www.wikidata.uk-ua.nina.az
Pryamij dobutok grup operaciya yaka za grupami G displaystyle G i H displaystyle H buduye novu grupu yaku zazvichaj poznachayut yak G H displaystyle G times H Cya operaciya ye teoretiko grupovim analogom dekartovogo dobutku mnozhin ta odnim z osnovnih prikladiv ponyattya pryamogo dobutku U konteksti abelevih grup pryamij dobutok inodi nazivayut pryamoyu sumoyu ta poznachayut G H displaystyle G oplus H Pryami sumi vidigrayut vazhlivu rol u klasifikaciyi abelevih grup zgidno z teoremoyu pro strukturu skinchennoporodzhenih abelevih grup bud yaku skinchennoporodzhenu abelevu grupu mozhna rozklasti v pryamu sumu ciklichnih grup Zmist 1 Viznachennya 2 Prikladi 3 Elementarni vlastivosti 4 Algebrichna struktura 4 1 Prikladi vnutrishnogo pryamogo dobutku 4 2 Zadannya pryamogo dobutku 4 3 Normalna struktura 5 Inshi vlastivosti 5 1 Universalna vlastivist 5 2 Pidgrupi 5 3 Spryazhenist ta centralizatori 5 4 Avtomorfizmi ta endomorfizmi 6 Uzagalnennya 6 1 Skinchenni pryami dobutki 6 2 Neskinchenni pryami dobutki 6 3 Inshi dobutki 6 3 1 Napivpryami dobutki 6 3 2 Vilni dobutki 6 3 3 Pidpryami dobutki 6 3 4 Rozsharovani dobutki 7 Primitki 8 LiteraturaViznachennya RedaguvatiYaksho G displaystyle G nbsp i H displaystyle H nbsp grupi z operaciyami displaystyle nbsp i displaystyle triangle nbsp vidpovidno toj pryamij dobutok G H displaystyle G times H nbsp viznachayetsya tak Mnozhinoyu ye dekartivdobutok G H displaystyle G times H nbsp Jogo elementami ye uporyadkovani pari g h displaystyle g h nbsp de g G displaystyle g in G nbsp i h H displaystyle h in H nbsp Binarna operaciya displaystyle cdot nbsp na G H displaystyle G times H nbsp viznachayetsya pokomponentno g 1 h 1 g 2 h 2 g 1 g 2 h 1 h 2 displaystyle g 1 h 1 cdot g 2 h 2 g 1 g 2 h 1 triangle h 2 nbsp Otrimanij algebrichnij ob yekt zadovolnyaye aksiomam grupi Asociativnist binarnoyi operaciyi Binarna operaciya na G H displaystyle G times H nbsp asociativna sho pereviryayetsya pokomponentno Isnuvannya odinichnogo elementa Pryamij dobutok maye odinichnij element 1 G H 1 G 1 H displaystyle 1 G times H 1 G 1 H nbsp de 1 G displaystyle 1 G nbsp odinichnij element G displaystyle G nbsp i 1 H displaystyle 1 H nbsp odinichnij element H displaystyle H nbsp Isnuvannya obernenogo elementa Obernenij element do elementa g h displaystyle g h nbsp u G H displaystyle G times H nbsp ce para g 1 h 1 displaystyle g 1 h 1 nbsp de g 1 displaystyle g 1 nbsp ye obernenim do g displaystyle g nbsp v G displaystyle G nbsp a h 1 displaystyle h 1 nbsp obernenim do h displaystyle h nbsp v H displaystyle H nbsp Prikladi RedaguvatiNehaj R displaystyle mathbb R nbsp grupa dijsnih chisel iz operaciyeyu dodavannya Todi pryamij dobutok R R displaystyle mathbb R times mathbb R nbsp grupa vsih dvokomponentnih vektoriv x y displaystyle x y nbsp z operaciyeyu dodavannya vektoriv x 1 y 1 x 2 y 2 x 1 x 2 y 1 y 2 displaystyle x 1 y 1 x 2 y 2 x 1 x 2 y 1 y 2 nbsp Nehaj R displaystyle mathbb R nbsp grupa dodatnih dijsnih chisel iz operaciyeyu mnozhennya Todi pryamij dobutok R R displaystyle mathbb R times mathbb R nbsp grupa vsih vektoriv u pershij koordinatnij chverti z operaciyeyu pokomponentnogo mnozhennya x 1 y 1 x 2 y 2 x 1 x 2 y 1 y 2 displaystyle x 1 y 1 times x 2 y 2 x 1 times x 2 y 1 times y 2 nbsp Nehaj G displaystyle G nbsp i H displaystyle H nbsp ciklichni grupi kozhna z yakih mistit dva elementi G displaystyle G nbsp 1 a1 1 aa a 1 H displaystyle H nbsp 1 b1 1 bb b 1 Todi pryamij dobutok G H displaystyle G times H nbsp izomorfnij 4 grupi Klyajna G H displaystyle G times H nbsp 1 1 a 1 1 b a b 1 1 1 1 a 1 1 b a b a 1 a 1 1 1 a b 1 b 1 b 1 b a b 1 1 a 1 a b a b 1 b a 1 1 1 Elementarni vlastivosti RedaguvatiPoryadok pryamogo dobutku G H displaystyle G times H nbsp skinchennih grup dorivnyuye dobutku poryadkiv cih grup G displaystyle G nbsp i H displaystyle H nbsp G H G H displaystyle G times H G H nbsp Ce viplivaye z formuli mnozhini dekartovogo dobutku mnozhin Poryadok kozhnogo elementa g h displaystyle g h nbsp ye najmenshim spilnim kratnim poryadkiv g displaystyle g nbsp i h displaystyle h nbsp 1 ord g h l c m ord g ord h displaystyle operatorname ord g h lcm operatorname ord g operatorname ord h nbsp Zokrema yaksho ord g displaystyle operatorname ord g nbsp i ord h displaystyle operatorname ord h nbsp vzayemno prosti to poryadok g h displaystyle g h nbsp dorivnyuye dobutku poryadkiv g displaystyle g nbsp i h displaystyle h nbsp Yak naslidok yaksho G displaystyle G nbsp i H displaystyle H nbsp ciklichni grupi poryadki yakih ye vzayemno prostimi chislami to pryamij dobutok G H displaystyle G times H nbsp takozh ye ciklichnoyu grupoyu A same yaksho m displaystyle m nbsp i n displaystyle n nbsp vzayemno prosti to Z m Z Z n Z Z m n Z displaystyle mathbb Z m mathbb Z times mathbb Z n mathbb Z cong mathbb Z mn mathbb Z nbsp Cej fakt ye variantom kitajskoyi teoremi pro ostachi Pryamij dobutok mozhna rozglyadati yak operaciyu na grupah Cya operaciya komutativna ta asociativna z tochnistyu do izomorfizmu G H H G displaystyle G times H cong H times G nbsp i G H K G H K displaystyle G times H times K cong G times H times K nbsp dlya lyubyh grupp G displaystyle G nbsp H displaystyle H nbsp i K displaystyle K nbsp Trivialna grupa ye yiyi odinichnim elementom iz tochnistyu do izomorfizmu tobto yaksho E displaystyle E nbsp trivialna grupa to G G E E G displaystyle G cong G times E cong E times G nbsp dlya bud yakoyi grupi G displaystyle G nbsp Algebrichna struktura RedaguvatiNehaj G displaystyle G nbsp i H displaystyle H nbsp grupi a P G H displaystyle P G times H nbsp Rozglyanemo nastupni dvi pidmnozhini P displaystyle P nbsp G g 1 g G displaystyle G prime g 1 g in G nbsp i H 1 h h H displaystyle H prime 1 h h in H nbsp Obidvi ci pidmnozhini ye pidgrupami P displaystyle P nbsp pri comu G displaystyle G prime nbsp kanonichno izomorfna G displaystyle G nbsp a H displaystyle H prime nbsp kanonichno izomorfna H displaystyle H nbsp Yaksho mi ototozhnimo yih iz G displaystyle G nbsp i H displaystyle H nbsp vidpovidno mi zmozhemo vvazhati sho pryamij dobutok P displaystyle P nbsp mistit pochatkovi grupi G displaystyle G nbsp i H displaystyle H nbsp yak pidgrupi Zaznacheni pidgrupi mayut taki tri vazhlivi vlastivosti Peretin G H displaystyle G cap H nbsp trivialnij Kozhen element iz P displaystyle P nbsp mozhna odnoznachno podati yak dobutok elementa z G displaystyle G nbsp ta elementa z H displaystyle H nbsp Kozhen element iz G displaystyle G nbsp komutuye z kozhnim elementom iz H displaystyle H nbsp Razom ci tri vlastivosti povnistyu viznachayut algebrichnu strukturu pryamogo dobutku P displaystyle P nbsp Inshimi slovami yaksho P displaystyle P nbsp bud yaka grupa sho maye pidgrupi G displaystyle G nbsp i H displaystyle H nbsp sho zadovolnyayut zaznacheni vishe vlastivosti to P displaystyle P nbsp izomorfna pryamomu dobutku G displaystyle G nbsp i H displaystyle H nbsp U cij situaciyi P displaystyle P nbsp inodi nazivayut vnutrishnim pryamim dobutkom yiyi pidgrup G displaystyle G nbsp i H displaystyle H nbsp U deyakih vipadkah tretya z navedenih vlastivostej zaminyuyetsya takoyu 3 G displaystyle G nbsp i H displaystyle H nbsp normalni v P displaystyle P nbsp Cya vlastivist ekvivalentna vlastivosti 3 oskilki elementi dvoh normalnih pidgrup iz trivialnim peretinom obov yazkovo komutuyut sho mozhna dovesti rozglyadayuchi komutator g h displaystyle g h nbsp de g displaystyle g nbsp bud yakij element u G displaystyle G nbsp a h displaystyle h nbsp bud yakij element u H displaystyle H nbsp Prikladi vnutrishnogo pryamogo dobutku Redaguvati Nehaj V displaystyle V nbsp 4 gruppa Klyajna V 1abc11abcaa1cbbbc1accba1 Todi V displaystyle V nbsp vnutrishnij pryamij dobutok dvoelementnih pidgrup 1 a displaystyle 1 a nbsp i 1 b displaystyle 1 b nbsp Nehaj a displaystyle langle a rangle nbsp ciklichna grupa poryadku m n displaystyle mn nbsp de m displaystyle m nbsp i n displaystyle n nbsp vzayemno prosti chisla Todi a n displaystyle langle a n rangle nbsp i a m displaystyle langle a m rangle nbsp ciklichni pidgrupi poryadkiv m displaystyle m nbsp i n displaystyle n nbsp vidpovidno i a displaystyle langle a rangle nbsp vnutrishnij pryamij dobutok cih pidgrup Nehaj C displaystyle mathbb C times nbsp grupa nenulovih kompleksnih chisel iz operaciyeyu mnozhennya Todi C displaystyle mathbb C times nbsp ye vnutrishnim pryamim dobutkom kolovoyi grupi T displaystyle mathbb T nbsp sho skladayetsya z kompleksnih chisel iz modulem 1 displaystyle 1 nbsp i grupi R displaystyle mathbb R nbsp dodatnih dijsnih chisel iz operaciyeyu mnozhennya Kompleksna povna linijna grupa G L n C displaystyle GL n mathbb C nbsp vnutrishnij pryamij dobutok specialnoyi linijnoyi grupi S L n C displaystyle SL n mathbb C nbsp ta pidgrupi sho skladayetsya zi vsih skalyarnih matric Yaksho n displaystyle n nbsp neparne chislo to dijsna povna linijna G L n R displaystyle GL n mathbb R nbsp vnutrishnij pryamij dobutok specialnoyi linijnoyi grupi S L n R displaystyle SL n mathbb R nbsp i pidgrupi sho skladayetsya zi vsih skalyarnih matric Analogichno koli n displaystyle n nbsp neparne ortogonalna grupa O n R displaystyle O n mathbb R nbsp ye vnutrishnim pryamim dobutkom specialnoyi ortogonalnoyi grupi S O n R displaystyle SO n mathbb R nbsp i dvoelementnoyi pidgrupi I I displaystyle I I nbsp de I displaystyle I nbsp oznachaye odinichnu matricyu Grupa simetriyi kuba vnutrishnij pryamij dobutok pidgrupi obertan kuba ta dvoelementnoyi grupi I I displaystyle I I nbsp de I displaystyle I nbsp odinichnij element a I displaystyle I nbsp tochkove vidbittya cherez centr kuba Analogichnij fakt spravedlivij i dlya grupi simetriyi ikosaedra Nehaj n displaystyle n nbsp neparne i nehaj D 4 n displaystyle D 4n nbsp diedralna grupa poryadku 4 n displaystyle 4n nbsp D 4 n r s r 2 n s 2 1 s r r 1 s displaystyle D 4n langle r s mid r 2n s 2 1 sr r 1 s rangle nbsp Todi D 4 n displaystyle D 4n nbsp ye vnutrishnim pryamim dobutkom pidgrupi r 2 s displaystyle langle r 2 s rangle nbsp yaka izomorfna D 2 n displaystyle D 2n nbsp i dvoelementnoyi pidgrupi 1 r n displaystyle 1 r n nbsp Zadannya pryamogo dobutku Redaguvati Algebrichnu strukturu G H displaystyle G times H nbsp mozhna vikoristati dlya zadannya pryamogo dobutku za dopomogoyu zadan G displaystyle G nbsp i H displaystyle H nbsp Zokrema pripustimo sho G S G R G displaystyle G langle S G mid R G rangle nbsp i H S H R H displaystyle H langle S H mid R H rangle nbsp de S G displaystyle S G nbsp i S H displaystyle S H nbsp neperetinni porodzhuvalni mnozhini grupi a R G displaystyle R G nbsp i R H displaystyle R H nbsp mnozhini spivvidnoshen mizh porodzhuvalnimi Todi G H S G S H R G R H R P displaystyle G times H langle S G cup S H mid R G cup R H cup R P rangle nbsp de R P displaystyle R P nbsp mnozhina spivvidnoshen yaki viznachayut sho kozhen element u S G displaystyle S G nbsp komutuye z kozhnim elementom u S H displaystyle S H nbsp Napriklad yaksho G a a 3 1 displaystyle G langle a mid a 3 1 rangle nbsp i H b b 5 1 displaystyle H langle b mid b 5 1 rangle nbsp to G H a b a 3 1 b 5 1 a b b a displaystyle G times H langle a b mid a 3 1 b 5 1 ab ba rangle nbsp Normalna struktura Redaguvati Yak zgadano vishe pidgrupi G displaystyle G nbsp i H displaystyle H nbsp normalni v G H displaystyle G times H nbsp Zokrema mozhna viznachiti funkciyi p G G H G displaystyle pi G G times H rightarrow G nbsp i p H G H H displaystyle pi H G times H rightarrow H nbsp formulami p G g h g displaystyle pi G g h g nbsp i p H g h h displaystyle pi H g h h nbsp Todi p G displaystyle pi G nbsp i p H displaystyle pi H nbsp ye gomomorfizmami proyekciyi z yadrami H displaystyle H nbsp i G displaystyle G nbsp vidpovidno Z cogo vihodit sho G H displaystyle G times H nbsp rozshirennya G displaystyle G nbsp za dopomogoyu H displaystyle H nbsp abo navpaki U vipadku koli G H displaystyle G times H nbsp skinchenna grupa kompozicijni faktori grupi G H displaystyle G times H nbsp ye tochno ob yednannyam kompozicijnih faktoriv grupi G displaystyle G nbsp ta kompozicijnih faktoriv grupi H displaystyle H nbsp Inshi vlastivosti RedaguvatiUniversalna vlastivist Redaguvati Pryamij dobutok G H displaystyle G times H nbsp mozhna sharakterizuvati takoyu universalnoyu vlastivistyu Nehaj p G G H G displaystyle pi G G times H rightarrow G nbsp i p H G H H displaystyle pi H G times H rightarrow H nbsp gomomorfizm proyekciyi Todi dlya bud yakoyi grupi P displaystyle P nbsp ta bud yakih gomomorfizmiv f G P G displaystyle f G P rightarrow G nbsp i f H P H displaystyle f H P rightarrow H nbsp isnuye yedinij gomomorfizm f P G H displaystyle f P rightarrow G times H nbsp sho vidpovidaye takij komutativnij diagrami nbsp Inshimi slovami gomomorfizm f displaystyle f nbsp zadayetsya formuloyu f p f G p f H p displaystyle f p f G p f H p nbsp Ce okremij vipadok universalnoyi vlastivosti dlya dobutkiv u teoriyi kategorij Pidgrupi Redaguvati Yaksho A displaystyle A nbsp pidgrupa G displaystyle G nbsp i B displaystyle B nbsp pidgrupa H displaystyle H nbsp to pryamij dobutok A B displaystyle A times B nbsp ye pidgrupoyu G H displaystyle G times H nbsp Napriklad izomorfnoyu kopiyeyu G displaystyle G nbsp v G H displaystyle G times H nbsp ye dobutok G 1 displaystyle G times 1 nbsp de 1 displaystyle 1 nbsp trivialna pidgrupa H displaystyle H nbsp Yaksho A displaystyle A nbsp i B displaystyle B nbsp normalni to A B displaystyle A times B nbsp normalna pidgrupa v G H displaystyle G times H nbsp Bilsh togo faktor grupa pryamih dobutkiv izomorfna pryamomu dobutku chastok G H A B G A H B displaystyle G times H A times B cong G A times H B nbsp Zvernit uvagu sho vzagali kazhuchi nepravda sho kozhna pidgrupa z G H displaystyle G times H nbsp ye dobutkom pidgrupi z G displaystyle G nbsp ta pidgrupi z H displaystyle H nbsp Napriklad yaksho G displaystyle G nbsp bud yaka netrivialna grupa to dobutok G G displaystyle G times G nbsp maye diagonalnu pidgrupu en g g g G displaystyle triangle g g g in G nbsp yaka ne ye pryamim dobutkom dvoh pidgrup G displaystyle G nbsp Pidgrupi pryamih dobutkiv opisuye lema Gursa en Spryazhenist ta centralizatori Redaguvati Dva elementi g 1 h 1 displaystyle g 1 h 1 nbsp i g 2 h 2 displaystyle g 2 h 2 nbsp spryazheni v G H displaystyle G times H nbsp todi j lishe todi koli g 1 displaystyle g 1 nbsp i g 2 displaystyle g 2 nbsp spryazheni v G displaystyle G nbsp i odnochasno h 1 displaystyle h 1 nbsp i h 2 displaystyle h 2 nbsp spryazheni v H displaystyle H nbsp Zvidsi viplivaye sho kozhen klas spryazhenosti v G H displaystyle G times H nbsp ye dekartovim dobutkom klasu spryazhenosti v G displaystyle G nbsp i klasu spryazhenosti v H displaystyle H nbsp Analogichno yaksho g h G H displaystyle g h in G times H nbsp to centralizator g h displaystyle g h nbsp ye dobutkom centralizatoriv g displaystyle g nbsp i h displaystyle h nbsp C G H g h C G g C H h displaystyle C G times H g h C G g times C H h nbsp Takozh centr G H displaystyle G times H nbsp ye dobutkom centriv G displaystyle G nbsp i H displaystyle H nbsp Z G H Z G Z H displaystyle Z G times H Z G times Z H nbsp Normalizatori povodyatsya skladnishe oskilki vsi pidgrupi pryamih dobutkiv sami rozkladayutsya na pryami dobutki Avtomorfizmi ta endomorfizmi Redaguvati Yaksho a displaystyle alpha nbsp avtomorfizm G displaystyle G nbsp a b displaystyle beta nbsp avtomorfizm H displaystyle H nbsp to dobutok funkcij a b G H G H displaystyle alpha times beta G times H rightarrow G times H nbsp sho viznachayetsya formuloyu a b g h a g b h displaystyle alpha times beta g h alpha g beta h nbsp ye avtomorfizmom G H displaystyle G times H nbsp Z cogo viplivaye sho Aut G H displaystyle operatorname Aut G times H nbsp mistit u sobi pidgrupu izomorfnu pryamomu dobutku Aut G Aut H displaystyle operatorname Aut G times operatorname Aut H nbsp U zagalnomu vipadku nepravda sho kozhen avtomorfizm G H displaystyle G times H nbsp maye vishezgadanij viglyad Napriklad yaksho G displaystyle G nbsp bud yaka grupa to isnuye avtomorfizm s displaystyle sigma nbsp grupi G G displaystyle G times G nbsp yakij minyaye miscyami dva mnozhniki tobto s g 1 g 2 g 2 g 1 displaystyle sigma g 1 g 2 g 2 g 1 nbsp Inshij priklad grupoyu avtomorfizmiv grupi Z Z displaystyle mathbb Z times mathbb Z nbsp ye G L 2 Z displaystyle GL 2 mathbb Z nbsp ye grupa vsih matric rozmiru 2 2 displaystyle 2 times 2 nbsp zi cilochiselnimi znachennyami ta viznachnikom rivnim 1 displaystyle pm 1 nbsp Cya grupa avtomorfizmiv neskinchenna ale lishe skinchenna kilkist avtomorfizmiv zadayutsya yak a b displaystyle alpha times beta nbsp Zagalom kozhen endomorfizm G H displaystyle G times H nbsp mozhna zapisati u viglyadi matrici rozmiru 2 2 displaystyle 2 times 2 nbsp a b g d displaystyle begin bmatrix alpha amp beta gamma amp delta end bmatrix nbsp de a displaystyle alpha nbsp endomorfizm G displaystyle G nbsp d displaystyle delta nbsp endomorfizm H displaystyle H nbsp a b H G displaystyle beta H rightarrow G nbsp i g G H displaystyle gamma G rightarrow H nbsp gomomorfizmi Cya matricya povinna mati vlastivist sho kozhen element obrazu a displaystyle alpha nbsp komutuye z kozhnim elementom obrazu b displaystyle beta nbsp a kozhen element obrazu g displaystyle gamma nbsp komutuye z kozhnim elementom obrazu d displaystyle delta nbsp Koli G displaystyle G nbsp i H displaystyle H nbsp nerozkladni grupi z trivialnimi centrami to grupa avtomorfizmiv pryamogo dobutku vidnosno prosta Aut G Aut H displaystyle operatorname Aut G times operatorname Aut H nbsp yaksho G displaystyle G nbsp i H displaystyle H nbsp ne izomorfni ta Aut G w r 2 displaystyle operatorname Aut G wr 2 nbsp yaksho G H displaystyle G cong H nbsp de w r displaystyle wr nbsp poznachaye spletennya en Ce chastina teoremi Krullya Shmidta en v zagalnomu vipadku vona spravedliva dlya skinchennih pryamih dobutkiv Uzagalnennya RedaguvatiSkinchenni pryami dobutki Redaguvati Mozhna znajti pryamij dobutok bilsh nizh dvoh grup odnochasno Dlya skinchennoyi poslidovnosti grup G 1 G n displaystyle G 1 G n nbsp pryamij dobutok i 1 n G i G 1 G 2 G n displaystyle prod i 1 n G i G 1 times G 2 times cdots times G n nbsp viznachayut tak Elementami G 1 G n displaystyle G 1 times cdots times G n nbsp ye kortezhi g 1 g n displaystyle g 1 g n nbsp de g i G i displaystyle g i in G i nbsp dlya bud yakogo i displaystyle i nbsp Operaciyu na G 1 G n displaystyle G 1 times cdots times G n nbsp viznachayut pokomponentno g 1 g n g 1 g n g 1 g 1 g n g n displaystyle g 1 g n g 1 g n g 1 g 1 g n g n nbsp Vin maye bagato vlastivostej yaki maye pryamij dobutok dvoh grup i mozhe buti algebrichno sharakterizovanim v analogichnij sposib Neskinchenni pryami dobutki Redaguvati Takozh mozhna otrimati pryamij dobutok neskinchennoyi kilkosti grup Dlya neskinchennoyi poslidovnosti grup G 1 G 2 displaystyle G 1 G 2 nbsp jogo mozhna viznachiti tak samo yak dlya skinchennogo pryamogo dobutku z elementami neskinchennogo pryamogo dobutku sho ye neskinchennimi kortezhami U zagalnishomu sensi dlya indeksovanogo simejstva grup G i i I displaystyle G i i in I nbsp pryamij dobutok P i I G i displaystyle Pi i in I G i nbsp viznachayut tak Elementi P i I G i displaystyle Pi i in I G i nbsp ce elementi neskinchennogo dekartovogo dobutku mnozhin G i displaystyle G i nbsp tobto elementi neskinchennogo dekartovogo dobutku mozhna rozumiti yak funkciyi f I i I G i displaystyle f I rightarrow bigcup i in I G i nbsp z takoyu vlastivistyu sho f i G i displaystyle f i in G i nbsp dlya bud yakogo i displaystyle i nbsp Dobutok dvoh elementiv f g displaystyle f g nbsp viznachayut pokomponentno f g i f i g i displaystyle f cdot g i f i cdot g i nbsp Na vidminu vid skinchennogo pryamogo dobutku neskinchennij pryamij dobutok P i I G i displaystyle Pi i in I G i nbsp ne porodzhuyetsya elementami izomorfnih pidgrup G i i I displaystyle G i i in I nbsp Natomist ci pidgrupi porodzhuyut pidgrupu pryamogo dobutku vidomu yak neskinchenna pryama suma yaka skladayetsya z usih elementiv sho mayut lishe skinchenne chislo neodinichnih komponentiv Inshi dobutki Redaguvati Napivpryami dobutki Redaguvati Div takozh Napivpryamij dobutok Nagadayemo sho grupa P displaystyle P nbsp z pidgrupami G displaystyle G nbsp i H displaystyle H nbsp izomorfna pryamomu dobutku G displaystyle G nbsp i H displaystyle H nbsp yaksho vona zadovolnyaye taki tri umovi Peretin G H displaystyle G cap H nbsp ye trivialnoyu grupoyu Kozhen element iz P displaystyle P nbsp mozhna odnoznachno podati yak dobutok elementa z G displaystyle G nbsp ta elementa z H displaystyle H nbsp I G displaystyle G nbsp i H displaystyle H nbsp ye normalnimi v P displaystyle P nbsp Napivpryamij dobutok G displaystyle G nbsp i H displaystyle H nbsp otrimuyut oslablennyam tretoyi umovi tak sho tilki odna z dvoh pidgrup G displaystyle G nbsp H displaystyle H nbsp maye buti normalnoyu Otrimanij dobutok yak i ranishe skladayetsya z uporyadkovanih par g h displaystyle g h nbsp ale z trohi skladnishim pravilom mnozhennya Takozh mozhna povnistyu poslabiti tretyu umovu ne vimagayuchi vid zhodnoyi z pidgrup normalnosti U comu vipadku grupu P displaystyle P nbsp nazivayut dobutkom Zappi Sepa en grup G displaystyle G nbsp i H displaystyle H nbsp Vilni dobutki Redaguvati Vilnij dobutok grup G displaystyle G nbsp i H displaystyle H nbsp sho zazvichaj poznachayut yak G H displaystyle G H nbsp shozhij na pryamij dobutok za vinyatkom togo sho pidgrupi G displaystyle G nbsp i H displaystyle H nbsp grupi G H displaystyle G H nbsp ne musyat komutuvati A same yaksho G S G R G displaystyle G langle S G R G rangle nbsp i H S H R H displaystyle H langle S H R H rangle nbsp ye zadannyami G displaystyle G nbsp i H displaystyle H nbsp to G H S G S H R G R H displaystyle G H langle S G cup S H R G cup R H rangle nbsp Na vidminu vid pryamogo dobutku elementiv vilnogo dobutku ne mozhna predstaviti vporyadkovanimi parami Do togo zh vilnij dobutok bud yakih dvoh netrivialnih grup neskinchennij Divno ale vilnij dobutok ye kodobutkom u kategoriyi grup Pidpryami dobutki Redaguvati Yaksho G displaystyle G nbsp i H displaystyle H nbsp grupi to pidpryamim dobutkom G displaystyle G nbsp i H displaystyle H nbsp ye bud yaka pidgrupa G H displaystyle G times H nbsp yaka vidobrazhayetsya syur yektivno v G displaystyle G nbsp i H displaystyle H nbsp pid vplivom gomomorfizmiv proyekciyi Zgidno z lemoyu Gursa en kozhen pidpryamij dobutok rozsharovanij Rozsharovani dobutki Redaguvati Nehaj G displaystyle G nbsp H displaystyle H nbsp i Q displaystyle Q nbsp grupi i nehaj f G Q displaystyle varphi G rightarrow Q nbsp i x H Q displaystyle chi H rightarrow Q nbsp gomomorfizmi Rozsharovanij dobutok G displaystyle G nbsp i H displaystyle H nbsp nad Q displaystyle Q nbsp yavlyaye soboyu taku pidgrupu G H displaystyle G times H nbsp G Q H g h G H f g x h displaystyle G times Q H g h in G times H varphi g chi h nbsp Yaksho f G Q displaystyle varphi G rightarrow Q nbsp i x H Q displaystyle chi H rightarrow Q nbsp epimorfizmi to ce pidpryamij dobutok Primitki Redaguvati Gallian Joseph A 2010 Contemporary Abstract Algebra vid 7 Cengage Learning s 157 ISBN 9780547165097 Literatura RedaguvatiArtin Michael 1991 Algebra Prentice Hall ISBN 978 0 89871 510 1 Herstein Israel Nathan 1996 Abstract algebra vid 3rd Upper Saddle River NJ Prentice Hall Inc ISBN 978 0 13 374562 7 MR 1375019 Herstein Israel Nathan 1975 Topics in algebra vid 2nd Lexington Mass Xerox College Publishing MR 0356988 Lang Serge 2002 Algebra Graduate Texts in Mathematics vol 211 Revised third ed New York Springer Verlag ISBN 978 0 387 95385 4 MR 1878556 Lang Serge 2005 Undergraduate Algebra vid 3rd Berlin New York Springer Verlag ISBN 978 0 387 22025 3 Robinson Derek John Scott 1996 A course in the theory of groups Berlin New York Springer Verlag ISBN 978 0 387 94461 6 Otrimano z https uk wikipedia org w index php title Pryamij dobutok grup amp oldid 40192699