalnenij impuls mozhna perepisati yak p p d q d t q p d q d s d s d t q displaystyle mathbf p mathbf p left frac mathrm d mathbf q mathrm d t mathbf q right mathbf p left frac mathrm d mathbf q mathrm d s frac mathrm d s mathrm d t mathbf q right nbsp Todi funkciya Gamiltona mozhe buti podana u viglyadi H q q H q d q d s d s d t E displaystyle H left mathbf q dot mathbf q right H left mathbf q frac mathrm d mathbf q mathbf d s frac mathrm d s mathrm d t right mathcal E nbsp Oskilki shvidkist peremishennya po shlyahu d s d t displaystyle frac mathrm d s mathrm d t nbsp ye povna pohidna tomu mozhlive rozdilennya diferencialiv i variacijnij princip mozhe buti zapisanij u viglyadi d F q d q d s E d s 0 displaystyle delta int mathcal F left mathbf q frac mathrm d mathbf q mathrm d s mathcal E right mathrm d s 0 nbsp Takim chinom trayektoriya ruhu sistemi q s displaystyle mathbf q s nbsp zalezhit vid povnoyi energiyi E displaystyle mathcal E nbsp Vrahovuyuchi zagalnij viraz dlya funkciyi Lagranzha L a i j q k q i q j V q k displaystyle mathcal L a ij left q k right dot q i dot q j V q k nbsp todi pidintegralna funkciya prijmaye viglyad F 2 E V a i k d q i d s d q k d s displaystyle mathcal F sqrt 2 mathcal E V a ik frac mathrm d q i mathrm d s frac mathrm d q k mathrm d s nbsp de V displaystyle V nbsp i a i k displaystyle a ik nbsp zalezhni vid q j displaystyle q j nbsp Docilno privesti bilsh naglyadnij matematichnij viraz dlya Principu Mopert yuyi u vipadku odniyeyi materialnoyi chastki S 0 d e f p d q d s 2 E t o t V q displaystyle mathcal S 0 stackrel mathrm def int mathbf p cdot d mathbf q int ds sqrt 2 sqrt E tot V mathbf q nbsp oskilki kinetichna energiya T E t o t V q displaystyle T E tot V mathbf q nbsp rivna postijnij povnij energiyi E t o t displaystyle E tot nbsp minus potencialnij energiyi V q displaystyle V mathbf q nbsp Diya dorivnyuye W q 1 q 2 j p j d q j displaystyle W int q 1 q 2 sum j p j dq j nbsp Rozglyadayutsya trayektoriyi sho pochinayutsya v pevnij tochci koordinacijnogo prostoru q 1 displaystyle q 1 nbsp i zakinchuyutsya v inshij napered vibranij tochci koordinacijnogo prostoru q 2 displaystyle q 2 nbsp nezalezhno vid chasu yakogo vimagaye podolannya shlyahu mizh dvoma tochkami Variaciya RedaguvatiDlya togo shob znajti trayektoriyu sistemi u konfiguracijnomu prostori neobhidno perebrati usi mozhlivi trayektoriyi ruhu j vibrati toj dlya yakogo diya bude najmenshoyu Robitsya ce takim chinom Spochatku rozglyadayetsya dovilna trayektoriya q i t displaystyle q i t nbsp Potim dodayetsya dovilne male vidhilennya variaciya vid ciyeyi trayektoriyi d q i t displaystyle delta q i t nbsp take shob d q i t 1 d q i t 2 0 displaystyle delta q i t 1 delta q i t 2 0 nbsp Obchislyuyetsya diya dlya oboh trayektorij i znahoditsya riznicya mizh otrimanimi znachennyami d S t 1 t 2 L q i d q i q i d q i t d t t 1 t 2 L q i q i t d t displaystyle delta S int t1 t2 mathcal L q i delta q i dot q i delta dot q i t dt int t1 t2 mathcal L q i dot q i t dt nbsp Trayektoriya bude realizuvatisya todi koli cya riznicya bude dodatnoyu Vrahovuyuchi te sho vidhilennya male funkciyu Lagranzha mozhna rozklasti v ryad Tejlora vidkidayuchi usi kvadratichni j vishi chleni Takim chinom otrimuyut diferencijne rivnyannya Lagranzha abo Ejlera Lagranzha d d t L q i L q i 0 displaystyle frac d dt frac partial mathcal L partial dot q i frac partial L partial q i 0 nbsp spravedlive todi koli vsi sili v mehanichnij sistemi potencialni Cya procedura nazivayetsya variacijnoyu proceduroyu Vona ye standatnim metodom vivedennya diferencijnih rivnyan iz integralnih zakoniv Div takozh RedaguvatiPrincip Ferma Variacijne chislennya RekombinaciyaDzherela RedaguvatiPrincip Gamiltona Ostrogradskogo v elektromehanichnih sistemah monografiya A Chaban Politehnika Chenstohovska Nac un t Lviv politehnika Lviv nac agrar un t Lviv Vid vo T Soroki 2015 463 c Bibliogr s 450 455 W R Hamilton On a General Method in Dynamics Philosophical Transaction of the Royal Society Part I 1834 p 247 308 Arhivovano 27 veresnya 2011 u Wayback Machine Part II 1835 p 95 144 Arhivovano 27 veresnya 2011 u Wayback Machine From the collection Sir William Rowan Hamilton 1805 1865 Mathematical Papers Arhivovano 27 veresnya 2011 u Wayback Machine edited by David R Wilkins School of Mathematics Trinity College Dublin 2 Ireland 2000 also reviewed as On a General Method in Dynamics Arhivovano 27 veresnya 2011 u Wayback Machine Otrimano z https uk wikipedia org w index php title Princip najmenshoyi diyi amp oldid 38785234