www.wikidata.uk-ua.nina.az
Prostir Lobachevskogo abo giperbolichnij prostir ce prostir iz postijnoyu negativnoyu krivinoyu Dvovimirnim prostorom Lobachevskogo ye ploshina Lobachevskogo Perspektivna proyekciya dodekaedralnogo zapovnennya H3 en Chotiri dodekaedri dotikayutsya v kozhnomu rebri a visim dotikayutsya v kozhnij vershini podibno kubam u kubichnomu zapovnenni E3Vid yemna krivina vidriznyaye prostir Lobachevskogo vid evklidovogo prostoru z nulovoyu krivinoyu opisuvanogo evklidovoyu geometriyeyu i vid sferi prostoru z postijnoyu dodatnoyu krivinoyu opisuvanogo geometriyeyu Rimana n vimirnij prostir Lobachevskogo zazvichaj poznachayut H n displaystyle mathbb H n abo L n displaystyle text L n Zmist 1 Viznachennya 2 Modeli giperbolichnogo prostoru 2 1 Giperboloyidna model 2 2 Model Klyajna 2 3 Model Puankare v kuli 2 4 Model Puankare u verhnij pivploshini 3 Giperbolichni mnogovidi 3 1 Rimanovi poverhni 4 Div takozh 5 Primitki 6 LiteraturaViznachennya Redaguvatin vimirnim prostorom Lobachevskogo nazivayut odnozv yaznij n vimirnij rimaniv mnogovid iz postijnoyu vid yemnoyu sekcijnoyu krivinoyu Modeli giperbolichnogo prostoru RedaguvatiProstir Lobachevskogo yakij nezalezhno doslidzhuvali Mikola Ivanovich Lobachevskij i Yanosh Boyayi ye geometrichnim prostorom analogichnim evklidovomu prostoru ale v nomu aksioma paralelnosti Evklida ne vikonuyetsya Zamist cogo aksioma paralelnosti zaminyuyetsya takoyu alternativnoyu aksiomoyu v prostori rozmirnosti dva Yaksho dano yakus pryamu L i tochku P sho ne lezhit na pryamij L to isnuye shonajmenshe dvi rizni pryami sho prohodyat cherez P yaki ne peretinayut L Zvidsi viplivaye teorema sho isnuye neskinchenno bagato takih pryamih yaki prohodyat cherez P Aksioma ne viznachaye odnoznachno ploshinu Lobachevskogo z tochnistyu do ruhu oskilki potribno zadati postijnu krivinu K lt 0 Odnak aksioma viznachaye ploshinu z tochnistyu do gomotetiyi tobto z tochnistyu do peretvoren yaki bez povorotu zminyuyut vidstani na deyakij postijnij mnozhnik Yaksho mozhna vibrati vidpovidnij masshtab dovzhini to mozhna pripustiti bez vtrati zagalnosti sho K 1 Mozhna pobuduvati modeli prostoriv Lobachevskogo yaki mozhna vklasti v ploski tobto evklidovi prostori Zokrema z isnuvannya modeli prostoru Lobachevskogo v evklidovomu viplivaye sho aksioma paralelnosti logichno nezalezhna vid inshih aksiom evklidovoyi geometriyi Isnuye kilka vazhlivih modelej prostoru Lobachevskogo model Klyajna giperboloyidna model model Puankare v kuli i model Puankare u verhnij pivploshini Vsi ci modeli mayut odnu i tu zh geometriyu v tomu sensi sho bud yaki dvi z nih pov yazani peretvorennyam yake zberigaye vsi geometrichni vlastivosti opisuvanogo nimi giperbolichnogo prostoru Giperboloyidna model Redaguvati Dokladnishe Giperboloyidna modelGiperboloyidna model realizuye prostir Lobachevskogo yak giperboloyid u R n 1 x 0 x n x i R i 0 1 n displaystyle mathbb R n 1 x 0 dots x n x i in mathbb R i 0 1 n nbsp Giperboloyid ye geometrichnim miscem H n displaystyle mathbb H n nbsp tochok koordinati yakih zadovolnyayut rivnyannyu x 0 2 x 1 2 x n 2 1 x 0 gt 0 displaystyle x 0 2 x 1 2 cdots x n 2 1 quad x 0 gt 0 nbsp U cij modeli pryama tobto po suti geodezichna ce kriva utvorena peretinom H n displaystyle mathbb H n nbsp z ploshinoyu sho prohodit cherez pochatok koordinat u R n 1 displaystyle mathbb R n 1 nbsp Giperboloyidna model tisno pov yazana z geometriyeyu prostoru Minkovskogo Kvadratichna forma Q x x 0 2 x 1 2 x 2 2 x n 2 displaystyle Q x x 0 2 x 1 2 x 2 2 cdots x n 2 nbsp yaka viznachaye giperboloyid dozvolyaye zadati vidpovidnu bilinijnu formu B x y Q x y Q x Q y 2 x 0 y 0 x 1 y 1 x n y n displaystyle B x y Q x y Q x Q y 2 x 0 y 0 x 1 y 1 cdots x n y n nbsp Prostir R n 1 displaystyle mathbb R n 1 nbsp zabezpechenij bilinijnoyu formoyu B ye n 1 vimirnim prostorom Minkovskogo R n 1 displaystyle mathbb R n 1 nbsp Mozhna zadati vidstan na giperboloyidnij modeli viznachivshi 1 vidstan mizh dvoma tochkami x i y na H n displaystyle mathbb H n nbsp yak d x y arch B x y displaystyle d x y operatorname arch B x y nbsp Cya funkciya ye metrikoyu oskilki dlya neyi vikonuyutsya aksiomi metrichnogo prostoru Vona zberigayetsya pid diyeyu ortohronnoyi grupi Lorenca O n 1 na R n 1 displaystyle mathbb R n 1 nbsp Otzhe ortohronna grupa Lorenca diye na H n displaystyle mathbb H n nbsp yak grupa avtomorfizmiv sho zberigayut vidstan tobto ruhiv Model Klyajna Redaguvati Alternativnoyu modellyu geometriyi Lobachevskogo ye pevna oblast u proyektivnomu prostori Kvadratichna forma Minkovskogo Q viznachaye pidmnozhinu U n R P n displaystyle U n subset mathbb R mathbf P n nbsp zadanu yak mnozhina tochok dlya yakih Q x gt 0 displaystyle Q x gt 0 nbsp v odnoridnih koordinatah x Oblast U n displaystyle U n nbsp ye modellyu Klyajna prostoru Lobachevskogo Pryamimi v cij modeli ye vidkriti vidrizki ob yemnogo proyektivnogo prostoru yaki lezhat v U n displaystyle U n nbsp Vidstan mizh dvoma tochkami x i y v U n displaystyle U n nbsp viznachayetsya yak d x y arch B x y Q x Q y displaystyle d x y operatorname arch left frac B x y sqrt Q x Q y right nbsp Cya vidstan cilkom viznachena na proyektivnomu prostori oskilki chislo B x y Q x Q y displaystyle tfrac B x y sqrt Q x Q y nbsp ne zminyuyetsya pri zmini vsih koordinat na odin i toj samij mnozhnik z tochnistyu do yakogo j viznacheno odnoridni koordinati Cya model pov yazana z giperboloyidnoyu modellyu tak Kozhna tochka x U n displaystyle x in U n nbsp vidpovidaye pryamij L x displaystyle L x nbsp cherez pochatok koordinat v R n 1 displaystyle mathbb R n 1 nbsp za viznachennyam proyektivnogo prostoru Cya pryama peretinaye giperboloyid H n displaystyle mathbb H n nbsp v yedinij tochci I navpaki cherez bud yaku tochku na H n displaystyle mathbb H n nbsp prohodit yedina pryama sho prohodit cherez pochatok koordinat sho ye tochkoyu v proektivnomu prostori Cya vidpovidnist viznachaye biyekciyu mizh U n displaystyle U n nbsp i H n displaystyle mathbb H n nbsp Ce izometriya oskilki obchislennya d x y uzdovzh Q x Q y 1 displaystyle Q x Q y 1 nbsp vidtvoryuye viznachennya vidstani v giperboloyidnij modeli Model Puankare v kuli Redaguvati Ye dvi tisno pov yazani modeli geometriyi Lobachevskogo v evklidovij model Puankare v kuli i model Puankare u verhnij pivploshini Model kuli vinikaye zi stereografichnoyi proyekciyi giperboloyida v R n 1 displaystyle mathbb R n 1 nbsp u giperploshinu x 0 0 displaystyle x 0 0 nbsp Detalnishe nehaj S bude tochkoyu v R n 1 displaystyle mathbb R n 1 nbsp z koordinatami 1 0 0 0 pivdennim polyusom dlya stereografichnoyi proyekciyi Dlya kozhnoyi tochki P na giperboloyidi H n displaystyle mathbb H n nbsp nehaj P bude yedinoyu tochkoyu peretiniv pryamoyi SP iz ploshinoyu x 0 0 displaystyle x 0 0 nbsp Ce vstanovlyuye biyektivne vidobrazhennya H n displaystyle mathbb H n nbsp v odinichnu kulyu B n x 1 x n x 1 2 x n 2 lt 1 displaystyle B n x 1 ldots x n mid x 1 2 cdots x n 2 lt 1 nbsp v ploshini x0 0 Geodezichni v cij modeli ye pivkolami perpendikulyarnimi do mezhi sferi B n displaystyle B n nbsp Izometriyi kuli utvoryuyutsya sferichnimi inversiyami vidnosno gipersfer perpendikulyarnih mezhi Model Puankare u verhnij pivploshini Redaguvati Dokladnishe Model Puankare u verhnij pivploshiniModel verhnoyi pivploshini vihodit z modeli Puankare v kuli pri zastosuvanni inversiya z centrom na mezhi modeli Puankare B n displaystyle B n nbsp div vishe i radiusom rivnim podvoyenomu radiusu modeli Ce peretvorennya vidobrazhaye kola v kola i pryami v ostannomu vipadku yaksho kolo prohodit cherez centr inversiyi i bilsh togo ce konformne vidobrazhennya Otzhe v modeli verhnoyi pivploshini geodezichnimi ye pryami i piv kola perpendikulyarni do mezhi giperploshini Giperbolichni mnogovidi RedaguvatiBud yakij povnij zv yaznij odnozv yaznij mnogovid staloyi vid yemnoyi krivini 1 izometrichnij prostoru Lobachevskogo H n displaystyle mathbb H n nbsp Yak naslidok universalnim nakrittyam bud yakogo zamknutogo mnogovidu M staloyi vid yemnoyi krivini 1 tobto giperbolichnogo mnogovidu en ye H n displaystyle mathbb H n nbsp Todi bud yakij takij mnogovid M mozhna zapisati yak H n G displaystyle mathbb H n Gamma nbsp de G displaystyle Gamma nbsp ye diskretnoyu grupoyu izometrij bez krutinnya na H n displaystyle mathbb H n nbsp Tobto G displaystyle Gamma nbsp ye gratkoyu v SO n 1 Rimanovi poverhni Redaguvati Dokladnishe Rimanova poverhnyaDvovimirni giperbolichni poverhni mozhna takozh rozumiti yak rimanovi poverhni Zgidno z teoremoyu pro uniformizaciyu bud yaka rimanova poverhnya ye eliptichnoyu parabolichnoyu abo giperbolichnoyu Bilshist giperbolichnih poverhon mayut netrivialnu fundamentalnu grupu p 1 G displaystyle pi 1 Gamma nbsp Grupi yaki vinikayut takim chinom nazivayutsya fuksovimi Faktor prostir H 2 G displaystyle mathbb H 2 Gamma nbsp verhnoyi pivploshini u fundamentalnij grupi nazivayut fuksovoyu modellyu giperbolichnoyi poverhni Verhnya pivploshina Puankare takozh giperbolichna ale odnozv yazna i ne kompaktna Tomu vona ye universalnim nakrittyam inshih giperbolichnih poverhon Analogichnoyu pobudovoyu Dlya trivimirnih giperbolichnih poverhon ye model Klyajna Div takozh RedaguvatiZhorstkist Mostova Giperbolichnij mnogovid en Giperbolichnij 3 mnogovid en Formula Murakami Yano en Psevdosfera Poverhnya DiniPrimitki Redaguvati Cej viraz nagaduye hordalnu metriku na sferi v yakij viraz analogichnij ale zamist giperbolichnih funkcij vikoristovuyutsya trigonometrichni Literatura RedaguvatiNorbert A Campo Athanase Papadopoulos Notes on hyperbolic geometry Strasbourg Master class on Geometry Zurich European Mathematical Society EMS 2012 T 18 S 1 182 IRMA Lectures in Mathematics and Theoretical Physics ISBN 978 3 03719 105 7 DOI 10 4171 105 John G Ratcliffe Foundations of hyperbolic manifolds New York Berlin Springer Verlag 1994 William F Reynolds Hyperbolic Geometry on a Hyperboloid The American Mathematical Monthly 1993 Iss 100 16 September P 442 455 Joseph A Wolf Spaces of constant curvature 1967 S 67 Hyperbolic Voronoi diagrams made easy Frank Nielsen Arhivovano 24 zhovtnya 2021 u Wayback Machine Otrimano z https uk wikipedia org w index php title Prostir Lobachevskogo amp oldid 36391680