www.wikidata.uk-ua.nina.az
Gamiltonian H displaystyle hat H u kvantovij teoriyi ce operator povnoyi energiyi sistemi Jogo spektr viznachaye usi mozhlivi znachennya energiyi kvantovoyi sistemi yaki mozhna otrimati pri vimiryuvanni Dlya bilshosti formalizmiv kvantovoyi mehaniki zokrema kartini Shredingera Gejzenberga ta inshi gamiltonian graye klyuchovu rol oskilki vin bezposeredno pov yazanij z evolyuciyeyu kvantovoyi sistemi Nazva gamiltonian yak i nazva funkciya Gamiltona pohodit vid prizvisha irlandskogo matematika Vilyama Rovena Gamiltona Zmist 1 Znachennya 2 Pobudova 2 1 Odnochastinkovij vipadok 2 2 Bagatochastinkovij vipadok 3 Rivnyannya Shredingera 4 Formalizm Diraka 5 Chastkovi vipadki 5 1 Vilna chastinka 5 2 Garmonichnij oscilyator 5 3 Zhorstkij rotor 5 4 Elektrostatichnij kulonivskij potencial 5 5 Elektrichnij dipol v elektrichnomu poli 5 6 Zaryadzhena chastinka v elektromagnitnomu poli 6 Vlastivosti 7 Div takozh 8 LiteraturaZnachennya RedaguvatiGamiltonian kvantovoyi sistemi skladayetsya z sumi kinetichnih energij vsih chastinok sho skladayut cyu sistemu ta yiyi potencialnoyi energiyi Same v takomu viglyadi vin vhodit v osnovne rivnyannya evolyuciyi kvantovo mehanichnoyi sistemi rivnyannya Shredingera Spektr gamiltoniana viznachaye mozhlivi znachennya energij kvantovo mehanichnoyi sistemi a jogo vlasni funkciyi mozhlivi hvilovi funkciyi stacionarnih staniv Pobudova RedaguvatiOdnochastinkovij vipadok Redaguvati Gamiltonian buduyetsya analogichno do funkciyi Gamiltona klasichnoyi mehaniki yaka ye sumoyu kinetichnoyi ta potencialnoyi energij sistemi H T V displaystyle hat H hat T hat V nbsp de T p p 2 m p 2 2 m displaystyle hat T frac hat mathbf p cdot hat mathbf p 2m frac hat p 2 2m nbsp operator kinetichnoyi energiyi V V q t displaystyle hat V V mathbf q t nbsp operator potencialnoyi energiyi Do operatora kinetichnoyi energiyi vhodit operator impulsu sho viglyadaye tak p i ℏ displaystyle hat mathbf p i hbar nabla nbsp p 2 ℏ 2 2 displaystyle hat p 2 hbar 2 nabla 2 nbsp de displaystyle nabla nbsp gradiyent a 2 displaystyle nabla 2 nabla cdot nabla nbsp laplasian sho maye takij viglyad u dekartovih koordinatah 2 2 x 2 2 y 2 2 z 2 displaystyle nabla 2 frac partial 2 partial x 2 frac partial 2 partial y 2 frac partial 2 partial z 2 nbsp Otzhe vikoristovuyuchi ci operatori mozhna zapisati gamiltonian v rozgornutij formi yaka vikoristovuyetsya v rivnyanni Shredingera H ℏ 2 2 m 2 V q t displaystyle hat H frac hbar 2 2m nabla 2 V mathbf q t nbsp Otzhe dlya pobudovi gamiltoniana dostatno vzyati klasichnu funkciyu Gamiltona H p q displaystyle mathcal H mathbf p mathbf q nbsp i zaminiti v nij impulsi na vidpovidni operatori Take viznachennya gamiltonianu mozhna zastosovuvati do sistem sho opisuyutsya deyakoyu hvilovoyu funkciyeyu ps q t displaystyle psi mathbf q t nbsp i vono chasto vikoristovuyetsya u vvidnih kursah kvantovoyi mehaniki pri opisi hvilovoyi mehaniki Shredingera Bagatochastinkovij vipadok Redaguvati Poperedni mirkuvannya mozhna poshiriti na vipadok sistemi N chastinok H n 1 N T n V displaystyle hat H sum limits n 1 N hat T n hat V nbsp de V V q 1 q 2 q N t displaystyle hat V V mathbf q 1 mathbf q 2 mathbf q N t nbsp operator potencialnoyi energiyi yaka teper ye funkciyeyu chasu ta prostorovoyi konfiguraciyi sistemi prostorova konfiguraciya ye naborom polozhen u prostori v deyakij moment chasu T n p n p n 2 m n ℏ 2 2 m n n 2 displaystyle hat T n frac hat mathbf p n cdot hat mathbf p n 2m n frac hbar 2 2m n nabla n 2 nbsp operator kinetichnoyi energiyi n yi chastinki n displaystyle nabla n nbsp gradiyent sho diye na n tu chastinku a n 2 displaystyle nabla n 2 nbsp laplasian n 2 2 x n 2 2 y n 2 2 z n 2 displaystyle nabla n 2 frac partial 2 partial x n 2 frac partial 2 partial y n 2 frac partial 2 partial z n 2 nbsp Kombinuyuchi otrimani rezultati mozhna zapisati gamiltonian sistemi N chastinok H ℏ 2 2 n 1 N n 2 m n V q 1 q 2 q N t displaystyle hat H frac hbar 2 2 sum limits n 1 N frac nabla n 2 m n V mathbf q 1 mathbf q 2 mathbf q N t nbsp Odnak trudnoshi vinikayut u problemi bagatoh til Yaksho potencialna energiya zalezhit vid prostorovoyi konfiguraciyi sistemi chastinok to zgidno z zakonom zberezhennya energiyi kinetichna energiya tezh zalezhit vid yiyi prostorovoyi konfiguraciyi Ruh deyakoyi okremoyi chastinki zminyuvatimetsya pid vplivom inshih chastinok sistemi Tomu v kinetichnij energiyi mozhut z yavitisya dodanki sho vrahovuyut korelyaciyi mizh chastinkami napriklad dobutok gradiyentiv dlya dvoh chastinok ℏ 2 2 M i j displaystyle frac hbar 2 2M nabla i cdot nabla j nbsp de M masa chastinok yaki vrahovuyutsya v danomu dodanku kinetichnoyi energiyi Taki dodanki vinikayut u gamiltonianah atomiv iz bagatma elektronami Dlya N vzayemodiyuchih chastinok napriklad chastinok sho vzayemno vzayemodiyut ta utvoryuyut zadachu bagatoh til potencialna energiya ne ye prosto sumoyu okremih potencialiv Vona ye funkciyeyu vsih polozhen u prostori kozhnoyi chastinki Dlya nevzayemodiyuchih chastinok potencialna energiya sistemi ye sumoyu potencialnih energij kozhnoyi chastinki V n 1 N V q n t V q 1 t V q 2 t V q N t displaystyle hat V sum limits n 1 N V mathbf q n t V mathbf q 1 t V mathbf q 2 t V mathbf q N t nbsp Zagalnij viglyad gamiltonianu bude takim H ℏ 2 2 n 1 N n 2 m n n 1 N V q n t n 1 N ℏ 2 2 m n n 2 V q n t n 1 N H n displaystyle hat H frac hbar 2 2 sum limits n 1 N frac nabla n 2 m n sum limits n 1 N V mathbf q n t sum limits n 1 N Bigl frac hbar 2 2m n nabla n 2 V mathbf q n t Bigr sum limits n 1 N hat H n nbsp de suma beretsya po vsih chastinkah ta yih potencialah U rezultati gamiltonian sistemi ye sumoyu gamiltonianiv kozhnoyi okremoyi chastinki Taka situaciya ye idealizovanoyu na praktici chastinki majzhe zavzhdi znahodyatsya pid vplivom deyakogo potencialu sho zumovlyuye nayavnist vzayemodiyi mizh vsima chastinkami Prikladom vzayemodiyi mizh dvoma chastinkami de taki mirkuvannya ne spracovuyut ye elektrostatichni potenciali zaryadzhenih chastinok oskilki voni vzayemodiyut odna z odnoyu zavdyaki kulonivskim silam Rivnyannya Shredingera RedaguvatiDokladnishe Rivnyannya ShredingeraGamiltonian porodzhuye evolyuciyu kvantovoyi sistemi v chasi Yaksho ps t displaystyle psi t rangle nbsp stan sistemi v moment chasu t displaystyle t nbsp to dlya nogo mozhna zapisati rivnyannya H ps t i ℏ t ps t displaystyle hat H psi t rangle i hbar frac partial partial t psi t rangle nbsp Ce rivnyannya nosit nazvu rivnyannya Shredingera yake za formoyu nagaduye rivnyannya Gamiltona Yakobi ta mozhe buti zvedeno do nogo za dopomogoyu kvaziklasichnogo nablizhennya ce odna z prichin chomu H displaystyle hat H nbsp takozh nosit nazvu gamiltonian Yaksho stan sistemi zadanij v deyakij pochatkovij moment chasu napriklad t 0 displaystyle t 0 nbsp to jogo mozhna viznachiti j u bud yakij inshij moment chasu rozv yazuyuchi vidpovidne rivnyannya Shredingera Zokrema yaksho gamiltonian yavno ne zalezhit vid chasu to ps t e i H t ℏ ps 0 displaystyle psi t rangle e frac i hat H t hbar psi 0 rangle nbsp Eksponencialnij operator U t e i H t ℏ displaystyle hat U t e frac i hat H t hbar nbsp sho diye u pravij chastini rivnyannya na hvilovu funkciyu ye unitarnim i maye nazvu operatora evolyuciyi Yak pravilo vin viznachayetsya za dopomogoyu rozkladu eksponencialnoyi funkciyi u ryad Tejlora za stepenyami H Yaksho gamiltonian nezalezhnij vid chasu to sukupnist U t displaystyle hat U t nbsp utvoryuye odnoparametrichnu unitarnu grupu sho obumovlyuye isnuvannya principu detalnoyi rivnovagi Formalizm Diraka RedaguvatiDokladnishe Notaciya bra ketV bilsh zagalnomu dirakivskomu formalizmi gamiltonian zazvichaj interpretuyetsya yak operator u gilbertovomu prostori Vlasni vektori operatora H displaystyle hat H nbsp yaki poznachayutsya n displaystyle n rangle nbsp skladayut ortonormovanij bazis gilbertovogo prostoru Spektr dozvolenih energetichnih rivniv viznachayetsya naborom vlasnih znachen sho poznachayetsya E n displaystyle E n nbsp i ye rozv yazkom rivnyannya H n E n n displaystyle hat H n rangle E n n rangle nbsp Oskilki gamiltonian ye ermitovim operatorom to energiya ye zavzhdi dijsnoyu Iz strogo matematichnoyi tochki zoru zaznacheni vishe pripushennya treba vikoristovuvati z oberezhnistyu Napriklad operatori v gilbertovomu prostori z neskinchennoyu kilkistyu vimiriv neobov yazkovo mayut vlasni znachennya nabir vlasnih znachen mozhe ne zbigatisya zi spektrom operatora Odnak dlya vikonannya obchislen sho neobhidni dlya rozv yazku bilshosti praktichnih zadach kvantovoyi mehaniki dostatno spiratisya na fizichni formulyuvannya Chastkovi vipadki RedaguvatiVilna chastinka Redaguvati Cej vipadok ye najprostishim Oskilki ruh vilnoyi chastinki masoyu m ne obmezhuyetsya zhodnimi potencialami to do gamiltonianu vhodit lishe kinetichna energiya chastinki tomu H ℏ 2 2 m 2 displaystyle hat H frac hbar 2 2m nabla 2 nbsp Yaksho chastinka ruhayetsya v odnovimirnomu prostori to H ℏ 2 2 m d 2 d x 2 displaystyle hat H frac hbar 2 2m frac d 2 dx 2 nbsp Garmonichnij oscilyator Redaguvati Dlya odnovimirnogo garmonichnogo oscilyatora potencialna energiya viglyadaye tak V k x 2 2 m w 2 2 x 2 displaystyle hat V frac kx 2 2 frac m omega 2 2 x 2 nbsp de w k m displaystyle omega sqrt frac k m nbsp kutova chastota Otzhe gamiltonian zapishetsya takim chinom H ℏ 2 2 m d 2 d x 2 m w 2 2 x 2 displaystyle hat H frac hbar 2 2m frac d 2 dx 2 frac m omega 2 2 x 2 nbsp U trivimirnomu vipadku gamiltonian skladatimetsya z troh chastin sho diyut okremo na kozhnu z dekartovih koordinat H H x H y H z ℏ 2 2 m 2 x 2 m w 2 2 x 2 ℏ 2 2 m 2 y 2 m w 2 2 y 2 ℏ 2 2 m 2 z 2 m w 2 2 z 2 ℏ 2 2 m 2 m w 2 2 r 2 displaystyle begin aligned hat H amp hat H x hat H y hat H z amp Bigl frac hbar 2 2m frac partial 2 partial x 2 frac m omega 2 2 x 2 Bigr Bigl frac hbar 2 2m frac partial 2 partial y 2 frac m omega 2 2 y 2 Bigr Bigl frac hbar 2 2m frac partial 2 partial z 2 frac m omega 2 2 z 2 Bigr amp frac hbar 2 2m nabla 2 frac m omega 2 2 r 2 end aligned nbsp Zhorstkij rotor Redaguvati Dlya zhorstkogo rotora tobto sistemi chastinok sho mozhe vilno obertatisya navkolo bud yakoyi osi sho ne priv yazanij do zhodnogo potencialu napriklad vilni molekuli z malimi obertalnimi stupenyami vilnosti vnaslidok skazhimo podvijnih abo potrijnih himichnih zv yazkiv gamiltonian prijme takij viglyad H ℏ 2 2 I x x J x 2 ℏ 2 2 I y y J y 2 ℏ 2 2 I z z J z 2 displaystyle hat H frac hbar 2 2I xx hat J x 2 frac hbar 2 2I yy hat J y 2 frac hbar 2 2I zz hat J z 2 nbsp de I x x displaystyle I xx nbsp I y y displaystyle I yy nbsp I z z displaystyle I zz nbsp vidpovidni komponenti momentu inerciyi formalno diagonalni elementi tenzoru inerciyi J x displaystyle hat J x nbsp J y displaystyle hat J y nbsp J z displaystyle hat J z nbsp operatori proyekcij povnogo kutovogo momentu na osi Ox Oy i Oz vidpovidno Elektrostatichnij kulonivskij potencial Redaguvati Kulonivska potencialna energiya dvoh tochkovih zaryadiv q 1 displaystyle q 1 nbsp i q 2 displaystyle q 2 nbsp tobto zaryadzhenih chastinok sho ne mayut prostorovoyi protyazhnosti u trivimirnomu prostori dorivnyuye v Mizhnarodnij sistemi velichin ISQ V q 1 q 2 4 p e 0 r displaystyle V frac q 1 q 2 4 pi varepsilon 0 mathbf r nbsp Odnak ce potencial lishe dlya odnogo tochkovogo zaryadu vidnosno inshogo Pri rozglyadi sistemi bagatoh zaryadzhenih chastinok kozhen zaryad maye potencialnu energiyu vidnosno usih inshih tochkovih zaryadiv okrim samogo sebe Dlya N zaryadiv potencialna energiya zaryadu q j displaystyle q j nbsp vidnosno vsih inshih dorivnyuye V j 1 2 i j q i f r i 1 8 p e 0 i j q i q j r i r j displaystyle V j frac 1 2 sum limits i neq j q i varphi mathbf r i frac 1 8 pi varepsilon 0 sum limits i neq j frac q i q j mathbf r i mathbf r j nbsp de f r i displaystyle varphi mathbf r i nbsp elektrostatichnij potencial zaryadu q j displaystyle q j nbsp v r i displaystyle mathbf r i nbsp Prosumuvavshi otrimanij viraz za j otrimuyemo viraz dlya povnogo potencialu sistemi V 1 8 p e 0 j 1 N i j q i q j r i r j displaystyle V frac 1 8 pi varepsilon 0 sum limits j 1 N sum limits i neq j frac q i q j mathbf r i mathbf r j nbsp Takim chinom gamiltonian matime viglyad H ℏ 2 2 j 1 N 1 m j j 2 1 8 p e 0 j 1 N i j q i q j r i r j j 1 N ℏ 2 2 m j j 2 1 8 p e 0 i j q i q j r i r j displaystyle hat H frac hbar 2 2 sum j 1 N frac 1 m j nabla j 2 frac 1 8 pi varepsilon 0 sum j 1 N sum i neq j frac q i q j mathbf r i mathbf r j sum j 1 N left frac hbar 2 2m j nabla j 2 frac 1 8 pi varepsilon 0 sum i neq j frac q i q j mathbf r i mathbf r j right nbsp Elektrichnij dipol v elektrichnomu poli Redaguvati Dlya elektrichnogo dipolnogo momentu d displaystyle mathbf d nbsp sho z yednuye zaryadi velichinoyu q displaystyle q nbsp u postijnomu nezalezhnomu vid chasu elektrichnomu poli E displaystyle mathbf E nbsp potencial maye takij viglyad V d E displaystyle V mathbf hat d cdot mathbf E nbsp Yaksho chastinka stacionarna to translyacijna kinetichna energiya dipolya vidsutnya tozh gamiltonian dipolya ce prosto potencialna energiya H d E q E r displaystyle hat H mathbf hat d cdot mathbf E q mathbf E cdot mathbf hat r nbsp Zaryadzhena chastinka v elektromagnitnomu poli Redaguvati Elektromagnitne pole sho harakterizuyetsya skalyarnim potencialom f displaystyle varphi nbsp i vektornim potencialom A displaystyle mathbf A nbsp i v yakomu znahoditsya zaryadzhena chastinka q displaystyle q nbsp zminyuye obidvi chastini gamiltonianu Po pershe elektromagnitne pole daye vnesok do kinetichnoyi energiyi a tochnishe do impulsu p displaystyle mathbf p nbsp za rahunok vektornogo potencialu A displaystyle mathbf A nbsp U ISQ ce zapisuyetsya yak p p q A displaystyle mathbf p mathbf p q mathbf A nbsp de p i ℏ displaystyle mathbf p i hbar nabla nbsp operator impulsu Takim chinom operator kinetichnoyi energiyi zapishetsya T 1 2 m i ℏ q A 2 displaystyle hat T frac 1 2m i hbar nabla q mathbf A 2 nbsp Skalyarnij potencial f displaystyle varphi nbsp daye vnesok do potencialnoyi energiyi V q f displaystyle hat V q varphi nbsp Ostatochno gamiltonian dlya takogo vipadku H 1 2 m i ℏ q A 2 q f displaystyle hat H frac 1 2m i hbar nabla q mathbf A 2 q varphi nbsp Vlastivosti RedaguvatiGamiltonian ermitiv operator i vnaslidok cogo jogo vlasni znachennya dijsni tobto energiya kvantomehanichnogo stanu dijsna velichina Spektr gamiltonianu mozhe buti diskretnim chi neperervnim Vidpovidno vlasni funkciyi gamiltoniana mozhut spadati na neskinchenosti utvoryuyuchi lokalizovani stani abo zh vesti sebe yak neobmezhena hvilya utvoryuyuchi delokalizovani stani Gamiltonian sistemi bagatoh chastok odniyeyi prirodi povnistyu simetrichnij vidnosno koordinat cih chastok div princip nerozriznyuvanosti chastok nbsp Ce nezavershena stattya z fiziki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Div takozh RedaguvatiRivnyannya Shredingera Funkciya GamiltonaLiteratura RedaguvatiVakarchuk I O Kvantova mehanika 4 e vidannya dopovnene L LNU im Ivana Franka 2012 872 s Yuhnovskij I R Osnovi kvantovoyi mehaniki K Libid 2002 392 s Koen Tannudzhi K Diu B Laloe F Kvantovaya mehanika Ekaterinburg Izd vo Uralskogo un ta 2000 944 800 s Landau L D Lifshic E M Kvantovaya mehanika Nerelyativistskaya teoriya Teoreticheskaya fizika M Fizmatlit 2008 T 3 800 s Messia A Kvantovaya mehanika v 2 h tomah M Nauka 1978 1979 1064 s Shiff L Kvantovaya mehanika M IL 1957 476 s Glosarij terminiv z himiyi J Opejda O Shvajka In t fiziko organichnoyi himiyi ta vuglehimiyi im L M Litvinenka NAN Ukrayini Doneckij nacionalnij universitet Doneck Veber 2008 758 s ISBN 978 966 335 206 0 Otrimano z https uk wikipedia org w index php title Gamiltonian amp oldid 36257632