www.wikidata.uk-ua.nina.az
U cij statti vektori vidileni zhirnim shriftom a yihni absolyutni velichini kursivom napriklad A A displaystyle mathbf A A U klasichnij mehanici vektorom Laplasa Runge Lenca nazivayetsya vektor yakij vikoristovuyetsya perevazhno dlya opisu formi ta oriyentaciyi orbiti po yakij odne nebesne tilo obertayetsya navkolo inshogo napriklad orbiti po yakij planeta obertayetsya navkolo zori U vipadku z dvoma tilami vzayemodiya yakih opisuyetsya zakonom vsesvitnogo tyazhinnya Nyutona vektor Laplasa Runge Lenca ye integralom ruhu tobto jogo napryamok i velichina ye postijnimi nezalezhno vid togo v yakij tochci orbiti voni obchislyuyutsya 1 kazhut sho vektor Laplasa Runge Lenca zberigayetsya pri gravitacijnij vzayemodiyi dvoh til Ce tverdzhennya mozhna uzagalniti dlya bud yakoyi zadachi z dvoma tilami sho vzayemodiyut z dopomogoyu centralnoyi sili yaka zminyuyetsya oberneno proporcijno do kvadratu vidstani mizh nimi Taka zadacha nazivayetsya zadacheyu Keplera 2 Napriklad takij potencial vinikaye pri rozglyadi klasichnih orbit bez vrahuvannya kvantuvannya u zadachi pro ruh negativno zaryadzhenogo elektrona sho ruhayetsya v elektrichnomu poli pozitivno zaryadzhenogo yadra Yaksho vektor Laplasa Runge Lenca zadanij to forma yihnogo vidnosnogo ruhu mozhe buti otrimana z prostih geometrichnih mirkuvan z vikoristannyam zakoniv zberezhennya cogo vektora ta energiyi Zgidno z principom vidpovidnosti vektor Laplasa Runge Lenca maye kvantovij analog yakij buv vikoristanij u pershomu vivodi spektra atomu vodnyu 3 she pered vidkrittyam rivnyannya Shredingera Zadacha Keplera maye nezvichnu osoblivist kinec vektora impulsu p displaystyle mathbf p zavzhdi ruhayetsya po kolu 4 5 6 Cherez roztashuvannya cih kil dlya zadanoyi povnoyi energiyi E displaystyle E zadacha Keplera matematichno ekvivalentna chastinci sho vilno peremishuyetsya u chotirimirnij sferi S 3 displaystyle S 3 7 Za ciyeyu matematichnoyu analogiyeyu vektor Laplasa Runge Lenca sho zberigayetsya ekvivalentnij dodatkovim komponentam kutovogo momentu v chotirimirnomu prostori 8 Vektor Laplasa Runge Lenca takozh vidomij yak vektor Laplasa vektor Runge Lenca i vektor Lenca hocha zhoden iz cih vchenih ne viviv jogo vpershe Vektor Laplasa Runge Lenca perevidkrivavsya kilka raziv 9 Vin takozh ekvivalentnij bezrozmirnomu vektoru ekscentrisitetu v nebesnij mehanici 10 Vin tak samo ne maye niyakogo zagalnoprijnyatogo poznachennya hocha zazvichaj vikoristovuyetsya A displaystyle mathbf A Dlya riznih uzagalnen vektora Laplasa Runge Lenca yaki viznacheni nizhche vikoristovuyetsya simvol A displaystyle mathcal A Zmist 1 Kontekst 2 Istoriya 3 Matematichne viznachennya 3 1 Kolovij godograf impulsu 3 2 Integrali ruhu ta superintegrovnist 3 3 Rivnyannya Gamiltona Yakobi v parabolichnih koordinatah 3 4 Alternativne formulyuvannya 4 Vivedennya orbit Keplera 4 1 Zberezhennya pid diyeyu sili sho oberneno proporcijna do kvadratu vidstani 4 2 Zmina pid diyeyu zburyuvalnih centralnih sil 5 Teoriya grup 5 1 Peretvorennya Li 5 2 Duzhki Puassona 5 3 Teorema Neter 5 4 Zakoni zberezhennya i simetriya 5 4 1 Simetriya obertan u chotirivimirnomu prostori 6 Zastosuvannya ta uzagalnennya 6 1 Kvantova mehanika atoma vodnyu 6 2 Uzagalnennya na inshi potenciali ta STV 7 Div takozh 8 Primitki 9 LiteraturaKontekst RedaguvatiOdinochna chastinka sho ruhayetsya pid diyeyu bud yakoyi konservativnoyi centralnoyi sili maye prinajmni chotiri integrali ruhu yaki zberigayutsya pri rusi velichini povna energiya E displaystyle E nbsp i tri komponenti kutovogo momentu vektora L displaystyle mathbf L nbsp Orbita chastinki lezhit u ploshini yaka viznachayetsya pochatkovim impulsom chastinki p displaystyle mathbf p nbsp abo sho ekvivalentno shvidkistyu v displaystyle mathbf v nbsp ta koordinatami tobto radius vektorom r displaystyle mathbf r nbsp mizh centrom sili ta chastinkoyu div ris 1 Cya ploshina perpendikulyarna do postijnogo vektora L displaystyle mathbf L nbsp sho mozhe buti virazhene matematichno z dopomogoyu skalyarnogo dobutku r L 0 displaystyle mathbf r cdot mathbf L 0 nbsp Yak viznacheno nizhche vektor Laplasa Runge Lenca A displaystyle mathbf A nbsp zavzhdi roztashovuyetsya u ploshini ruhu tobto A L 0 displaystyle mathbf A cdot mathbf L 0 nbsp dlya bud yakoyi centralnoyi sili Takozh A displaystyle mathbf A nbsp ye postijnim lishe dlya sili sho zalezhit oberneno proporcijno do kvadratu vidstani 2 Yaksho centralna sila priblizno zalezhit vid obernenogo kvadrata vidstani vektor A displaystyle mathbf A nbsp ye priblizno postijnim po dovzhini ale povilno obertayetsya Dlya bilshosti centralnih sil odnak cej vektor A displaystyle mathbf A nbsp ne ye postijnim a zminyuye dovzhinu ta napryamok Uzagalnenij vektor Laplasa Runge Lenca A displaystyle mathcal A nbsp sho zberigayetsya mozhe buti viznachenij dlya vsih centralnih sil ale cej vektor skladna funkciya polozhennya ta zazvichaj ne virazhayetsya analitichno v elementarnih chi specialnih funkciyah 11 12 Istoriya RedaguvatiVektor Laplasa Runge Lenca A displaystyle mathbf A nbsp ye velichinoyu v zadachi Keplera yaka zberigayetsya i korisnij pri opisi astronomichnih orbit na zrazok ruhu planeti navkolo Soncya Odnak vin nikoli ne buv shiroko vidomim sered fizikiv mozhlivo tomu sho ye mensh intuyitivno zrozumilim vektorom nizh impuls i kutovij moment Vektor Laplasa Runge Lenca nezalezhno vidkrivali dekilka raziv za minuli tri stolittya 9 Yakob German ru buv pershim hto pokazav sho A displaystyle mathbf A nbsp zberigayetsya dlya specialnogo vipadku centralnoyi sili yaka zalezhit oberneno proporcijno vid kvadratu vidstani 13 i znajshov jogo zv yazok iz ekscentrisitetom eliptichnoyi orbiti Robota Germana bula uzagalnena do yiyi suchasnoyi formi Jogannom Bernulli 1710 roku 14 V svoyu chergu P yer Simon Laplas naprikinci XVIII stolittya vidkriv zberezhennya A displaystyle mathbf A nbsp znovu dovivshi ce analitichno a ne geometrichno yak jogo poperedniki 15 V seredini XIX stolittya Vilyam Gamilton otrimav ekvivalent vektora ekscentrisitetu viznachenij nizhche 10 vikoristavshi jogo shob pokazati sho kinec vektora impulsu p displaystyle mathbf p nbsp ruhayetsya po kolu pid diyeyu centralnoyi sili sho zalezhit oberneno proporcijno vid kvadratu vidstani ris 3 4 Na pochatku XX stolittya Villard Gibbz otrimav cej samij vektor z dopomogoyu vektornogo analizu 16 Vivid Gibbsa vikoristovuvav Karl Runge v populyarnomu nimeckomu pidruchniku z vektoriv yak priklad 17 na yakij posilavsya Vilgelm Lenc en u svoyij statti pro kvantovomehanichnij starij rozglyad atoma vodnyu 18 1926 roku cej vektor vikoristav Volfgang Pauli shob vivesti spektr atoma vodnyu vikoristovuyuchi suchasnu matrichnu kvantovu mehaniku a ne rivnyannya Shredingera 3 Pislya publikaciyi Pauli vektor stav vidomim perevazhno yak vektor Runge Lenca Matematichne viznachennya Redaguvati nbsp Ris 1 Vektor Laplasa Runge Lenca A displaystyle scriptstyle mathbf A nbsp pokazanij chervonim kolorom u chotiroh tochkah poznachenih 1 2 3 i 4 na eliptichnij orbiti zv yazanoyi tochkovoyi chastinki sho ruhayetsya pid diyeyu centralnoyi sili yaka zalezhit oberneno proporcijno vid kvadratu vidstani Malenkij chornij krug poznachaye centr prityagannya Vid nogo pochinayutsya radius vektori vidileni chornim kolorom napravleni v tochki 1 2 3 i 4 Vektor kutovogo momentu L displaystyle scriptstyle mathbf L nbsp napravlenij perpendikulyarno do orbiti Komplanarni vektori p L displaystyle scriptstyle mathbf p times mathbf L nbsp m k r r displaystyle scriptstyle mk r mathbf r nbsp i A displaystyle scriptstyle mathbf A nbsp zobrazheni sinim zelenim i chervonim kolorami vidpovidno ci zminni viznacheni nizhche Vektor A displaystyle scriptstyle mathbf A nbsp ye postijnim za napryamkom i za velichinoyu Dlya odinochnoyi chastinki sho ruhayetsya pid diyeyu centralnoyi sili yak zalezhit oberneno proporcijno vid kvadratu vidstani ta opisuyetsya rivnyannyam F r k r 2 r displaystyle mathbf F r frac k r 2 mathbf hat r nbsp vektor Laplasa Runge Lenca A displaystyle mathbf A nbsp viznachenij matematichno za formuloyu 2 A p L m k r displaystyle mathbf A mathbf p times mathbf L mk mathbf hat r nbsp de m displaystyle m nbsp masa tochkovoyi chastinki sho ruhayetsya pid diyeyu centralnoyi sili p displaystyle mathbf p nbsp vektor impulsu L r p displaystyle mathbf L mathbf r times mathbf p nbsp vektor kutovogo momentu k displaystyle k nbsp parametr yakij opisuye velichinu centralnoyi sili r displaystyle mathbf hat r nbsp odinichnij vektor tobto r r r displaystyle mathbf hat r frac mathbf r r nbsp de r displaystyle mathbf r nbsp radius vektor polozhennya chastinki i r displaystyle r nbsp jogo dovzhina Oskilki mi pripustili sho sila konservativna to povna energiya E displaystyle E nbsp zberigayetsya E p 2 2 m k r 1 2 m v 2 k r displaystyle E frac p 2 2m frac k r frac 1 2 mv 2 frac k r nbsp Iz centralnosti sili viplivaye sho vektor kutovogo momentu L displaystyle mathbf L nbsp takozh zberigayetsya i viznachaye ploshinu v yakij chastinka zdijsnyuye ruh Vektor Laplasa Runge Lenca A displaystyle mathbf A nbsp perpendikulyarnij do vektora kutovogo momentu L displaystyle mathbf L nbsp i takim chinom roztashovuyetsya u ploshini orbiti Rivnyannya A L 0 displaystyle mathbf A cdot mathbf L 0 nbsp virne tomu sho vektori p L displaystyle mathbf p times mathbf L nbsp i r displaystyle mathbf r nbsp perpendikulyarni do L displaystyle mathbf L nbsp Ce viznachennya vektora Laplasa Runge Lenca A displaystyle mathbf A nbsp zastosovne dlya yedinoyi tochkovoyi chastinki z masoyu m displaystyle m nbsp sho ruhayetsya v stacionarnomu sho ne zalezhit vid chasu potenciali Krim togo te zh same viznachennya mozhe buti rozshirene na zadachu z dvoma tilami na kshtalt zadachi Keplera yaksho zaminiti m displaystyle m nbsp na zvedenu masu cih dvoh til i r displaystyle mathbf r nbsp na vektor mizh cimi tilami Kolovij godograf impulsu Redaguvati nbsp Ris 2 Kinec vektora impulsu p displaystyle scriptstyle mathbf p nbsp pokazanij sinim kolorom ruhayetsya po kolu koli chastinka zdijsnyuye ruh po elipsu Chotiri vidmicheni tochki vidpovidayut tochkam na ris 1 Centr kola roztashovuyetsya na osi y displaystyle scriptstyle y nbsp v tochci A L displaystyle scriptstyle A L nbsp pokazanij purpurnim z radiusom m k L displaystyle scriptstyle mk L nbsp pokazanij zelenim Kut h displaystyle scriptstyle eta nbsp viznachaye ekscentrisitet e displaystyle scriptstyle e nbsp eliptichnoyi orbiti cos h e displaystyle scriptstyle cos eta e nbsp Iz teoremi pro vpisanij kut dlya kola viplivaye sho h displaystyle scriptstyle eta nbsp ye takozh kutom mizh bud yakoyu tochkoyu na koli ta dvoma tochkami peretinu kola z vissyu p x displaystyle scriptstyle p x nbsp p x p 0 displaystyle scriptstyle p x pm p 0 nbsp Zberezhennya vektora Laplasa Runge Lenca A displaystyle mathbf A nbsp i vektora kutovogo momentu L displaystyle mathbf L nbsp vikoristovuyetsya v dovedenni togo sho vektor impulsu p displaystyle mathbf p nbsp ruhayetsya po kolu pid diyeyu centralnoyi sili sho oberneno proporcijna do kvadratu vidstani Obchislyuyuchi vektornij dobutok A displaystyle mathbf A nbsp i L displaystyle mathbf L nbsp prihodimo do rivnyannya dlya p displaystyle mathbf p nbsp L 2 p L A m k r L displaystyle L 2 mathbf p mathbf L times mathbf A mk hat mathbf r times mathbf L nbsp Spryamovuyuchi vektor L displaystyle mathbf L nbsp vzdovzh osi z displaystyle z nbsp a golovnu pivvis po osi x displaystyle x nbsp prihodimo do rivnyannya p x 2 p y A L 2 m k L 2 displaystyle p x 2 p y A L 2 mk L 2 nbsp Inshimi slovami vektor impulsu p displaystyle mathbf p nbsp obmezhenij kolom radiusa m k L displaystyle mk L nbsp centr yakogo roztashovanij v tochci z koordinatami 0 A L displaystyle 0 A L nbsp Ekscentrisitet e displaystyle e nbsp vidpovidaye kosinusu kuta h displaystyle eta nbsp pokazanogo na ris 2 Dlya sproshennya mozhna vvesti zminnu p 0 2 m E displaystyle p 0 sqrt 2m E nbsp Kolovij godograf korisnij dlya opisu simetriyi zadachi Keplera Integrali ruhu ta superintegrovnist Redaguvati Sim skalyarnih velichin energiya E displaystyle E nbsp i komponenti vektoriv Laplasa Runge Lenca A displaystyle mathbf A nbsp ta momentu impulsu L displaystyle mathbf L nbsp pov yazani dvoma spivvidnoshennyami Dlya vektoriv vikonuyetsya umova ortogonalnosti A L 0 displaystyle mathbf A cdot mathbf L 0 nbsp a energiya vhodit do virazu dlya kvadratu dovzhini vektora Laplasa Runge Lenca otrimanogo vishe A 2 m 2 k 2 2 m E L 2 displaystyle A 2 m 2 k 2 2mEL 2 nbsp Todi isnuye p yat nezalezhnih velichin sho zberigayutsya abo integraliv ruhu Ce sumisno z shistma pochatkovimi umovami pochatkove polozhennya chastinki ta yiyi shvidkist ye vektorami z troma komponentami yaki viznachayut orbitu chastinki oskilki pochatkovij chas ne viznachenij integralami ruhu Oskilki velichinu A displaystyle mathbf A nbsp ta ekscentrisitet e displaystyle e nbsp orbiti mozhna viznachiti z povnogo kutovogo momentu L displaystyle L nbsp i energiyi E displaystyle E nbsp to stverdzhuyetsya sho lishe napryamok A displaystyle mathbf A nbsp zberigayetsya nezalezhno Krim togo vektor A displaystyle mathbf A nbsp povinen buti perpendikulyarnim do L displaystyle mathbf L nbsp ce privodit do odniyeyi dodatkovoyi velichini sho zberigayetsya Mehanichna sistema z d displaystyle d nbsp stupenyami vilnosti mozhe mati maksimum 2 d 1 displaystyle 2d 1 nbsp integraliv ruhu oskilki 2 d displaystyle 2d nbsp pochatkovih umov i pochatkovij chas ne mozhut buti viznacheni z integraliv ruhu Sistema z bilsh nizh d displaystyle d nbsp integralami ruhu nazivayetsya superintegrovnoyu a sistema z 2 d 1 displaystyle 2d 1 nbsp integralami nazivayetsya maksimalno superintegrovnoyu 19 Oskilki rozv yazuvannya rivnyannya Gamiltona Yakobi v odnij sistemi koordinat mozhe privesti lishe do d displaystyle d nbsp integraliv ruhu to zminni povinni rozdilyatisya dlya superintegrovnih sistem u bilsh nizh odnij sistemi koordinat 20 Zadacha Keplera maksimalno superintegrovna oskilki vona maye tri stupeni vilnosti d 3 displaystyle d 3 nbsp i p yat nezalezhnih integraliv ruhu zminni u rivnyanni Gamiltona Yakobi rozdilyayutsya u sferichnih koordinatah i parabolichnih koordinatah ru 21 yak opisano nizhche Maksimalno superintegrovni sistemi mozhut buti kvantovani z vikoristannyam lishe komutacijnih spivvidnoshen yak pokazano nizhche 22 Rivnyannya Gamiltona Yakobi v parabolichnih koordinatah Redaguvati Postijnist vektora Laplasa Runge Lenca mozhna vivesti vikoristovuyuchi rivnyannya Gamiltona Yakobi v parabolichnih koordinatah ru 3 h displaystyle xi eta nbsp yaki viznachayutsya nastupnim chinom 3 r x displaystyle xi r x nbsp h r x displaystyle eta r x nbsp de r displaystyle r nbsp radius u ploshini orbiti r x 2 y 2 displaystyle r sqrt x 2 y 2 nbsp Obernene peretvorennya cih koordinat zapishetsya u viglyadi x 1 2 3 h displaystyle x frac 1 2 xi eta nbsp y 3 h displaystyle y sqrt xi eta nbsp Rozdilennya zminnih u rivnyanni Gamiltona Yakobi v cih koordinatah daye dva ekvivalentnih rivnyannya 21 23 2 3 p 3 2 m k m E 3 b displaystyle 2 xi p xi 2 mk mE xi beta nbsp 2 h p h 2 m k m E h b displaystyle 2 eta p eta 2 mk mE eta beta nbsp de b displaystyle beta nbsp integral ruhu Vidnimayuchi ci rivnyannya i virazhayuchi v terminah dekartovih koordinat impulsu p x displaystyle p x nbsp i p y displaystyle p y nbsp mozhna pokazati sho b displaystyle beta nbsp ekvivalentnij vektoru Laplasa Runge Lenca b p y x p y y p x m k x r A x displaystyle beta p y xp y yp x mk frac x r A x nbsp Cej pidhid Gamiltona Yakobi mozhe vikoristovuvatisya dlya togo shob vivesti zberezhnij uzagalnenij vektor Laplasa Runge Lenca A displaystyle mathcal A nbsp za nayavnosti elektrichnogo polya E displaystyle mathbf E nbsp 21 24 A A m q 2 r E r displaystyle mathcal A mathbf A frac mq 2 left mathbf r times mathbf E times mathbf r right nbsp de q displaystyle q nbsp zaryad chastinki yaka obertayetsya Alternativne formulyuvannya Redaguvati Na vidminu vid impulsu p displaystyle mathbf p nbsp ta kutovogo momentu L displaystyle mathbf L nbsp vektora Laplasa Runge Lenca ne maye zagalnoprijnyatogo viznachennya V naukovij literaturi vikoristovuyutsya dekilka riznih mnozhnikiv ta simvoliv Najbilsh zagalne viznachennya navoditsya vishe ale inshe viznachennya vinikaye pislya dilennya na stalu m k displaystyle mk nbsp shob otrimati bezrozmirnij zberezhnij vektor ekscentrisitetu e 1 m k p L r m k v r v r displaystyle mathbf e frac 1 mk mathbf p times mathbf L mathbf hat r frac m k mathbf v times mathbf r times mathbf v mathbf hat r nbsp de v displaystyle mathbf v nbsp vektor shvidkosti Napryamok cogo masshtabovanogo vektora e displaystyle mathbf e nbsp zbigayetsya z napryamkom A displaystyle mathbf A nbsp i jogo amplituda dorivnyuye ekscentrisitetu orbiti Mi otrimayemo inshi viznachennya yaksho podilimo A displaystyle mathbf A nbsp na m displaystyle m nbsp M v L k r displaystyle mathbf M mathbf v times mathbf L k mathbf hat r nbsp chi na p 0 displaystyle p 0 nbsp D A p 0 1 2 m E p L m k r displaystyle mathbf D frac mathbf A p 0 frac 1 sqrt 2m E mathbf p times mathbf L mk mathbf hat r nbsp yakij maye tu zh rozmirnist sho i kutovij moment vektor L displaystyle mathbf L nbsp U ridkisnih vipadkah znak vektora Laplasa Runge Lenca mozhe buti zminenij na protilezhnij Inshi zagalni simvoli dlya vektora Laplasa Runge Lenca vklyuchayut a displaystyle mathbf a nbsp R displaystyle mathbf R nbsp F displaystyle mathbf F nbsp J displaystyle mathbf J nbsp i V displaystyle mathbf V nbsp Odnak vibir mnozhnika ta simvolu dlya vektora Laplasa Runge Lenca zvichajno zh ne vplivaye na jogo zberezhennya nbsp Ris 3 Vektor kutovogo momentu L displaystyle scriptstyle mathbf L nbsp vektor Laplasa Runge Lenca A displaystyle scriptstyle mathbf A nbsp i vektor Gamiltona binormal B displaystyle scriptstyle mathbf B nbsp ye vzayemno perpendikulyarnimi A displaystyle scriptstyle mathbf A nbsp i B displaystyle scriptstyle mathbf B nbsp vkazuyut na veliku i na malu pivosi vidpovidno eliptichnoyi orbiti v zadachi Keplera Alternativnij zberezhnij vektor binormal vektor B displaystyle mathbf B nbsp vivchenij Vilyamom Gamiltonom 10 B p m k L 2 r L r displaystyle mathbf B mathbf p left frac mk L 2 r right mathbf L times mathbf r nbsp yakij zberigayetsya ta vkazuye vzdovzh maloyi pivosi elipsa Vektor Laplasa Runge Lenca A B L displaystyle mathbf A mathbf B times mathbf L nbsp ye vektornim dobutkom B displaystyle mathbf B nbsp i L displaystyle mathbf L nbsp ris 3 Vektor B displaystyle mathbf B nbsp poznachenij yak binormal oskilki vin perpendikulyarnij yak do A displaystyle mathbf A nbsp tak i do L displaystyle mathbf L nbsp Podibno do vektora Laplasa Runge Lenca vektor binormali mozhna viznachiti z riznimi mnozhnikami Dva zberezhnih vektora A displaystyle mathbf A nbsp ta B displaystyle mathbf B nbsp mozhna ob yednati u zberezhnij dvohelementnij tenzor W displaystyle mathbf W nbsp W a A A b B B displaystyle mathbf W alpha mathbf A otimes mathbf A beta mathbf B otimes mathbf B nbsp de displaystyle otimes nbsp poznachaye tenzornij dobutok a a displaystyle alpha nbsp i b displaystyle beta nbsp dovilni mnozhniki 11 Zapisane v komponentnomu zapisi ce rivnyannya chitayetsya tak W i j a A i A j b B i B j displaystyle W ij alpha A i A j beta B i B j nbsp Vektori A displaystyle mathbf A nbsp i B displaystyle mathbf B nbsp ortogonalni odin do odnogo i yih mozhna predstaviti yak golovni osi zberezhnogo tenzora W displaystyle mathbf W nbsp tobto yak jogo vlasni vektori W displaystyle mathbf W nbsp perpendikulyarnij do L displaystyle mathbf L nbsp L W a L A A b L B B 0 displaystyle mathbf L cdot mathbf W alpha mathbf L cdot mathbf A mathbf A beta mathbf L cdot mathbf B mathbf B 0 nbsp oskilki A displaystyle mathbf A nbsp i B displaystyle mathbf B nbsp perpendikulyarni to L A L B 0 displaystyle mathbf L cdot mathbf A mathbf L cdot mathbf B 0 nbsp Vivedennya orbit Keplera Redaguvati nbsp Ris 4 Sproshena versiya ris 1 Viznachayetsya kut 8 displaystyle theta nbsp mizh A displaystyle scriptstyle mathbf A nbsp i r displaystyle scriptstyle mathbf r nbsp v odnij tochci orbiti Formu ta oriyentaciyu orbiti v zadachi Keplera znayuchi vektor Laplasa Runge Lenca A displaystyle mathbf A nbsp mozhna viznachiti takim chinom Rozglyanemo skalyarnij dobutok vektoriv A displaystyle mathbf A nbsp i r displaystyle mathbf r nbsp polozhennya planeti A r A r cos 8 r p L m k r displaystyle mathbf A cdot mathbf r Ar cos theta mathbf r cdot mathbf p times mathbf L mkr nbsp de 8 displaystyle theta nbsp ye kutom mizh r displaystyle mathbf r nbsp i A displaystyle mathbf A nbsp ris 4 Zminimo poryadok mnozhnikiv u mishanomu dobutku r p L L r p L L L 2 displaystyle mathbf r cdot mathbf p times mathbf L mathbf L cdot mathbf r times mathbf p mathbf L cdot mathbf L L 2 nbsp i pislya neskladnih peretvoren otrimayemo viznachennya dlya konichnogo peretinu 1 r m k L 2 1 A m k cos 8 displaystyle frac 1 r frac mk L 2 left 1 frac A mk cos theta right nbsp z ekscentrisitetom e displaystyle e nbsp zadanim za formuloyu e A m k A m k displaystyle e frac A mk frac mathbf A mk nbsp Prihodimo do virazu kvadrata modulya vektora A displaystyle mathbf A nbsp u viglyadi A 2 m 2 k 2 2 m E L 2 displaystyle A 2 m 2 k 2 2mEL 2 nbsp yakij mozhna perepisati vikoristovuyuchi ekscentrisitet orbiti e 2 1 2 L 2 m k 2 E displaystyle e 2 1 frac 2L 2 mk 2 E nbsp Takim chinom yaksho energiya vid yemna sho vidpovidaye zv yazanim orbitam ekscentrisitet menshij vid odinici i orbita maye formu elipsa Navpaki yaksho energiya dodatna nezv yazani orbiti yaki takozh nazivayutsya orbitami rozsiyuvannya ekscentrisitet bilshij vid odinici i orbita giperbola Nareshti yaksho energiya tochno dorivnyuye nulyu ekscentrisitet odinicya i orbita parabola U vsih vipadkah vektor A displaystyle mathbf A nbsp napravlenij vzdovzh osi simetriyi konichnogo peretinu ta vkazuye na tochku najblizhchogo polozhennya tochkovoyi chastinki vid pochatku koordinat pericentr Zberezhennya pid diyeyu sili sho oberneno proporcijna do kvadratu vidstani Redaguvati Sila F displaystyle mathbf F nbsp sho diye na chastinku vvazhayetsya centralnoyu Tomu F d p d t f r r r f r r displaystyle mathbf F frac d mathbf p dt f r frac mathbf r r f r mathbf hat r nbsp dlya deyakoyi funkciyi f r displaystyle f r nbsp radiusa r displaystyle r nbsp Oskilki kutovij moment L r p displaystyle mathbf L mathbf r times mathbf p nbsp zberigayetsya pid diyeyu centralnih sil to d d t L 0 displaystyle frac d dt mathbf L 0 nbsp i d d t p L d p d t L f r r r m d r d t f r m r r r d r d t r 2 d r d t displaystyle frac d dt mathbf p times mathbf L frac d mathbf p dt times mathbf L f r mathbf hat r times left mathbf r times m frac d mathbf r dt right f r frac m r left mathbf r left mathbf r cdot frac d mathbf r dt right r 2 frac d mathbf r dt right nbsp de impuls zapisanij u viglyadi p m d r d t displaystyle mathbf p m frac d mathbf r dt nbsp i potrijnij vektornij dobutok sprostivsya z dopomogoyu formuli Lagranzha r r d r d t r r d r d t r 2 d r d t displaystyle mathbf r times left mathbf r times frac d mathbf r dt right mathbf r left mathbf r cdot frac d mathbf r dt right r 2 frac d mathbf r dt nbsp Totozhnist d d t r r 2 r d r d t d d t r 2 2 r d r d t displaystyle frac d dt mathbf r cdot mathbf r 2 mathbf r cdot frac d mathbf r dt frac d dt r 2 2r frac dr dt nbsp privodit do rivnyannya d d t p L m f r r 2 1 r d r d t r r 2 d r d t m f r r 2 d d t r r displaystyle frac d dt mathbf p times mathbf L mf r r 2 left frac 1 r frac d mathbf r dt frac mathbf r r 2 frac dr dt right mf r r 2 frac d dt left frac mathbf r r right nbsp Dlya specialnogo vipadku centralnoyi sili sho zalezhit oberneno proporcijno vid kvadratu vidstani f r k r 2 displaystyle f r frac k r 2 nbsp ostannij viraz dorivnyuye d d t p L m k d d t r r d d t m k r displaystyle frac d dt mathbf p times mathbf L mk frac d dt left frac mathbf r r right frac d dt mk mathbf hat r nbsp Todi A displaystyle mathbf A nbsp zberigayetsya v comu vipadku d d t A d d t p L d d t m k r 0 displaystyle frac d dt mathbf A frac d dt mathbf p times mathbf L frac d dt mk mathbf hat r 0 nbsp Yak pokazano nizhche vektor Laplasa Runge Lenca A displaystyle mathbf A nbsp ye chastkovim vipadkom uzagalnenogo zberezhnogo vektora A displaystyle mathcal A nbsp yakij mozhe buti viznachenij dlya bud yakoyi centralnoyi sili 11 12 Odnak bilshist centralnih sil ne formuye zamknenih orbit div Zadacha Bertrana analogichnij vektor A displaystyle mathcal A nbsp ridko maye proste viznachennya i v zagalnomu vipadku ye bagatoznachnoyu funkciyeyu kuta 8 displaystyle theta nbsp mizh r displaystyle mathbf r nbsp i A displaystyle mathcal A nbsp Zmina pid diyeyu zburyuvalnih centralnih sil Redaguvati nbsp Ris 5 Eliptichna orbita z ekscentrisitetom e 0 9 displaystyle scriptstyle e 0 9 nbsp yaka povilno precesiyuye Taka precesiya vinikaye u zadachi Keplera yaksho prityaguvalna centralna sila trohi vidriznyayetsya vid zakonu tyazhinnya Nyutona Shvidkist precesiyi mozhna obchisliti vikoristovuyuchi navedeni u rozdili formuli U bagatoh praktichnih zadachah tipu planetarnogo ruhu vzayemodiya mizh dvoma tilami lishe nablizheno zalezhit oberneno proporcijno vid kvadratu vidstani V takih vipadkah vektor Laplasa Runge Lenca A displaystyle mathbf A nbsp ne ye postijnim Odnak yaksho zburyuvalnij potencial h r displaystyle h r nbsp zalezhit lishe vid vidstani to povna energiya E displaystyle E nbsp i vektor kutovogo momentu L displaystyle mathbf L nbsp zberigayutsya Tomu trayektoriya ruhu vse she roztashovuyetsya u perpendikulyarnij do L displaystyle mathbf L nbsp ploshini i velichina A displaystyle A nbsp zberigayetsya vidpovidno do rivnyannya A 2 m 2 k 2 2 m E L 2 displaystyle A 2 m 2 k 2 2mEL 2 nbsp Otzhe napryamok A displaystyle mathbf A nbsp povilno obertayetsya po orbiti u ploshini Vikoristovuyuchi kanonichnu teoriyu zburen i koordinati diya kut mozhna pryamo pokazati 2 sho A displaystyle mathbf A nbsp obertayetsya zi shvidkistyu L h r L 1 T 0 T h r d t L m L 2 0 2 p r 2 h r d 8 displaystyle frac partial partial L langle h r rangle frac partial partial L left frac 1 T int limits 0 T h r dt right frac partial partial L left frac m L 2 int limits 0 2 pi r 2 h r d theta right nbsp de T displaystyle T nbsp period orbitalnogo ruhu i rivnist L d t m r 2 d 8 displaystyle L dt mr 2 d theta nbsp vikoristovuvalasya dlya togo shob peretvoriti integral po chasu v integral po kutu ris 5 Napriklad beruchi do uvagi efekti zagalnoyi teoriyi vidnosnosti prihodimo do dobavki yaka na vidminu vid zvichajnoyi gravitacijnoyi sili Nyutona zalezhit oberneno proporcijno vid kuba vidstani 25 h r k L 2 m 2 c 2 1 r 3 displaystyle h r frac kL 2 m 2 c 2 left frac 1 r 3 right nbsp Pidstavlyayuchi cyu funkciyu v integral i vikoristovuyuchi rivnyannya 1 r m k L 2 1 A m k cos 8 displaystyle frac 1 r frac mk L 2 left 1 frac A mk cos theta right nbsp shob viraziti r displaystyle r nbsp v terminah 8 displaystyle theta nbsp shvidkist precesiyi pericentra viklikana cim zburennyam zapishetsya u viglyadi 25 6 p k 2 T L 2 c 2 displaystyle frac 6 pi k 2 TL 2 c 2 nbsp sho blizka za znachennyam do velichini precesiyi dlya Merkuriya yaku ne mozhna poyasniti nyutonivskoyu teoriyeyu gravitaciyi 26 Cej viraz vikoristovuyetsya dlya ocinki precesiyi pov yazanoyi z popravkami zagalnoyi teoriyi vidnosnosti dlya podvijnih pulsariv 27 Ce uzgodzhennya z eksperimentom ye silnim argumentom na korist zagalnoyi teoriyi vidnosnosti 28 Teoriya grup RedaguvatiPeretvorennya Li Redaguvati nbsp Ris 6 Peretvorennya Li z yakogo vivoditsya zberezhennya vektora Laplasa Runge Lenca A displaystyle scriptstyle mathbf A nbsp Koli masshtabovuvanij parametr l displaystyle scriptstyle lambda nbsp zminyuyetsya energiya ta kutovij moment takozh zminyuyutsya ale ekscentrisitet e displaystyle scriptstyle e nbsp i vektor A displaystyle scriptstyle mathbf A nbsp ne zminyuyutsya Isnuye inshij metod vivodu vektora Laplasa Runge Lenca yakij vikoristovuye variaciyu koordinat bez zastosuvannya shvidkostej 29 Skalyuvannya koordinat r displaystyle mathbf r nbsp i chasu t displaystyle t nbsp z riznim stepenem parametra l displaystyle lambda nbsp ris 6 t l 3 t r l 2 r p 1 l p displaystyle t to lambda 3 t mathbf r to lambda 2 mathbf r mathbf p to frac 1 lambda mathbf p nbsp Ce peretvorennya zminyuye povnij kutovij moment L displaystyle L nbsp i energiyu E displaystyle E nbsp L l L E 1 l 2 E displaystyle L to lambda L E to frac 1 lambda 2 E nbsp ale zberigaye dobutok E L 2 displaystyle EL 2 nbsp Zvidsi viplivaye sho ekscentrisitet e displaystyle e nbsp i velichina A displaystyle A nbsp zberigayutsya u vzhe zgadanomu ranishe rivnyanni A 2 m 2 k 2 e 2 m 2 k 2 2 m E L 2 displaystyle A 2 m 2 k 2 e 2 m 2 k 2 2mEL 2 nbsp Napryamok A displaystyle mathbf A nbsp takozh zberigayetsya oskilki pivosi ne zminyuyutsya pri skalyuvanni Ce peretvorennya zalishaye pravilnim tretij zakon Keplera a same te sho pivvis a displaystyle a nbsp i period T displaystyle T nbsp formuyut konstantu T 2 a 3 displaystyle T 2 a 3 nbsp Duzhki Puassona Redaguvati Dlya troh komponent L i displaystyle L i nbsp vektora kutovogo momentu L displaystyle mathbf L nbsp mozhna viznachiti duzhki Puassona L i L j s 1 3 e i j s L s displaystyle L i L j sum s 1 3 varepsilon ijs L s nbsp de indeks i displaystyle i nbsp probigaye znachennya 1 2 3 i e i j s displaystyle varepsilon ijs nbsp absolyutno antisimetrichnij tenzor tobto simvol Levi Chiviti tretij indeks pidsumovuvannya s displaystyle s nbsp shob ne plutati z silovim parametrom k displaystyle k nbsp viznachenim vishe Yak duzhki Puassona vikoristovuyutsya kvadratni duzhki a ne figurni yak i v literaturi ta v tomu chisli shob interpretuvati yih yak kvantovomehanichni komutacijni spivvidnoshennya v nastupnomu rozdili Yak pokazano vishe zminenij vektor Laplasa Runge Lenca D displaystyle mathbf D nbsp mozhna viznachiti z tiyeyu zh rozmirnistyu sho i kutovij moment podilivshi A displaystyle mathbf A nbsp na p 0 displaystyle p 0 nbsp Duzhka Puassona D displaystyle mathbf D nbsp z vektorom kutovogo momentu L displaystyle mathbf L nbsp zapishetsya u shozhomu viglyadi D i L j s 1 3 e i j s D s displaystyle D i L j sum s 1 3 varepsilon ijs D s nbsp Duzhka Puassona D displaystyle mathbf D nbsp z D displaystyle mathbf D nbsp zalezhit vid znaku E displaystyle E nbsp tobto koli povna energiya E displaystyle E nbsp vid yemna eliptichni orbiti pid diyeyu centralnoyi sili sho zalezhit oberneno proporcijno vid kvadrata vidstani abo dodatna giperbolichni orbiti Dlya vid yemnih energij duzhki Puassona nabudut viglyadu D i D j s 1 3 e i j s L s displaystyle D i D j sum s 1 3 varepsilon ijs L s nbsp V toj chas yak dlya dodatnih energij duzhki Puassona mayut protilezhnij znak D i D j s 1 3 e i j s L s displaystyle D i D j sum s 1 3 varepsilon ijs L s nbsp Invarianti Kazimira dlya vid yemnih energij viznachayutsya z dopomogoyu nastupnih spivvidnoshen C 1 D D L L m k 2 2 E displaystyle C 1 mathbf D cdot mathbf D mathbf L cdot mathbf L frac mk 2 2 E nbsp C 2 D L 0 displaystyle C 2 mathbf D cdot mathbf L 0 nbsp i mi mayemo nulovi duzhki Puassona dlya vsih komponent D displaystyle mathbf D nbsp i L displaystyle mathbf L nbsp C 1 L i C 1 D i C 2 L i C 2 D i 0 displaystyle C 1 L i C 1 D i C 2 L i C 2 D i 0 nbsp C 2 displaystyle C 2 nbsp dorivnyuye nulyu cherez ortogonalnist vektoriv Odnak inshij invariant C 1 displaystyle C 1 nbsp netrivialnij i zalezhit lishe vid m displaystyle m nbsp k displaystyle k nbsp i E displaystyle E nbsp Cej invariant mozhna vikoristati dlya vivodu spektra atoma vodnyu vikoristovuyuchi lishe kvantovomehanichne kanonichne komutacijne spivvidnoshennya zamist skladnishogo rivnyannya Shredingera Teorema Neter Redaguvati Teorema Neter stverdzhuye sho infinitizimalna variaciya uzagalnenih koordinat fizichnoyi sistemi d q i e g i q q t displaystyle delta q i varepsilon g i mathbf q mathbf dot q t nbsp viklikaye zminu funkciyi Lagranzha u pershomu poryadku na povnu pohidnu po chasu d L e d d t G q t displaystyle delta L varepsilon frac d dt G mathbf q t nbsp vidpovidaye zberezhennyu velichini J G i g i L q i displaystyle J G sum i g i left frac partial L partial dot q i right nbsp Zberezhena komponenta vektora Laplasa Runge Lenca A s displaystyle A s nbsp vidpovidaye variaciyi koordinat 30 d x i e 2 2 p i x s x i p s d i s r p displaystyle delta x i frac varepsilon 2 2p i x s x i p s delta is mathbf r cdot mathbf p nbsp de i displaystyle i nbsp dorivnyuye 1 2 i 3 a x i displaystyle x i nbsp i p i displaystyle p i nbsp i displaystyle i nbsp ti komponenti vektoriv polozhennya r displaystyle mathbf r nbsp ta impulsu p displaystyle mathbf p nbsp vidpovidno Yak i zavzhdi d i s displaystyle delta is nbsp simvol Kronekera Otrimani zmini v pershomu poryadku funkciyi Lagranzha zapishemo yak d L 1 2 e m k d d t x s r p 2 x s p s r p displaystyle delta L frac 1 2 varepsilon mk frac d dt left frac x s r p 2 x s p s mathbf r cdot mathbf p right nbsp Ce viklikaye zberezhennya komponenti A s displaystyle A s nbsp A s p 2 x s p s r p m k x s r p r p s m k x s r displaystyle A s p 2 x s p s mathbf r cdot mathbf p mk left frac x s r right mathbf p times mathbf r times mathbf p s mk left frac x s r right nbsp Zakoni zberezhennya i simetriya Redaguvati Variaciya koordinati prizvodit do zberezhennya dovzhini vektora Laplasa Runge Lenca div teorema Neter Ce zberezhennya mozhna rozglyadati yak deyaku simetriyu sistemi U klasichnij mehanici simetriyi neperervni operaciyi yaki vidobrazhayut odnu orbitu na inshu ne zminyuyuchi energiyi sistemi u kvantovij mehanici simetriyi neperervni operaciyi yaki zmishuyut atomni orbitali ne zminyuyuchi povnu energiyu Napriklad bud yaka centralna sila privodit do zberezhennya kutovogo momentu L displaystyle mathbf L nbsp U fizici zazvichaj zustrichayutsya konservativni centralni sili sho mayut simetriyu grupi obertannya SO 3 Klasichno povne obertannya sistemi ne zachipaye energiyu orbiti kvantovomehanichno obertannya zmishuyut sferichni funkciyi z takim samim kvantovim chislom l displaystyle l nbsp virodzheni stani ne zminyuyuchi energiyu nbsp Ris 7 Simejstvo kil godografa impulsu dlya zadanoyi energiyi l displaystyle scriptstyle l nbsp Vsi kola prohodyat cherez dvi tochki p 0 2 m E displaystyle scriptstyle pm p 0 pm sqrt 2m E nbsp na osi p x displaystyle scriptstyle p x nbsp porivnyajte z ris 3 Ce simejstvo godografiv vidpovidaye simejstvu kil Apolloniya ta s displaystyle scriptstyle sigma nbsp izopoverhnyam bipolyarnih koordinat Simetriya pidvishuyetsya dlya centralnoyi sili obernenoyi do kvadrata vidstani Specifichna simetriya zadachi Keplera prizvodit do zberezhennya yak vektora kutovogo momentu L displaystyle mathbf L nbsp tak i vektora Laplasa Runge Lenca A displaystyle mathbf A nbsp yak viznacheno vishe i kvantovomehanichno garantuye sho rivni energiyi atoma vodnyu ne zalezhat vid kvantovih chisel kutovogo momentu l displaystyle l nbsp i m displaystyle m nbsp Simetriya ye bilsh tonkoyu tomu sho operaciya simetriyi povinna isnuvati u prostori bilshoyi rozmirnosti taki simetriyi chasto nazivayut prihovanimi simetriyami 29 Klasichno visha simetriya zadachi Keplera vrahovuye neperervni zmini orbit yaki zberigayut energiyu ale ne kutovij moment inshimi slovami orbiti z odnakovoyu energiyeyu ale riznimi kutovimi momentami ekscentrisitetom mozhut buti peretvoreni neperervno odna v odnu Kvantovomehanichno ce vidpovidaye zmishuvannyu orbitalej yaki vidriznyayutsya kvantovimi chislami l displaystyle l nbsp i m displaystyle m nbsp atomni orbitali tipu s displaystyle s nbsp l 0 displaystyle l 0 nbsp i p displaystyle p nbsp l 1 displaystyle l 1 nbsp Take zmishuvannya ne mozhna vikonati zi zvichajnimi trivimirnimi translyaciyami chi obertannyami ale vono ekvivalentne obertannyu v prostori z vishoyu rozmirnistyu Zv yazana sistema z vid yemnoyu povnoyu energiyeyu maye simetriyu SO 4 yaka zberigaye dovzhinu chotirivimirnih vektoriv e 2 e 1 2 e 2 2 e 3 2 e 4 2 displaystyle mathbf e 2 e 1 2 e 2 2 e 3 2 e 4 2 nbsp 1935 roku Volodimir Fok pokazav sho kvantovomehanichna zadacha Keplera ekvivalentna zadachi vilnoyi chastinki obmezhenoyi chotirivimirnoyu gipersferoyu 7 Zokrema Fok pokazav sho hvilova funkciya rivnyannya Shredingera u prostori impulsiv dlya zadachi Keplera ye chotirivimirnim uzagalnennyam stereografichnoyi proyekciyi sferichnih funkcij iz 3 sferi u trivimirnij prostir Obertannya gipersferi ta pereproektuvannya prizvodit do neperervnogo peretvorennya eliptichnih orbit sho ne zminyuye energiyu kvantovomehanichno ce vidpovidaye zmishuvannyu vsih orbitalej z odnakovim golovnim kvantovim chislom n displaystyle n nbsp Valentin Bargman en zgodom vidmitiv sho duzhki Puassona dlya vektora kutovogo momentu L displaystyle mathbf L nbsp ta skalovanogo vektora Laplasa Runge Lenca D displaystyle mathbf D nbsp formuyut algebru Li dlya S O 4 displaystyle SO 4 nbsp 8 Prostishe kazhuchi ci shist velichin D displaystyle mathbf D nbsp i L displaystyle mathbf L nbsp vidpovidayut shesti zberezhnim kutovim impulsam u chotiroh vimirah pov yazanih z shistma mozhlivimi prostimi obertannyami u comu prostori ye shist sposobiv vibrati dvi osi z chotiroh Cej visnovok ne peredbachaye sho nash Vsesvit chotirivimirna gipersfera ce prosto oznachaye sho cya specifichna problema fiziki zadacha dvoh til dlya centralnoyi sili sho zalezhit oberneno vid kvadrata vidstani matematichno ekvivalentna vilnij chastinci na chotirivimirnij gipersferi Rozsiyana sistema z dodatnoyu povnoyu energiyeyu maye simetriyu SO 3 1 yaka zberigaye dovzhinu 4 vektora u prostori z metrikoyu Minkovskogo d s 2 e 1 2 e 2 2 e 3 2 e 4 2 displaystyle ds 2 e 1 2 e 2 2 e 3 2 e 4 2 nbsp Fok 7 i Bargman 8 rozglyanuli yak vid yemni tak i dodatni energiyi Voni takozh buli rozglyanuti enciklopedichno Benderom ta Iciksonom 31 32 Simetriya obertan u chotirivimirnomu prostori Redaguvati nbsp Ris 8 Godograf impulsu na ris 7 vidpovidaye stereografichnij proyekciyi velikih kil iz chotirivimirnoyi h displaystyle scriptstyle eta nbsp sferi odinichnogo radiusa Vsi veliki kola peretinayut h x displaystyle scriptstyle eta x nbsp vis yaka napravlena perpendikulyarno do storinki Proyekciya z pivnichnogo polyusa odinichnij vektor w displaystyle scriptstyle mathbf w nbsp do h x displaystyle scriptstyle eta x nbsp h y displaystyle scriptstyle eta y nbsp ploshini yak pokazano dlya purpurnogo godografa punktirnoyu chornoyu liniyeyu Velike kolo na shiroti a displaystyle scriptstyle alpha nbsp vidpovidaye ekscentrisitetu e sin a displaystyle scriptstyle e sin alpha nbsp Kolori velikih kil pokazanih tut vidpovidayut koloram yihnih godografiv na ris 7 Zv yazok mizh zadacheyu Keplera i obertannyami v chotirivimirnomu prostori SO 4 mozhna dostatno prosto vizualizuvati 31 33 34 Nehaj u chotirivimirnomu prostori zadani dekartovi koordinati yaki poznacheni w x y z displaystyle w x y z nbsp de x y z displaystyle x y z nbsp ye dekartovimi koordinatami zvichajnogo polozhennya trivimirnogo vektora r displaystyle mathbf r nbsp Trivimirnij vektor impulsu p displaystyle mathbf p nbsp pov yazanij z chotirivimirnim vektorom h displaystyle boldsymbol eta nbsp na chotirivimirnij odinichnij sferi rivnyannyam h p 2 p 0 2 p 2 p 0 2 w 2 p 0 p 2 p 0 2 p m k r p p 0 m k w r p 0 m k p displaystyle boldsymbol eta frac p 2 p 0 2 p 2 p 0 2 mathbf hat w frac 2p 0 p 2 p 0 2 mathbf p frac mk rpp 0 mk mathbf hat w frac rp 0 mk mathbf p nbsp de w displaystyle mathbf hat w nbsp odinichnij vektor vzdovzh novoyi osi w displaystyle w nbsp Oskilki h displaystyle boldsymbol eta nbsp maye lishe tri nezalezhni komponenti to cej vektor mozhna obernuti otrimavshi viraz dlya p displaystyle mathbf p nbsp Napriklad dlya komponenti x displaystyle x noscri