www.wikidata.uk-ua.nina.az
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри
Дата публікації:
Meha nika Lagra nzha odne z analogichnih do zakoniv Nyutona formulyuvan klasichnoyi mehaniki sho vikoristovuye princip stacionarnoyi diyi Gamiltona Ostrogradskogo Lagranzheva mehanika zastosovuyetsya do sistem v yakih tak chi inakshe zberigayetsya energiya abo impuls i viznachaye umovi zberigannya energiyi abo impulsu Bula zaproponovana francuzko italijskim matematikom Zhozefom Luyi Lagranzhem u 1788 roci U mehanici Lagranzha trayektoriya viznachayetsya rozv yazkom odniyeyi z dvoh form rivnyan Lagranzha rivnyannya Lagranzha I rodu yake yavno vrahovuye zv yazki vikoristovuyuchi dodatkovi rivnyannya zazvichaj iz vikoristannyam mnozhnikiv Lagranzha abo rivnyannya Lagranzha II rodu sho vrahovuye zv yazki za dopomogi rozumnogo viboru uzagalnenih koordinat Za osnovnoyu lemoyu variacijnogo chislennya rozv yazok rivnyan Lagranzha ekvivalentnij do znahodzhennya trayektoriyi sho zalishaye stacionarnim funkcional diyi integral za chasom vid funkciyi Lagranzha Vikoristannya uzagalnenih koordinat mozhe znachno sprostiti rozv yazok rivnyan mehaniki zokrema pri rozglyadi sistem iz zv yazkami Rozglyanemo yak priklad ruh kulki u zholobi bez tertya Yaksho rozglyadati kulku yak materialnu tochku to dlya viznachennya yiyi ruhu neobhidno rozv yazati rivnyannya nyutonivskoyi mehaniki dlya zminnoyi u chasi sili reakciyi zv yazkiv yaka utrimuye kulku v zholobi V mehanici Lagranzha rozglyadayetsya bezposeredno trayektoriya zholoba j obirayetsya nabir nezalezhnih uzagalnenih koordinat yakij povnistyu viznachaye mozhlivij ruh kulki Takij vibir koordinat usuvaye potrebu u vikoristanni sili reakciyi zv yazkiv u ostatochnij sistemi mehanichnih rivnyan Takim chinom zavdyaki viklyuchennyu z rivnyan yavnogo vrahuvannya reakciyi zholoba na kulku ostatochna kilkist rivnyan zmenshuyetsya Zmist 1 Fundamentalni ponyattya 1 1 Uzagalneni koordinati 1 1 1 Terminologiya j koncepciya 1 1 2 Matematichne formulyuvannya 1 2 Princip d Alambera Lagranzha j uzagalneni sili 1 3 Spivvidnoshennya dlya kinetichnoyi energiyi 1 4 Funkciya Lagranzha i funkcional diyi 1 5 Princip stacionarnoyi diyi Gamiltona Ostrogradskogo 2 Rivnyannya Lagranzha pershogo rodu 3 Rivnyannya Lagranzha drugogo rodu 3 1 Rivnyannya Ejlera Lagranzha 3 2 Vivedennya rivnyan Lagranzha 3 2 1 Princip Gamiltona Ostrogradskogo 3 2 2 Uzagalneni sili 3 2 3 Zakoni Nyutona 3 3 Disipativna funkciya 4 Prikladi vikoristannya 4 1 Mehanichnij oscilyator 4 2 Elektrichnij oscilyator 4 3 Relyativistska mehanika 5 Rozshirennya mehaniki Lagranzha 6 Div takozh 7 Vinoski 8 LiteraturaFundamentalni ponyattya RedaguvatiUzagalneni koordinati Redaguvati Terminologiya j koncepciya Redaguvati Dlya okremoyi chastinki sho znahoditsya pid diyeyu zovnishnih sil mozhna otrimati za drugim zakonom Nyutona sistemu troh diferencialnih rivnyan drugogo poryadku po odnomu dlya kozhnogo vimiru Otzhe ruh takoyi chastinki povnistyu viznachatimetsya shistma nezalezhnimi zminnimi troma pochatkovimi koordinatami j troma pochatkovimi shvidkostyami Vrahovuyuchi ce zrozumilo sho zagalni rozv yazki rivnyan Nyutona peretvoryuyutsya na chastinni rozv yazki sho viznachayut chasovu evolyuciyu chastinki z pochatkovogo stanu t 0 Standartnim naborom zminnih sho viznachayut polozhennya r j r 1 r 2 r 3 displaystyle mathbf r j r 1 r 2 r 3 nbsp i shvidkist r j r 1 r 2 r 3 displaystyle mathbf dot r j dot r 1 dot r 2 dot r 3 nbsp ye dekartovi koordinati ta yihni chasovi pohidni x y z displaystyle x y z nbsp i v x v y v z displaystyle v x v y v z nbsp vidpovidno Viznachennya sil u terminah standartnih koordinat vzagali kazhuchi dovoli tyazhke Inshij bilsh efektivnij pidhid vikoristannya lishe takoyi kilkosti koordinat yaka potribna dlya viznachennya polozhennya chastinki v prostori vrahovuyuchi nakladeni na neyi zv yazki i zapisuyuchi potencialnu j kinetichnu energiyi inshimi slovami viznachayetsya kilkist stupeniv vilnosti chastinki Energiyi legshe zapisuvati i rozrahovuvati nizh sili oskilki energiya ye skalyarnoyu velichinoyu na vidminu vid sili yaka ye velichinoyu vektornoyu Podibni koordinati mayut nazvu uzagalnenih koordinat i poznachayutsya q j displaystyle q j nbsp kozhna uzagalnena koordinata vidpovidaye odnij stupeni vilnosti Vidpovidni chasovi pohidni ye uzagalnenimi shvidkostyami q j displaystyle dot q j nbsp Kilkist stupeniv vilnosti ne zavzhdi vidpovidaye rozmirnosti prostoru napriklad sistemi bagatoh til u trivimirnomu prostori napriklad mayatnik Bartona planeti u Sonyachnij sistemi atomi v molekulah mozhut mati okrim postupalnih she j obertalni stupeni vilnosti Taka kilkist stupeniv vilnosti rizko kontrastuye z kilkistyu prostorovih koordinat u nyutonivskih rivnyannyah Matematichne formulyuvannya Redaguvati Radius vektor r displaystyle mathbf r nbsp u deyakij standartnij sistemi koordinat dekartovij sferichnij i t d zv yazanij iz uzagalnenimi koordinatami transformacijnim rivnyannyam r r q 1 q N t displaystyle mathbf r mathbf r q 1 q N t nbsp de N kilkist stupeniv vilnosti sistemi Analogichne rivnyannya zv yazuye shvidkist u standartnij sistemi koordinat i uzagalneni shvidkosti Vizmemo yak ilyustraciyu mayatnik dovzhinoyu l Legko bachiti sho na taku sistemu nakladayetsya zv yazok u viglyadi nitki abo strizhnya sho zakriplyuyut visok mayatnika Polozhennya viska r displaystyle mathbf r nbsp zalezhit vid koordinat x i y v moment chasu t tobto r t r x t y t displaystyle mathbf r t mathbf r x t y t nbsp ale okrim togo koordinati x i y zv yazani mizh soboyu rivnyannyam v yazi tomu pri zmini x zminyuyetsya y i navpaki Otzhe rozumnim viborom uzagalnenoyi koordinati bude kut vidhilennya mayatnika vid rivnovagi 8 tozh r t r x 8 y 8 r 8 displaystyle mathbf r t mathbf r x theta y theta mathbf r theta nbsp prichomu 8 8 t displaystyle theta theta t nbsp sho vidpovidaye odnij stupeni vilnosti mayatnika Todi transformacijne rivnyannya dlya radius vektora matime viglyad r 8 t r l sin 8 t l cos 8 t displaystyle mathbf r theta t mathbf r l sin theta t l cos theta t nbsp a dlya shvidkosti r 8 t 8 t r l 8 cos 8 t l 8 sin 8 t displaystyle dot mathbf r theta t dot theta t mathbf r l dot theta cos theta t l dot theta sin theta t nbsp U zagalnomu vipadku N uzagalnenih koordinat zv yazuyutsya iz sistemoyu n chastinok za dopomogi sistemi transformacijnih rivnyan 1 r 1 r 1 q 1 q 2 q N t r 2 r 2 q 1 q 2 q N t r n r n q 1 q 2 q N t displaystyle begin array r c l mathbf r 1 amp amp mathbf r 1 q 1 q 2 cdots q N t mathbf r 2 amp amp mathbf r 2 q 1 q 2 cdots q N t amp vdots amp mathbf r n amp amp mathbf r n q 1 q 2 cdots q N t end array nbsp Viraz dlya virtualnogo peremishennya d r i displaystyle delta mathbf r i nbsp dlya sistemi z nezalezhnimi vid chasu zv yazkami ye povnim diferencialom 2 d r i j 1 N r i q j d q j displaystyle delta mathbf r i sum j 1 N frac partial mathbf r i partial q j delta q j nbsp Otzhe uzagalneni koordinati formuyut diskretnij nabir zminnih sho viznachayut konfiguraciyu sistemi Poshiryuyuchi podibnij nabir na kontinuum mozhna otrimati polovi zminni napriklad f r t displaystyle varphi r t nbsp sho yavlyaye soboyu zalezhnu vid polozhennya j chasu funkciyu gustini polya Princip d Alambera Lagranzha j uzagalneni sili Redaguvati Princip d Alambera Lagranzha vvodit ponyattya virtualnoyi roboti d A displaystyle delta A nbsp zovnishnih sil F i displaystyle mathbf F i nbsp ta sil inerciyi u trivimirnij sistemi n chastinok ruh yakih uzgodzhenij iz nakladenimi zv yazkami Virtualna robota d A displaystyle delta A nbsp z virtualnogo peremishennya d r i displaystyle delta mathbf r i nbsp uzgodzhenogo iz zv yazkami chastinki masoyu m i displaystyle m i nbsp dorivnyuye Princip d Alambera Lagranzha d A i 1 n F i m i a i d r i 0 displaystyle delta A sum i 1 n mathbf F i m i mathbf a i cdot delta mathbf r i 0 nbsp de a j displaystyle mathbf a j nbsp priskorennya j yi chastinki U terminah uzagalnenih koordinat d A j 1 N i 1 n F i m i a i r i q j d q j 0 displaystyle delta A sum j 1 N sum i 1 n mathbf F i m i mathbf a i cdot frac partial mathbf r i partial q j delta q j 0 nbsp Mozhna pokazati sho prikladeni sili mozhna viraziti cherez uzagalneni sili Q j displaystyle Q j nbsp prodiferenciyuvavshi virtualnu robotu za d q j displaystyle delta q j nbsp Q j d A d q j i 1 n F i r i q j displaystyle Q j frac delta A delta q j sum i 1 n mathbf F i frac partial mathbf r i partial q j nbsp Yaksho sili F i displaystyle mathbf F i nbsp konservativni to mozhna vvesti skalyarnij potencial V displaystyle V nbsp gradiyent yakogo dorivnyuye tij samij sili F i V Q j i 1 n V r i q j V q j displaystyle mathbf F i nabla V Rightarrow Q j sum i 1 n nabla V cdot frac partial mathbf r i partial q j frac partial V partial q j nbsp Tobto uzagalneni sili mozhna zvesti do skalyarnogo potencialu v terminah uzagalnenih koordinat Cogo slid bulo ochikuvati oskilki potencial V displaystyle V nbsp ye funkciyeyu koordinat r i displaystyle mathbf r i nbsp yaki v svoyu chergu zalezhat vid uzagalnenih koordinat Tomu vikoristovuyuchi pravilo diferenciyuvannya skladnoyi funkciyi legko otrimati poperednij rezultat Spivvidnoshennya dlya kinetichnoyi energiyi Redaguvati Kinetichna energiya T displaystyle T nbsp dlya sistemi n chastinok viznachayetsya takim chinom T 1 2 i 1 n m i r i 2 displaystyle T frac 1 2 sum i 1 n m i mathbf dot r i 2 nbsp Zapishemo chastinni pohidni vid T displaystyle T nbsp za uzagalnenimi koordinatami q j displaystyle q j nbsp j uzagalnenimi shvidkostyami q j displaystyle dot q j nbsp T q j i 1 n m i r i r i q j displaystyle frac partial T partial q j sum i 1 n m i mathbf dot r i frac partial mathbf dot r i partial q j nbsp T q j i 1 n m i r i r i q j displaystyle frac partial T partial dot q j sum i 1 n m i mathbf dot r i frac partial mathbf dot r i partial dot q j nbsp Oskilki q j displaystyle q j nbsp i q j displaystyle dot q j nbsp ye nezalezhnimi to vikonuyetsya take spivvidnoshennya r i q j r i q j displaystyle frac partial mathbf dot r i partial dot q j frac partial mathbf r i partial q j nbsp todi T q j i 1 n m i r i r i q j displaystyle frac partial T partial dot q j sum i 1 n m i mathbf dot r i frac partial mathbf r i partial q j nbsp Vizmemo vid cogo virazu povnu pohidnu za chasom d d t T q j i 1 n m i r i r i q j r i r i q j Q j T q j displaystyle frac mathrm d mathrm d t Bigl frac partial T partial dot q j Bigr sum i 1 n m i mathbf ddot r i frac partial mathbf r i partial q j mathbf dot r i frac partial mathbf dot r i partial q j Q j frac partial T partial q j nbsp Ostatochno mayemo take rivnyannya 2 Uzagalnene rivnyannya ruhu Q j d d t T q j T q j displaystyle Q j frac mathrm d mathrm d t Bigl frac partial T partial dot q j Bigr frac partial T partial q j nbsp Ce vazhlive rivnyannya oskilki vono vzhe mistit zakoni Nyutona ale vzhe nemaye potrebi znahoditi sili reakciyi zv yazkiv oskilki v rivnyanni vikoristovuyutsya virtualna robota j uzagalneni koordinati yaki zalezhat vid zv yazkiv Na praktici ce rivnyannya vikoristovuyetsya nechasto ale vono graye vazhlivu rol pri vivedenni rivnyan Lagranzha Funkciya Lagranzha i funkcional diyi Redaguvati Dokladnishe LagranzhianOsnovoyu lagranzhevoyi mehaniki ye funkciya Lagranzha lagranzhian yaka zberigaye vsyu informaciyu pro dinamiku sistemi u viglyadi duzhe prostogo virazu Tak dlya doslidzhennya dinamiki sistemi obirayetsya nabir vidpovidnih uzagalnenih koordinat viznachayutsya kinetichna j potencialna energiyi skladovih elementiv sistemi dali zapisuyetsya funkciya Lagranzha sho viznachayetsya takim chinom L T V displaystyle L T V nbsp de T displaystyle T nbsp povna kinetichna energiya sistemi V displaystyle V nbsp povna potencialna energiya sistemi Inshim vazhlivim ponyattyam lagranzhevoyi mehaniki ye diya S displaystyle S nbsp sho viznachayetsya yak integral za chasom vid funkciyi Lagranzha S t 1 t 2 L q q t d t displaystyle S int t 1 t 2 L q dot q t mathrm d t nbsp Diya takozh zberigaye informaciyu pro dinamiku sistemi j maye velike znachennya v teoretichnij fizici Z matematichnoyi tochki zoru diya ce funkcional yiyi znachennya zalezhit vid povnoyi funkciyi Lagranzha dlya bud yakogo momentu chasu mizh t1 i t2 Rozmirnist diyi zbigayetsya z rozmirnistyu kutovogo momentu U teoriyi polya funkciya Lagranzha zapisuyetsya cherez gustinu lagranzhianuL displaystyle mathcal L nbsp L V L d 3 r displaystyle L int V mathcal L mathrm d 3 r nbsp todi diya matime takij viglyad S t 1 t 2 V L d 3 r d t displaystyle S int t 1 t 2 int V mathcal L mathrm d 3 r mathrm d t nbsp Princip stacionarnoyi diyi Gamiltona Ostrogradskogo Redaguvati Nehaj q0 i q1 koordinati u pochatkovij ta kincevij momenti chasu t0 i t1 Za dopomogi variacijnogo chislennya mozhna pokazati sho rivnyannya Lagranzha ye pryamim naslidkom principu Gamiltona Ostrogradskogo Trayektoriya mizh momentami chasu t0 i t1 zalishaye stacionarnim funkcional diyi S Pid stacionarnistyu mayetsya na uvazi nezminnist pershoyi variaciyi funkcionala diyi pri malih zminah trayektoriyi kinci yakoyi q0 t0 j q1 t1 fiksovani V matematichnij formi princip Gamiltona Ostrogradskogo zapisuyetsya tak d S 0 displaystyle delta S 0 nbsp Takim chinom zamist rozglyadannya chastinok sho priskoryuyutsya vnaslidok prikladannya do nih deyakih sil mozhna rozglyadati chastinki sho ruhayutsya za deyakoyu trayektoriyeyu sho zalishaye stacionarnim funkcional diyi Princip Gamiltona Ostrogradskogo chasto pov yazuyut iz principom najmenshoyi diyi hocha funkcional diyi maye zalishatisya lishe stacionarnim neobov yazkovo minimalnim chi maksimalnim Napriklad yaksho rozglyadati garmonichnij oscilyator dlya bilshogo za period promizhku chasu mozhna pomititi sho dlya malih dilyanok trayektoriyi znachennya diyi mozhe buti minimalnim todi yak dlya velikih maksimalnim 3 Princip stacionarnoyi diyi mozhe vikoristovuvatisya zamist zakoniv Nyutona yak fundamentalnij princip mehaniki sho dozvolyaye buduvati mehaniku na osnovi integralnogo principa zamist diferencialnogo yakij skladayut zakoni Nyutona sho bazuyutsya na diferencialnih rivnyannyah Ale slid zaznachiti sho princip Gamiltona Ostrogradskogo pracyuye yak variacijnij princip lishe dlya golonomnih zv yazkiv tobto takih zv yazkiv sho mozhna viraziti u viglyadi rivnosti tipu f r t 0 displaystyle f mathbf r t 0 nbsp Dlya negolonomnih zv yazkiv prnincip Gamiltona Ostrogradskogo neobhidno zaminiti variacijnimi principom sho gruntuyetsya na principi d Alambera Lagranzha dlya virtualnoyi roboti Rozglyad lishe golonomnih zv yazkiv cina yaku mi platimo za vikoristannya elegantnogo variacijnogo formulyuvannya mehaniki Rivnyannya Lagranzha pershogo rodu RedaguvatiLagranzh zaproponuvav i vikoristav u mehanici nastupnij analitichnij metod poshuku stacionarnih tochok za dopomogoyu metodu neviznachenih mnozhnikiv Otzhe nehaj na sistemu nakladenij zv yazok sho viznachayutsya takim rivnyannyam f r 1 r 2 r 3 A displaystyle f r 1 r 2 r 3 A nbsp de A konstanta Todi mozhna vvesti rivnyannya Lagranzha pershogo rodu sho viglyadaye takim chinom L r j d d t L r j l f r j 0 displaystyle Bigl frac partial L partial r j frac mathrm d mathrm d t Bigl frac partial L partial dot r j Bigr Bigr lambda frac partial f partial r j 0 nbsp de l neviznachenij mnozhnik Lagranzha Vikoristovuyuchi variacijnu pohidnu d L d r j L r j d d t L r j displaystyle frac delta L delta r j frac partial L partial r j frac mathrm d mathrm d t Bigl frac partial L partial dot r j Bigr nbsp vid funkciyi Lagranzha mozhna perepisati rivnyannya tak d L d r j l F r j 0 displaystyle frac delta L delta r j lambda frac partial F partial r j 0 nbsp Dlya m rivnyan zv yazkiv fa isnuyut mnozhniki Lagranzha dlya kozhnogo z cih rivnyan tozh rivnyannya Lagranzha pershogo rodu mozhna uzagalniti takim chinom Rivnyannya Lagranzha pershogo rodu d L d r j a 1 m l a f a r j 0 displaystyle frac delta L delta r j sum alpha 1 m lambda alpha frac partial f alpha partial r j 0 nbsp Podibna procedura zbilshuye kilkist rivnyan ale yih dostatno dlya znahodzhennya usih mnozhnikiv Lagranzha Povna kilkist rivnyan skladayetsya z kilkosti rivnyan zv yazkiv ta kilkosti koordinat tobto m n Perevaga takogo metodu polyagaye u mozhlivosti ominuti inodi dovoli skladnu zaminu zminnih sho zv yazani rivnyannyami v yaziv Isnuye zv yazok mizh rivnyannyami v yaziv fa ta silami yih reakciyi Na sho diyut u konservativnij sistemi tobto sili ye konservativnimi N j a 1 m l a f a r j displaystyle N j sum alpha 1 m lambda alpha frac partial f alpha partial r j nbsp Vivedennya spivvidnoshennya mizh rivnyannyami zv yazkiv i silamiUzagalneni sili zv yazkiv viznachayutsya za dopomogi ponyattya uzagalnenoyi sili takim chinom N j i 1 n N i r i q j displaystyle N j sum i 1 n mathbf N i frac partial mathbf r i partial q j nbsp todi vikoristovuyuchi uzagalnene rivnyannya ruhu v terminah kinetichnoyi energiyi Q j d d t T q j T q j d T d q j i 1 n F i r i q j displaystyle Q j frac mathrm d mathrm d t Bigl frac partial T partial dot q j Bigr frac partial T partial q j frac delta T delta q j sum i 1 n mathbf F i frac partial mathbf r i partial q j nbsp Dlya konservativnih sistem F i V i N i displaystyle mathbf F i nabla V i mathbf N i nbsp tomu d T d q j i 1 n F i r i q j i 1 n V i N i r i q j i 1 n V i r i q j i 1 n N i r i q j V q j N j displaystyle frac delta T delta q j sum i 1 n mathbf F i frac partial mathbf r i partial q j sum i 1 n nabla V i mathbf N i frac partial mathbf r i partial q j sum i 1 n nabla V i frac partial mathbf r i partial q j sum i 1 n mathbf N i frac partial mathbf r i partial q j frac partial V partial q j N j nbsp Todi d T d q j d d t L V q j L V q j d L d q j V q j displaystyle frac delta T delta q j frac mathrm d mathrm d t left frac partial L V partial dot q j right frac partial L V partial q j frac delta L delta dot q j frac partial V partial q j nbsp zvidki legko bachiti sho N j d L d q j displaystyle N j frac delta L delta dot q j nbsp Vikoristovuyuchi rivnyannya Lagranzha pershogo rodu ostatochno mayemo N j a 1 m l a f a r j displaystyle N j sum alpha 1 m lambda alpha frac partial f alpha partial r j nbsp Otzhe kozhne rivnyannya zv yazku vidpovidaye sili zv yazku v konservativnij sistemi Rivnyannya Lagranzha drugogo rodu RedaguvatiRivnyannya Ejlera Lagranzha Redaguvati V inshomu movnomu rozdili ye povnisha stattya Euler Lagrange equation angl Vi mozhete dopomogti rozshirivshi potochnu stattyu za dopomogoyu perekladu z anglijskoyi Divitis avtoperekladenu versiyu statti z movi anglijska Perekladach povinen rozumiti sho vidpovidalnist za kincevij vmist statti u Vikipediyi nese same avtor redaguvan Onlajn pereklad nadayetsya lishe yak korisnij instrument pereglyadu vmistu zrozumiloyu movoyu Ne vikoristovujte nevichitanij i nevidkorigovanij mashinnij pereklad u stattyah ukrayinskoyi Vikipediyi Mashinnij pereklad Google ye korisnoyu vidpravnoyu tochkoyu dlya perekladu ale perekladacham neobhidno vipravlyati pomilki ta pidtverdzhuvati tochnist perekladu a ne prosto skopiyuvati mashinnij pereklad do ukrayinskoyi Vikipediyi Ne perekladajte tekst yakij vidayetsya nedostovirnim abo neyakisnim Yaksho mozhlivo perevirte tekst za posilannyami podanimi v inshomovnij statti Dokladni rekomendaciyi div Vikipediya Pereklad Dlya sistemi z N stupenyami vilnosti rivnyannya Lagranzha mistyat N uzagalnenih koordinat i N uzagalnenih shvidkostej U lagranzhevij mehanici osnovnimi rivnyannyami ruhu ye rivnyannya Lagranzha drugogo rodu abo rivnyannya Ejlera Lagranzha Rivnyannya Lagranzha drugogo rodu d d t L q j L q j displaystyle frac mathrm d mathrm d t Bigl frac partial L partial dot q j Bigr frac partial L partial q j nbsp Yaksho u sistemi diyut nepotencialni sili rivnyannya Ejlera Lagranzha matimut takij viglyad d d t L q i L q i Q i displaystyle frac mathrm d mathrm d t frac partial L partial dot q i frac partial L partial q i Q i prime nbsp de Q i displaystyle Q i prime nbsp uzagalnena nepotencialna sila Hocha matematichnij aparat lagranzhevoyi mehaniki bilsh skladnij za nyutonivsku mehaniku rivnyannya Lagranzha dayut bilsh gliboke rozuminnya sutnosti klasichnoyi mehaniki napriklad simetriyi ta zakoniv zberezhennya Na praktici nabagato legshe rozv yazati rivnyannya Lagranzha nizh rivnyannya Nyutona oskilki lagranzhev pidhid potrebuye minimalnu kilkist uzagalnenih koordinat z oglyadu na simetriyu sistemi a sili reakciyi zv yazkiv vzhe vklyucheni do geometriyi sistemi Dlya kozhnoyi uzagalnenoyi koordinati potribne lishe odne rivnyannya Lagranzha U sistemi bagatoh chastinok kozhna chastinka mozhe mati svoyu vidminnu vid inshih kilkist stupeniv vilnosti U kozhnomu z rivnyan Lagranzha T yavlyaye soboyu povnu kinetichnu energiyu sistemi a V povnu potencialnu energiyu Vivedennya rivnyan Lagranzha Redaguvati Princip Gamiltona Ostrogradskogo Redaguvati Rivnyannya Ejlera Lagranzha mozhna vivesti bezposeredno z principu Gamiltona Ostrogradskogo bo voni ye matematichno ekvivalentnimi Z variacijnogo chislennya vidomo yaksho na pevnij funkcional J u viglyadi J x 1 x 2 F x y y d t displaystyle J int x 1 x 2 F x y y prime mathrm d t nbsp naklasti umovu stacionarnosti to funkciya F zadovolnyatime take rivnyannya d d t F y F y displaystyle frac mathrm d mathrm d t Bigl frac partial F partial y prime Bigr frac partial F partial y nbsp Teper yaksho zrobiti zamini poznachen x t y q y q F L J S displaystyle x rightarrow t quad y rightarrow q quad y prime rightarrow dot q quad F rightarrow L quad J rightarrow S nbsp legko otrimati rivnyannya Ejlera Lagranzha Oskilki rivnyannya Gamiltona mozhna otrimati z rivnyan Lagranzha za dopomogi peretvoren Lezhandra a rivnyannya Lagranzha z zakoniv Nyutona prichomu vsi ci rivnyannya ekvivalentni odni odnomu j pidsumovuyut klasichnu mehaniku to mozhna zrobiti visnovok pro te sho klasichna mehanika gruntuyetsya na variacijnomu principi principi Gamiltona Ostrogradskogo Uzagalneni sili Redaguvati Dlya konservativnoyi sistemi koli potencialna energiya ye funkciyeyu i ne zalezhit vid shvidkosti rivnyannya Lagranzha viplivayut bezposeredno z uzagalnenogo rivnyannya ruhu Q j d d t L V q j L V q j d d t L q j 0 L q j V q j d d t L q j L q j Q j displaystyle Q j frac mathrm d mathrm d t Bigl frac partial mathcal L V partial dot q j Bigr frac partial mathcal L V partial q j Bigl frac mathrm d mathrm d t Bigl frac partial L partial dot q j Bigr 0 Bigr Bigl frac partial L partial q j frac partial V partial q j Bigr frac mathrm d mathrm d t Bigl frac partial L partial dot q j Bigr frac partial L partial q j Q j nbsp yake sproshuyetsya d d t L q j L q j displaystyle frac mathrm d mathrm d t left frac partial L partial dot q j right frac partial L partial q j nbsp Zakoni Nyutona Redaguvati Yak vidno z opisanogo nizhche vivedennya niyakoyi novoyi fiziki ne vvoditsya tomu rivnyannya Lagranzha opisuyut dinamiku klasichnoyi sistemi ekvivalentno zakonam Nyutona Vivedennya rivnyan Lagranzha z drugogo zakonu Nyutona j principu d Alambera LagranzhaSila j vikonana robota na chastinci Nehaj mayemo okremu chastinku masi m iz radius vektorom r sho ruhayetsya pid diyeyu prikladenoyi konservativnoyi sili F yaku mozhna viraziti yak gradiyent vid potencialu V r t displaystyle V mathbf r t nbsp F V displaystyle mathbf F mathbf nabla V nbsp Cya sila zalishayetsya nezalezhnoyu vid pohidnoyi tretogo ta vishih poryadkiv za r Rozglyanemo virtualne peremishennya chastinki d r displaystyle delta mathbf r nbsp Mehanichna robota sho bula viroblena prikladenoyu siloyu F dorivnyuye d A F d r displaystyle delta A mathbf F cdot delta mathbf r nbsp Z drugogo zakonu Nyutona F d r m r d r displaystyle mathbf F cdot delta mathbf r m ddot mathbf r cdot delta mathbf r nbsp Oskilki robota ye velichinoyu skalyarnoyu mi mozhemo perepisati ce rivnyannya v terminah uzagalnenih koordinat i shvidkostej Liva chastina perepisuyetsya tak F d r V i r q i d q i i j V r j r j q i d q i i V q i d q i displaystyle mathbf F cdot mathbf delta mathbf r mathbf nabla V cdot displaystyle sum i partial mathbf r over partial q i delta q i displaystyle sum i j partial V over partial r j partial r j over partial q i delta q i displaystyle sum i partial V over partial q i delta q i nbsp Dlya pravoyi chastini vikonuyuchi zaminu koordinat na uzagalneni mayemo m r d r m j i r i r i q j d q j displaystyle m ddot mathbf r cdot delta mathbf r m sum j left sum i ddot r i partial r i over partial q j right delta q j nbsp Teper integruyuchi za chastinami dodanki pid duzhkami po t a potim diferenciyuyuchi po t d d t r i r i q j d t d d t r i q j r i d d t d d t r i q j r i d t d d t r i r i q j r d d t r i q j displaystyle frac mathrm d mathrm d t int ddot r i partial r i over partial q j mathrm d t frac mathrm d mathrm d t left partial r i over partial q j dot r i right frac mathrm d mathrm d t int frac mathrm d mathrm d t left partial r i over partial q j right dot r i mathrm d t frac mathrm d mathrm d t left dot r i partial r i over partial q j right dot r frac mathrm d mathrm d t left partial r i over partial q j right nbsp mozhemo perepisati sumu tak m r d r m j i d d t r i r i q j r i d d t r i q j d q j displaystyle m ddot mathbf r cdot delta mathbf r m sum j left sum i left mathrm d over mathrm d t left dot r i partial r i over partial q j right dot r i mathrm d over mathrm d t left partial r i over partial q j right right right delta q j nbsp Vrahovuyuchi sho d d t r j q i r j q i r j q i r j q i displaystyle mathrm d over mathrm d t partial r j over partial q i partial dot r j over partial q i quad partial r j over partial q i partial dot r j over partial dot q i nbsp otrimayemo m r d r m j i d d t r i r i q j r i r i q j d q j displaystyle m ddot mathbf r cdot delta mathbf r m sum j left sum i left mathrm d over mathrm d t left dot r i partial dot r i over partial dot q j right dot r i partial dot r i over partial q j right right delta q j nbsp Kinetichna j potencialna energiyiTeper zminyuyuchi poryadok diferenciyuvannya mayemo m r d r m j i d d t q j 1 2 r i 2 q j 1 2 r i 2 d q j displaystyle m ddot mathbf r cdot delta mathbf r m sum j left sum i left mathrm d over mathrm d t partial over partial dot q j left frac 1 2 dot r i 2 right partial over partial q j left frac 1 2 dot r i 2 right right right delta q j nbsp Dali zminyuyemo poryadok pidsumovuvannya m r d r j d d t q j i 1 2 m r i 2 q j i 1 2 m r i 2 d q j displaystyle m ddot mathbf r cdot delta mathbf r sum j left mathrm d over mathrm d t partial over partial dot q j left sum i frac 1 2 m dot r i 2 right partial over partial q j left sum i frac 1 2 m dot r i 2 right right delta q j nbsp sho mozhna zapisati takim chinom m r d r i d d t T q i T q i d q i displaystyle m ddot mathbf r cdot delta mathbf r sum i left mathrm d over mathrm d t partial T over partial dot q i partial T over partial q i right delta q i nbsp de T povna kinetichna energiya sistemi Vikoristannya principa d Alambera LagranzhaRivnyannya dlya roboti zapisuyemo tak m r d r F d r i d d t T q i T V q i d q i 0 displaystyle m mathbf ddot r cdot delta mathbf r mathbf F cdot delta mathbf r sum i left mathrm d over mathrm d t partial T over partial dot q i partial T V over partial q i right delta q i 0 nbsp Ce vikonuyetsya dlya bud yakogo naboru uzagalnenih peremishen d q i displaystyle delta q i nbsp tomu mayemo d d t T q i T V q i 0 displaystyle left mathrm d over mathrm d t partial T over partial dot q i partial T V over partial q i right 0 nbsp dlya bud yakoyi uzagalnenoyi koordinati d q i displaystyle delta q i nbsp Mozhemo dali sprostiti cej viraz pomitivshi sho V ye funkciyeyu lishe r i t a r zalezhit vid uzagalnenih koordinat i t Tomu V ne zalezhit vid uzagalnenih shvidkostej d d t V q i 0 displaystyle mathrm d over mathrm d t partial V over partial dot q i 0 nbsp Teper yaksho vstaviti cej rezultat do pochatkovogo rivnyannya ta vvesti lagranzhian L T V displaystyle L T V nbsp legko otrimati rivnyannya Lagranzha L q i d d t L q i displaystyle partial L over partial q i mathrm d over mathrm d t partial L over partial dot q i nbsp Yaksho vzyati q i r i displaystyle q i r i nbsp tobto v roli uzagalnenih koordinat vistupayut dekartovi koordinati to legko pobachiti sho rivnyannya Lagranzha zvodyatsya v takomu vipadku do drugogo zakonu Nyutona Disipativna funkciya Redaguvati Dokladnishe Disipativna funkciyaU zagalnishomu vipadku sili mozhut buti yak potencialnimi tak i disipativnimi Yaksho vidpovidne peretvorennya mozhna znajti z Fi to mozhna vvesti disipativnu funkciyu D za Releyem u takomu viglyadi 4 D 1 2 j 1 N k 1 N C j k q j q k displaystyle D frac 1 2 sum j 1 N sum k 1 N C jk dot q j dot q k nbsp de C j k displaystyle C jk nbsp konstanti sho pov yazani z koeficiyentami zatuhannya ale neobov yazkovo yim dorivnyuyut Yaksho D viznacheno tak to Q j V q j D q j displaystyle Q j frac partial V partial q j frac partial D partial dot q j nbsp tomu 0 d d t L q j L q j D q j displaystyle 0 frac mathrm d mathrm d t Bigl frac partial L partial dot q j Bigr frac partial L partial q j frac partial D partial dot q j nbsp Prikladi vikoristannya RedaguvatiMehanichnij oscilyator Redaguvati U vipadku klasichnogo odnovimirnogo mehanichnogo oscilyatora bez tertya funkciya Lagranzha maye takij viglyad L x x t 1 2 m x 2 1 2 k x 2 displaystyle L x dot x t frac 1 2 m dot x 2 frac 1 2 kx 2 nbsp k displaystyle k nbsp koeficiyent pruzhnosti Rivnyannya Lagranzha prijmaye viglyad d d t L x L x m x k x 0 displaystyle frac d dt frac partial L partial dot x frac partial L partial x m ddot x kx 0 nbsp tobto takij samij sho j u vipadku standartinogo pidhodu bez vikoristannya funkciyi Lagranzha Elektrichnij oscilyator Redaguvati U vipadku klasichnogo elektrichnogo oscilyatora bez vtrat funkciya Lagranzha maye takij viglyad L q q t 1 2 L 0 q 2 1 2 C 0 q 2 displaystyle L q dot q t frac 1 2 L 0 dot q 2 frac 1 2C 0 q 2 nbsp L 0 displaystyle L 0 nbsp induktivnist ta C 0 displaystyle C 0 nbsp yemnist LC konturu a q displaystyle q nbsp elektrichnij zaryad Rivnyannya Lagranzha prijmaye viglyad d d t L q L q L 0 q 1 C 0 q 0 displaystyle frac d dt frac partial L partial dot q frac partial L partial q L 0 ddot q frac 1 C 0 q 0 nbsp tobto takij samij sho j u vipadku pidhodu sho ne vikoristovuye funkciyu Lagranzha Relyativistska mehanika Redaguvati Funkciya Lagranzha u vipadku relyativistskogo ruhu vilnoyi chastinki z masoyu m displaystyle m nbsp maye viglyad L m c 2 1 v 2 c 2 displaystyle L mc 2 sqrt 1 frac v 2 c 2 nbsp de c displaystyle c nbsp shvidkist svitla a v displaystyle v nbsp shvidkist chastinki Rozshirennya mehaniki Lagranzha RedaguvatiDokladnishe Mehanika Gamiltona Dokladnishe Integral vzdovzh trayektorijFunkciyu Gamiltona gamiltonian sho poznachayetsya H displaystyle mathbf H nbsp mozhna otrimati pri vikonanni peretvoren Lezhandra nad funkciyeyu Lagranzha yaki vvodyat novi kanonichno spryazheni z pervisnimi koordinatami zminni 3 Ci peretvorennya zbilshuyut kilkist zminnih u dva razi ale zmenshuyut poryadok diferencialnih rivnyan do pershogo Gamiltonian ye osnovoyu dlya inshogo formulyuvannya klasichnoyi mehaniki gamiltonovoyi mehaniki j graye viklyuchnu rol u fizici osoblivo u kvantovij mehanici div Gamiltonian U 1948 roci Fejnman vinajshov formalizm integraliv vzdovzh trayektorij i poshiriv princip najmenshoyi diyi na kvantovu mehaniku dlya elektroniv i fotoniv Za cim formalizmom chastinki peremishuyutsya za vsima mozhlivimi trayektoriyami mizh pochatkovim i kincevim stanami jmovirnist pevnogo kincevogo stanu mozhna viznachiti za dopomogi pidsumovuvannya integruvannya za vsima mozhlivimi trayektoriyami sho zakinchuyutsya cim stanom 5 6 U klasichnomu vipadku formalizm integrala vzdovzh trayektorij povnistyu vidtvoryuye princip Gamiltona Ostrogradskogo j optichnij princip Ferma Div takozh RedaguvatiDiya fizika Klasichna mehanika Mehanika Gamiltona Princip najmenshoyi diyi Rivnyannya Lagranzha pershogo rodu Uzagalneni koordinati Funkcionalna pohidnaVinoski Redaguvati Goldstejn G Pul Ch Safko Dzh Klassicheskaya mehanika Izhevsk RHD 2012 828 s 1 3 Svyazi a b Goldstejn G Pul Ch Safko Dzh Klassicheskaya mehanika Izhevsk RHD 2012 828 s 1 4 Princip Dalambera i uravnenie Lagranzha a b Yezhov S M Makarec M V Romanenko O V Klasichna mehanika K VPC Kiyivskij universitet 2008 480 s Goldstejn G Pul Ch Safko Dzh Klassicheskaya mehanika Izhevsk RHD 2012 828 s 6 5 Vynuzhdennye kolebaniya i dissipativnye sily Vakarchuk I O Kvantova mehanika 4 e vidannya dopovnene L LNU im Ivana Franka 2012 872 s 31 Kvantova mehanika ta integrali za trayektoriyami Fejnman R Hibs A Kvantovaya mehanika i integraly po traektoriyam M Mir 1968 384 s Literatura RedaguvatiYezhov S M Makarec M V Romanenko O V Klasichna mehanika K VPC Kiyivskij universitet 2008 480 s Iro G Klasichna mehanika Klassische Mechanik L LNU im Ivana Franka 1999 464 s Fedorchenko A M Klasichna mehanika i elektrodinamika Teoretichna fizika K Visha shkola 1992 T 1 535 s Arnold V I Matematicheskie metody klassicheskoj mehaniki M Nauka 1989 472 s Goldstejn G Pul Ch Safko Dzh Klassicheskaya mehanika Classical Mechanics Izhevsk RHD 2012 828 s Lagranzh L Analiticheskaya mehanika Mecanique analytique M GITTL 1950 594 440 s Landau L D Lifshic E M Mehanika Teoreticheskaya fizika M Fizmatlit 2007 T 1 224 s Lich Dzh U Klassicheskaya mehanika Classical Mechanics M IL 1961 172 s Pars L Analiticheskaya dinamika A Treatise on Analytical Dynamics M Nauka 1971 636 s Otrimano z https uk wikipedia org w index php title Mehanika Lagranzha amp oldid 40242477