www.wikidata.uk-ua.nina.az
Variaci jne chi slennya ce rozdil funkcionalnogo analizu yakij zajmayetsya diferenciyuvannyam funkcionaliv Primitka funkcionali mozhna takozh integruvati po prostoru funkcij Cyu operaciyu vpershe zastosuvav amerikanskij fizik Richard Fejnman vvivshi ponyattya integrala funkcionala po trayektoriyah Cej integral viyavlyayetsya zbizhnim za umovi sho pidintegralnij funkcional dosit shvidko pryamuye do nulya koli oscilyaciyi argumentnoyi funkciyi narostayut Zmist 1 Praktichni zadachi dlya yakih potribne diferenciyuvannya funkcionaliv 2 Terminologiya i poznachennya 3 Persha pohidna funkcionala rivnyannya Ejlera Lagranzha 4 Druga pohidna funkcionala 5 Variacijnij pidhid do rozv yazku operatornih rivnyan 6 Div takozh 7 Literatura 8 PosilannyaPraktichni zadachi dlya yakih potribne diferenciyuvannya funkcionaliv RedaguvatiNajvazhlivishim dlya praktiki ye funkcional viglyadu 1 S S x a b L x x d t displaystyle 1 qquad S S x int a b L x dot x dt nbsp dlya vipadku funkciyi skalyarnogo argumentu x x t displaystyle x x t nbsp i 2 S L x i x i u j d u 1 d u 2 d u n displaystyle 2 qquad S int L x i partial x i over partial u j du 1 du 2 du n nbsp dlya vipadku vektor funkciyi kilkoh koordinat x i x i u 1 u 2 u n displaystyle x i x i u 1 u 2 u n nbsp Do cih dvoh funkcionaliv privodyat po pershe zadachi na minimum maksimum v fizici diferencialnij geometriyi teoriyi optimalnogo upravlinnya A po druge mozhlivist vivodu rivnyan fiziki iz rivnosti nulyu variaciyi funkcionala diyi Zokrema same variacijne chislennya pochalosya iz zadachi pro brahistrohronu krivu liniyu ruhayuchis po yakij bez tertya materialna tochka pid diyeyu sili tyazhinnya najshvidshe dosyagne fiksovanoyi finishnoyi tochki Yaksho vibrati sistemu koordinat napravivshi vis O y displaystyle Oy nbsp vertikalno vniz to shvidkist materilnoyi tochki bude v 2 g y displaystyle v sqrt 2gy nbsp a chas spusku po krivij dayetsya integralom 3 T d s 2 g y 0 x 0 1 y 2 2 g y d x displaystyle 3 qquad T int ds over sqrt 2gy int 0 x 0 sqrt 1 y 2 over 2gy dx nbsp V zadachi treba znajti taku funkciyu y y x displaystyle y y x nbsp zafiksovanu na kincyah y 0 0 displaystyle y 0 0 nbsp y x 0 y 0 displaystyle y x 0 y 0 nbsp shob danij integral buv minimalnim Ochevidno sho integral 3 z tochnistyu do zamini poznachen zbigayetsya z funkcionalom 1 U diferencialnij geometriyi poshuk geodezichnoyi liniyi najkorotshoyi liniyi sho z yednuye dvi tochki mnogovidu privodit do funkcionala 1 de L x x g i j x x i x j displaystyle L x dot x sqrt g ij x dot x i dot x j nbsp A poshuk minimalnih mnogovidiv natyagnutih na ramku privodit do funkcionala vidu 2 Terminologiya i poznachennya RedaguvatiFunkcional ye funkciyeyu oblastyu viznachennya yakoyi argumentom ye mnozhina funkcij a mnozhinoyu znachen dijsni chi kompleksni chisla Ochevidno sho yakbi ne vvoditi specialnogo terminu funkcional to bula b terminologichna plutanina pri mirkuvannyah pro argument i znachennya funkcionalu Ce zh zauvazhennya stosuyetsya i diferenciyuvannya adzhe argument funkcionala takozh mozhna diferenciyuvati Tomu pri rozglyadi funkcionaliv malij pririst argumenta i vidpovidno funkcionala nazivayut variaciyeyu i poznachayut maloyu greckoyu bukvoyu d displaystyle delta nbsp d S S x d x S x displaystyle delta S S x delta x S x nbsp Variaciya ye analogom ponyattya diferenciala zvichajnih funkcij Mozhna sobi uyavlyati variaciyu d x displaystyle delta x nbsp yak funkciyu sho maye duzhe malij rozmah amplitudu i peretvoryuyetsya na nul na mezhi oblasti integruvannya tobto dlya funkcionala 1 d x a d x b 0 displaystyle delta x a delta x b 0 nbsp V usomu inshomu cya funkciya maye dovilnu formu sho mozhna zapisati tak d x t e f t displaystyle delta x t varepsilon f t nbsp de e displaystyle varepsilon nbsp neskinchenno male dodatne chislo Persha pohidna funkcionala rivnyannya Ejlera Lagranzha RedaguvatiObchislennya variacij dlya funkcionaliv 1 i 2 analogichne Pochnemo z prostishogo funkcionala 1 Mayemo 4 d S a b d L d t a b L x d x L x d x d t displaystyle 4 qquad delta S int a b delta Ldt int a b left partial L over partial x delta x partial L over partial dot x delta dot x right dt nbsp V ostannomu dodanku v pidintegralnij funkciyi mi mozhemo perestaviti vzyattya variaciyi d displaystyle delta nbsp i vzyattya pohidnoyi po d d t displaystyle d over dt nbsp dlya argumentnoyi funkciyi x x d x displaystyle tilde x x delta x nbsp d x x x d d t x x d d t d x displaystyle delta dot x dot tilde x dot x d over dt tilde x x d over dt delta x nbsp Teper mi mozhemo prointegruvati ostannij dodanok v 4 chastinami a b L x d d x d t d t L x d x a b a b d d t L x d x d t displaystyle int a b partial L over partial dot x d delta x over dt dt left partial L over partial dot x delta x right a b int a b left d over dt partial L over partial dot x right delta xdt nbsp Oskilki na kincyah intervala integruvannya variaciya funkciyi peretvoryuyetsya v nul d x 0 displaystyle delta x 0 nbsp pri t a displaystyle t a nbsp i pri t b displaystyle t b nbsp to dlya variaciyi funkcionala 4 mayemo ostatochno 5 d S a b L x d d t L x d x d t displaystyle 5 qquad delta S int a b left partial L over partial x d over dt partial L over partial dot x right delta xdt nbsp Teper mi mozhemo dati vidpovid na pitannya za yakih umov variaciya funkcionala 5 dorivnyuye nulyu Oskilki variaciya d x displaystyle delta x nbsp ye dovilnoyu funkciyeyu mi mozhemo vibrati dovilnu tochku t 0 a b displaystyle t 0 in a b nbsp vseredini oblasti integruvannya a funkciyu d x d x t displaystyle delta x delta x t nbsp vzyati takoyu sho vona dodatnya v malomu okoli tochki t 0 displaystyle t 0 nbsp a v usih tochkah za mezhami cogo okolu peretvoryuyetsya v nul Yaksho viraz v duzhkah pid integralom 5 bude vidminnim vid nulya v tochci t 0 displaystyle t 0 nbsp i malo zminyuvatis u vibranomu malomu okoli faktichno vvazhatisya konstantoyu v porivnyanni zi shvidkistyu zmini variaciyi d x t displaystyle delta x t nbsp yaku mi mozhemo vinesti za znak integrala to integral 5 takozh bude vidminnim vid nulya Otzhe shob pri bud yakij variaciyi d x t displaystyle delta x t nbsp mi mali nulovu variaciyu funkcionala 5 treba shob vikonuvalosya rivnyannya Ejlera Lagranzha 6 L x d d t L x 0 displaystyle 6 qquad partial L over partial x d over dt partial L over partial dot x 0 nbsp Formula 6 legko poshiryuyetsya na vipadok yakij v praktichnih zadachah majzhe ne zustrichayetsya koli funkciya Lagranzha L displaystyle L nbsp zalezhit takozh vid starshih pohidnih argumentnoyi funkciyi x t displaystyle x t nbsp L L x x x displaystyle L L x dot x ddot x nbsp L x d d t L x d 2 d t 2 L x 0 displaystyle partial L over partial x d over dt partial L over partial dot x d 2 over dt 2 partial L over partial ddot x 0 nbsp Formula 6 bude analogichnoyu i u vipadku koli funkcional zalezhit vid vektor funkciyi skalyarnogo argumenta x t x i t displaystyle mathbf x t x i t nbsp 7 d d t L x i L x i displaystyle 7 qquad d over dt partial L over partial dot x i partial L over partial x i nbsp Teper mozhna rozglyanuti takozh i diferenciyuvannya funkcionala 2 Obchislennya viyavlyayutsya analogichnimi ale pri integruvanni chastinami treba skoristatisya formuloyu Ostrogradskogo Gausa yaka perevodit integral vid divegrenciyi po ob yemu v integral po giperpoverhni sho obmezhuye cej ob yem tut po odnakovih indeksah provoditsya dodavannya zgidno z pravilom Ejnshtejna V a i u i d t S a i n i d s displaystyle int V partial a i over partial u i d tau int S a i n i d sigma nbsp Mayemo poznachivshi dlya korotkosti element ob yemu d t d u 1 d u 2 d u n displaystyle d tau du 1 du 2 du n nbsp d S L x i d x i L x i u j d x i u j d t displaystyle delta S int partial L over partial x i delta x i partial L over partial partial x i over partial u j delta partial x i over partial u j d tau nbsp Drugij dodanok integruyemo chastinami poperedno vidilivshi divergenciyu pershim dodankom L x i u j d x i u j u j L x i u j d x i u j L x i u j d x i displaystyle partial L over partial partial x i over partial u j delta partial x i over partial u j partial over u j partial L over partial partial x i over partial u j delta x i partial over partial u j partial L over partial partial x i over partial u j delta x i nbsp Integral vid pershogo dodanka peretvoryuyetsya v integral po poverhni zgidno z formuloyu Ostrogradskogo Gausa Vin dorivnyuvatime nulyu oskilki variaciya d x i u displaystyle delta x i u nbsp na mezhi integruvannya peretvoryuyetsya v nul Takim chinom mayemo formulu pershoyi variaciyi 8 d S L x i u j L x i u j d x i d t displaystyle 8 qquad delta S int partial L over partial x i partial over partial u j partial L over partial partial x i over partial u j delta x i d tau nbsp I vidpovidne rivnyannya Ejlera Lagranzha 9 L x i u j L x i u j 0 displaystyle 9 qquad partial L over partial x i partial over partial u j partial L over partial partial x i over partial u j 0 nbsp Druga pohidna funkcionala RedaguvatiFunkcional v okoli fiksovanoyi argumentnoyi funkciyi mozhna rozklasti v ryad Tejlora po stepenyah malosti variaciyi d x displaystyle delta x nbsp 10 S S x d x S 1 1 d S 1 2 d 2 S displaystyle 10 qquad tilde S S x delta x S 1 over 1 delta S 1 over 2 delta 2 S nbsp Ochevidno sho v lokalnomu minimumi funkcionala persha variaciya variaciya dorivnyuye nulevi a druga povinna buti dodatno viznachenoyu kvadratichnoyu formoyu vid variaciyi argumenta d x displaystyle delta x nbsp i vid yemno viznachenoyu v tochci lokalnogo maksimuma Rozglyanemo vipadok funkcionala vid vektor funkciyi skalyarnogo argumenta x i x i t displaystyle x i x i t nbsp vvedemo poznachennya shvidkostej v i x i displaystyle v i dot x i nbsp Todi funkciya Lagranzha L displaystyle L nbsp rozkladayetsya v ryad Tejlora pohidni L displaystyle L nbsp po argumentah poznachatimemo indeksami vnizu L L 1 1 L x i d x i L v i d v i 1 2 L x i x j d x i d x j 2 L x i v j d x i d v j L v i v j d v i d v j displaystyle tilde L L 1 over 1 L x i delta x i L v i delta v i 1 over 2 L x i x j delta x i delta x j 2L x i v j delta x i delta v j L v i v j delta v i delta v j nbsp Otzhe druga variaciya funkcionala dorivnyuye 11 d 2 S a b L x i x j d x i d x j 2 L x i v j d x i d v j L v i v j d v i d v j d t displaystyle 11 qquad delta 2 S int a b L x i x j delta x i delta x j 2L x i v j delta x i delta v j L v i v j delta v i delta v j dt nbsp Variacijnij pidhid do rozv yazku operatornih rivnyan RedaguvatiNehaj mayemo operatorne rivnyannya A u b displaystyle Au b nbsp De operator A diye z gilbertovogo prostoru H v H i ye linijnim neperervnim i samospryazhenim Rozglyanemo funkcional J u 1 2 A u u b u displaystyle J u frac 1 2 Au u b u nbsp Znajdemo jogo gradiyent J u displaystyle J u nbsp Oznachennya 1 Linijnij neperervnij funkcional J u nazivayetsya gradiyentom funkcionalu J u v tochci x yaksho D J u J x D x J x lt J x D x gt o D x displaystyle Delta J u J x Delta x J x lt J x Delta x gt o parallel Delta x parallel nbsp De cherez lt J x D x gt displaystyle lt J x Delta x gt nbsp poznacheno diyu funkcionalu J x na elementi D x displaystyle Delta x nbsp Otzhe D J A A u 2 b D u 1 2 A D u D u displaystyle Delta J frac A A u 2 b Delta u frac 1 2 A Delta u Delta u nbsp Z nerivnosti Koshi Bunyakovskogo i obmezhenosti neperervnosti operatora A mayemo 1 2 A D u D u 1 2 A D u D u A 2 D u 2 C D u 2 o D u displaystyle frac 1 2 A Delta u Delta u leq frac 1 2 parallel A Delta u parallel cdot parallel Delta u parallel leq frac parallel A parallel 2 parallel Delta u parallel 2 C parallel Delta u parallel 2 o parallel Delta u parallel nbsp Otzhe J u Au b gradiyent nashogo funkcionalu Teper vidznachimo vazhlivu rich yaksho nash funkcional J u v deyakij tochci x prijmaye ekstremalne znachennya minimum maksimum to gradiyent v cij tochci rivnij nulyu ce neobhidna umova ekstremumu A ce oznachaye sho x bude zadovolnyati J x 0 Ax b A otzhe bude rozv yazkom rivnyannya Au b 0 Takim chinom vdalosya operatorne rivnyannya zvesti do poshuku ekstremalnih tochok funkcionalu J u Ce i ye variacijnij pidhid Yaksho teper pripustiti sho operator A dodatno viznachenij tobto isnuye dodatnya stala m displaystyle mu nbsp taka sho A u u m u 2 displaystyle Au u geq mu parallel u parallel 2 nbsp to funkcional J u bude silno opuklim na H i na vsomu prostori bude dosyagati svoyeyi nizhnoyi mezhi rivno v odnij tochci Tobto dlya togo shob rozv yazati operatorne rivnyannya nam dostatno znajti tochku v yakij J u nabuvaye nizhnoyi mezhi Pri pripushennyah sho buli zrobleni taka tochka isnuye i yedina Div takozh Redaguvati nbsp Portal Matematika Princip najmenshoyi diyi Mehanika Lagranzha Variacijnij metodLiteratura RedaguvatiVariacijne chislennya navch posib dlya stud fiz spec un tiv V M Adamyan M Ya Sushko Odeskij nacionalnij un t im I I Mechnikova O Astroprint 2005 128 s ris ISBN 966 318 340 3 Variacijne chislennya ta metodi optimizaciyi pidruchnik O M Piddubnij Yu I Harkevich Shidnoyevrop nac un t im Lesi Ukrayinki Luck Gadyak Zh V 2015 331 s ISBN 978 617 7129 36 2 Vstup do matematichnoyi fiziki Variacijne chislennya ta krajovi zadachi navch posib dlya studentiv fiz ta inzh fiz spec VNZ V M Adamyan M Ya Sushko Odes nac un t im I I Mechnikova Odesa Astroprint 2014 376 s ris ISBN 978 966 190 912 9 Diferencialni rivnyannya variacijne chislennya ta yih zastosuvannya navch posib F G Garashenko V T Matviyenko V V Pichkur I I Harchenko K Kiyivskij un t 2015 271 s Klasichni ta suchasni metodi variacijnogo chislennya navch posib dlya stud vish navch zakl G I Koshovij V M Pavlenko B L Golinskij In t innovac tehnologij i zmistu osviti Nac aerokosm un t im M Ye Zhukovskogo Hark aviac in t H HAI 2011 303 s ris ISBN 978 966 662 246 7 Matematichne programuvannya ta elementi variacijnogo chislennya navch metod posib F G Vashuk O G Laver N Ya Shumilo Uzhgorod derzh in t informatiki ekonomiki i prava Uzhgorod 2001 169 1 s ris tabl ISBN 966 7186 55 5 Moklyachuk M P Variacijne chislennya Ekstremalni zadachi K VPC Kiyivskij universitet 2010 399 s Osnovi variacijnogo chislennya navch posib dlya stud vishih navch zakl yaki navch za napryamom pidgot Mehanika E L Gart Dnipropetrovskij nacionalnij un t im Olesya Gonchara D 2009 176 s ris ISBN 978 966 551 287 5 Perestyuk M O Stanzhickij O M Kapustyan O V Lovejkin Yu V Variacijne chislennya ta metodi optimizaciyi K VPC Kiyivskij universitet 2010 144 s Ahiezer N I Lekcii po variacionnomu ischisleniyu M GITTL 1955 248 s Gelfand I M Fomin S V Variacionnoe ischislenie M GIFML 1961 228 s Kurant R Princip Dirihle konformnye otobrazheniya i minimalnye poverhnosti M IL 1953 310 s Kurant R Gilbert D Metody matematicheskoj fiziki M GITTL 1951 T 1 476 s Mors M Variacionnoe ischislenie v celom Izhevsk RHD 2010 512 s Clegg J C Calculus of Variations Interscience Publishers Inc 1968 Forsyth A R Calculus of Variations Dover 1960 Fox C An Introduction to the Calculus of Variations Dover 1987 Jost J Li Jost X Calculus of Variations Cambridge University Press 1998 Lebedev L P Cloud M J The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics World Scientific 2003 Sagan H Introduction to the Calculus of Variations Dover 1992 Weinstock R Calculus of Variations with Applications to Physics and Engineering Dover 1974 Posilannya RedaguvatiJohan Bystrom Lars Erik Persson and Fredrik Stromberg Chapter III Introduction to the calculus of variations undated Calculus of variations example problems Chapter 8 Calculus of Variations from Optimization for Engineering Systems by Ralph W Pike Louisiana State University Otrimano z https uk wikipedia org w index php title Variacijne chislennya amp oldid 40291072