www.wikidata.uk-ua.nina.az
Model Puankare u verhnij pivploshini ce verhnya polovina ploshini x y y gt 0 x y R displaystyle x y mid y gt 0 x y in mathbb R poznachuvana dali yak H razom z metrikoyu metrikoyu Puankare yaka robit yiyi modellyu dvovimirnoyi giperbolichnoyi geometriyi geometriyi Lobachevskogo Paralelni promeni v modeli Puankare u verhnij pivploshiniEkvivalentno model Puankare u verhnij pivploshini inodi opisuyut yak kompleksnu ploshinu v yakij uyavna komponenta koordinata y zgadana vishe dodatna Model Puankare u verhnij pivploshini nosit im ya Anri Puankare ale yiyi stvoriv Eudzhenio Beltrami yakij vikoristav yiyi razom z modellyu Klyajna i modellyu Puankare v kruzi shob pokazati sho giperbolichna geometriya nastilki zh nesuperechliva en naskilki nesuperechliva evklidova geometriya Cya model konformna sho oznachaye sho kuti vimiryani v tochci modeli dorivnyuyut kutam na giperbolichnij ploshini Peretvorennya Keli daye izometriyu mizh modellyu v pivploshini i modellyu Puankare v kruzi Cyu model mozhna uzagalniti do modeli n 1 vimirnogo giperbolichnogo prostoru zaminivshi dijsne chislo x vektorom u n vimirnomu evklidovomu vektornomu prostori Zmist 1 Metrika 1 1 Obchislennya vidstani 2 Osoblivi tochki i krivi 2 1 Korotkij oglyad evklidovih kil 3 Pobudovi za dopomogoyu cirkulya ta linijki 3 1 Pobudova giperbolichnoyi pryamoyi sho prohodit cherez dvi tochki 3 2 Pobudova kola z zadanim centrom sho prohodit cherez tochku 3 3 Znajti centr zadanogo giperbolichnogo kola 4 Grupi simetriyi 5 Izometrichna simetriya 6 Geodezichni 7 Model u trivimirnih prostorah 8 Model v n vimirnomu prostori 9 Div takozh 10 Primitki 11 LiteraturaMetrika RedaguvatiMetrika modeli v pivploshini x y y gt 0 displaystyle langle x y rangle y gt 0 nbsp maye viglyad d s 2 d x 2 d y 2 y 2 displaystyle ds 2 frac dx 2 dy 2 y 2 nbsp de s displaystyle s nbsp vimiryuye dovzhinu vzdovzh mozhlivo krivoyi liniyi Pryami na giperbolichnij ploshini geodezichni dlya cogo metrichnogo tenzora tobto krivi sho minimizuyut vidstan podayutsya na cij modeli dugami kil perpendikulyarnimi do osi x displaystyle x nbsp pivkola z centrom na osi x displaystyle x nbsp i vertikalnimi promenyami perpendikulyarnimi do osi x displaystyle x nbsp Obchislennya vidstani Redaguvati U zagalnomu vipadku vidstan mizh dvoma tochkami vimiryuyetsya v cij metrici vzdovzh geodezichnih i dorivnyuye dist x 1 y 1 x 2 y 2 arch 1 x 2 x 1 2 y 2 y 1 2 2 y 1 y 2 2 arsh 1 2 x 2 x 1 2 y 2 y 1 2 y 1 y 2 2 ln x 2 x 1 2 y 2 y 1 2 x 2 x 1 2 y 2 y 1 2 2 y 1 y 2 displaystyle begin aligned operatorname dist langle x 1 y 1 rangle langle x 2 y 2 rangle amp operatorname arch 1 frac x 2 x 1 2 y 2 y 1 2 2y 1 y 2 amp 2 operatorname arsh frac 1 2 sqrt frac x 2 x 1 2 y 2 y 1 2 y 1 y 2 amp 2 ln frac sqrt x 2 x 1 2 y 2 y 1 2 sqrt x 2 x 1 2 y 2 y 1 2 2 sqrt y 1 y 2 end aligned nbsp de arch i arsh ce oberneni giperbolichni funkciyi arsh x ln x x 2 1 arch x ln x x 2 1 x 1 displaystyle operatorname arsh x ln left x sqrt x 2 1 right operatorname arch x ln left x sqrt x 2 1 right x geq 1 nbsp dd Deyaki chastkovi vipadki mozhna sprostiti dist x y 1 x y 2 ln y 2 y 1 ln y 2 ln y 1 displaystyle operatorname dist langle x y 1 rangle langle x y 2 rangle left ln frac y 2 y 1 right ln y 2 ln y 1 nbsp 1 dist x 1 y x 2 y arch 1 x 2 x 1 2 2 y 2 2 arsh x 2 x 1 2 y displaystyle operatorname dist langle x 1 y rangle langle x 2 y rangle operatorname arch 1 frac x 2 x 1 2 2y 2 2 operatorname arsh frac x 2 x 1 2y nbsp dist x r x r sin ϕ r cos ϕ arsh tan ϕ arch 1 cos ϕ ln 1 sin ϕ cos ϕ displaystyle operatorname dist langle x r rangle langle x pm r sin phi r cos phi rangle operatorname arsh tan phi operatorname arch frac 1 cos phi ln frac 1 sin phi cos phi nbsp Inshim sposobom obchislennya vidstani mizh dvoma tochkami ye dovzhina dugi vzdovzh evklidovogo pivkola dist A B ln B A A B A A B B displaystyle operatorname dist AB left ln left frac BA infty AB infty AA infty BB infty right right nbsp de A B displaystyle A infty B infty nbsp tochki pivkola kinci sho lezhat na granichnij pryamij a P Q displaystyle PQ nbsp ce evklidova dovzhina segmenta kola sho z yednuye tochki P displaystyle P nbsp i Q displaystyle Q nbsp v cij modeli Osoblivi tochki i krivi RedaguvatiNeskinchenno viddaleni tochki v modeli Puankare u verhnij pivploshini buvayut dvoh tipiv tochki na osi x displaystyle x nbsp odna uyavna tochka na y displaystyle y infty nbsp yaka ye neskinchenno viddalenoyu tochkoyu cherez yaku prohodyat vsi ortogonalni do osi x displaystyle x nbsp pryami Pryami geodezichni najkorotshi shlyahi mizh tochkami roztashovanimi na nij modelyuyutsya pivkolami kinci yakih lezhat na osi x displaystyle x nbsp Vertikalnimi promenyami ortogonalnimi osi x displaystyle x nbsp Kola krivi rivnoviddaleni vid centralnoyi tochki z centrom u tochci x y displaystyle x y nbsp i radiusom r displaystyle r nbsp modelyuyutsya kolami z centrom x y cosh r displaystyle x y cosh r nbsp i radiusom y sinh r displaystyle y sinh r nbsp dd Gipercikl abo ekvidistanta kriva viddalena vid giperbolichnoyi pryamoyi yiyi osi abo bazi modelyuyetsyaabo dugoyu kola yaka peretinaye vis x displaystyle x nbsp u tih samih dvoh neskinchenno viddalenih tochkah sho j pivkolo yaka ye bazoyu ale maye z vissyu x displaystyle x nbsp gostrij abo tupij ne pryamij kut abo pryamoyu yaka peretinaye vis x displaystyle x nbsp u tij samij tochci sho j vertikalnij promin yakij modelyuye bazu ale ne perpendikulyarnoyu do osi x displaystyle x nbsp Oricikl mezha simejstva kil zi spilnoyu dotichnoyu sho prohodyat cherez fiksovanu tochku i lezhat po odin bik vid ciyeyi dotichnoyi yaka utvoryuyetsya pri pryamuvanni radiusa cih kil do neskinchennosti modelyuyetsyaabo kolom dotichnim do osi x displaystyle x nbsp bez neskinchenno viddalenoyi tochki peretinu yaka ye centrom abo kolom paralelnim x displaystyle x nbsp u vipadku yaksho centrom ye neskinchenno viddalena tochka z y displaystyle y infty nbsp Korotkij oglyad evklidovih kil Redaguvati Nehaj dano evklidove kolo z centrom x e y e displaystyle x e y e nbsp i radiusom r e displaystyle r e nbsp Yaksho evklidove kolo povnistyu lezhit u verhnij pivploshini vono predstavlyaye giperbolichne kolo z centrom x e y e 2 r e 2 displaystyle x e sqrt y e 2 r e 2 nbsp i radiusom 1 2 ln y e r e y e r e displaystyle frac 1 2 ln left frac y e r e y e r e right nbsp Yaksho evklidove kolo povnistyu lezhit u verhnij pivploshini i dotikayetsya do mezhi vona predstavlyaye oricikl iz centrom u neskinchenno viddalenij tochci z x e 0 displaystyle x e 0 nbsp Yaksho kolo peretinaye mezhu ortogonalno y e 0 displaystyle y e 0 nbsp vono predstavlyaye giperbolichnu pryamu Yaksho kolo peretinaye mezhu ne ortogonalno vono predstavlyaye gipercikl Pobudovi za dopomogoyu cirkulya ta linijki RedaguvatiTut pokazano yak u modeli Puankare vikonuvati pobudovi za dopomogoyu cirkulya ta linijki 2 Napriklad yak pobuduvati v evklidovij pivploshini pivkolo yake modelyuye giperbolichnu pryamu sho prohodit cherez dvi tochki Pobudova giperbolichnoyi pryamoyi sho prohodit cherez dvi tochki Redaguvati nbsp Pobudova pryamoyi chervona sho prohodit cherez dvi tochki A i B M seredina vidrizka O centr otrimanogo kola giperbolichnoyi pryamoyi Buduyemo vidrizok sho z yednuye dvi tochki Buduyemo perpendikulyar sho prohodit cherez seredinu vidrizka Znahodimo peretin cogo perpendikulyara z vissyu x displaystyle x nbsp Buduyemo kolo z centrom u tochci peretinu sho prohodit cherez dani tochki tilki verhnyu chastinu vishe vid x displaystyle x nbsp Yaksho ci dvi tochki lezhat na vertikalnomu promeni buduyemo jogo vid osi x displaystyle x nbsp cej promin i bude shukanoyu pryamoyu Pobudova kola z zadanim centrom sho prohodit cherez tochku Redaguvati nbsp Pobudova kola z centrom v A sho prohodit cherez tochku B vipadok u yakomu tochki A i B ne lezhat na odnij vertikalnij pryamij Pryama sho prohodit cherez A i B buduyetsya yak vishe D evklidiv centr shukanogo kola giperbolichnim centrom togo zh kola ye tochka A Pobuduyemo giperbolichne kolo z centrom A sho prohodit cherez tochku B Yaksho tochki A i B ne lezhat na vertikalnij pryamij Buduvati giperbolichnu pryamu pivkolo sho prohodit cherez dvi zadani tochki yak u poperednomu vipadku Buduyemo dotichnu do cogo pivkola v tochci B Provodimo perpendikulyar do osi x displaystyle x nbsp cherez tochku A Znahodimo peretin cih dvoh pryamih shob otrimati centr D modelnogo kola Buduyemo modelne kolo z centrom u D sho prohodit cherez zadanu tochku B Yaksho tochki A i B lezhat na vertikalnij pryamij i tochka A lezhit vishe vid tochki B Buduyemo kolo navkolo peretinu vertikalnoyi pryamoyi ta osi x yake prohodit cherez tochku A Buduyemo gorizontalnu pryamu cherez tochku B Buduyemo dotichnu do kola v tochci peretinu z ciyeyu gorizontalnoyu pryamoyu Seredina vidrizka mizh peretinom dotichnoyi z vertikalnoyu pryamoyu i B ye centrom modelnogo kola Buduyemo modelnogo kolo navkolo centru sho prohodit cherez tochku B Yaksho tochki A i B lezhat na vertikalnij osi i centr A lezhit nizhche vid tochki B Buduyemo kolo navkolo peretinu vertikalnoyi pryamoyi ta osi x yake prohodit cherez zadanij centr A Buduyemo dotichnu do kola sho prohodit cherez tochku B Buduyemo gorizontalnu pryamu sho prohodit cherez tochku dotiku i znahodimo yiyi peretin z vertikalnoyu pryamoyu Serednya tochka mizh otrimanoyu tochkoyu peretinu i tochkoyu ye centrom modelnogo kola Buduyemo modelne kolo z novim centrom yake prohodit cherez tochku B Znajti centr zadanogo giperbolichnogo kola Redaguvati Opuskayemo perpendikulyar p z evklidovogo centra kola na vis x Nehaj tochka q ye osnovoyu cogo perpendikulyara na osi x Buduyemo pryamu dotichnu do kola sho prohodit cherez tochku q Buduyemo pivkolo h z centrom u tochci q sho prohodit cherez tochku dotiku Giperbolichnim centrom ye tochka v yakij h i p peretinayutsya 3 Grupi simetriyi Redaguvati nbsp Zirchasta pravilna semikutna mozayika modeliProyektivna linijna grupa P G L 2 C displaystyle rm PGL 2 mathbb C nbsp diye na rimanovij sferi peretvorennyami Mebiusa Pidgrupa yaka vidobrazhaye verhnyu polovinu ploshini H displaystyle mathbb H nbsp u sebe ce P S L 2 R displaystyle rm PSL 2 mathbb R nbsp sho skladayetsya z peretvoren z dijsnimi koeficiyentami yaka diye tranzitivno j izometrichno na verhnij polovini ploshini sho robit yiyi odnoridnim prostorom Ye chotiri tisno pov yazani grupi Li yaki diyut na verhnyu polovinu ploshini drobovo linijnimi peretvorennyami sho zberigayut giperbolichnu vidstan Specialna linijna grupa SL 2 R yaka skladayetsya z 2h2 matric iz dijsnimi elementami i viznachnikom 1 Zauvazhimo sho dovoli chasto zgaduyut S L 2 R displaystyle rm SL 2 mathbb R nbsp mayuchi na uvazi P S L 2 R displaystyle rm PSL 2 mathbb R nbsp Grupa S L 2 R displaystyle rm S L 2 mathbb R nbsp sho skladayetsya z 2h2 matric z dijsnimi elementami z viznachnikom 1 abo 1 Zauvazhimo sho S L 2 R displaystyle rm SL 2 mathbb R nbsp ye pidgrupoyu ciyeyi grupi Proyektivna specialna linijna grupa PSL 2 R S L 2 R E displaystyle rm SL 2 mathbb R left pm E right nbsp sho skladayetsya z matric iz S L 2 R displaystyle rm SL 2 mathbb R nbsp za modulem odinichnoyi matrici tobto ce faktorgrupa za grupoyu sho skladayetsya z E i E Grupa P S L 2 R S L 2 R E P G L 2 R displaystyle rm PS L 2 mathbb R rm S L 2 mathbb R left pm E right rm PGL 2 mathbb R nbsp takozh ye proyektivnoyu grupoyu i takozh za modulem E displaystyle pm E nbsp P S L 2 R displaystyle rm PSL 2 mathbb R nbsp mistitsya v nij yak normalna pidgrupa z indeksom dva inshij klas sumizhnosti skladayetsya z matric 2h2 z dijsnimi elementami i viznachnikom 1 takozh za modulem E displaystyle pm E nbsp Zv yazok cih grup z modellyu Puankare takij Grupa vsih ruhiv H displaystyle mathbb H nbsp inodi poznachuvana yak I s o m H displaystyle Isom mathbb H nbsp izomorfna P S L 2 R displaystyle rm PS L 2 mathbb R nbsp Vona vklyuchaye yak ruhi sho zberigayut oriyentaciyu tak i ruhi sho yiyi zminyuyut Vidobrazhennya sho zminyuye oriyentaciyu dzerkalne vidobrazhennya ce z z displaystyle z rightarrow overline z nbsp Grupa ruhiv sho zberigayut oriyentaciyu H displaystyle mathbb H nbsp inodi poznachuvana yak I s o m H displaystyle Isom mathbb H nbsp izomorfna P S L 2 R displaystyle rm PSL 2 mathbb R nbsp Vazhlivimi pidgrupami grupi izometriyi ye fuksovi grupi Chasto rozglyadayetsya modulyarnaya grupa S L 2 Z displaystyle rm SL 2 mathbb Z nbsp yaka vazhliva v dvoh aspektah Po pershe ce grupa linijnih peretvoren ploshini yaki zberigayut gratku tochok Takim chinom funkciyi periodichni na kvadratnij gratci taki yak modulyarni formi i eliptichna funkciya uspadkovuyut simetriyu gratki S L 2 Z displaystyle rm SL 2 mathbb Z nbsp Po druge S L 2 Z displaystyle rm SL 2 mathbb Z nbsp ye zvichajno pidgrupoyu S L 2 R displaystyle rm SL 2 mathbb R nbsp a otzhe maye giperbolichnu povedinku zakladenu v nij Zokrema S L 2 Z displaystyle rm SL 2 mathbb Z nbsp mozhna vikoristati dlya zamoshennya giperbolichnoyi ploshini komirkami rivnoyi ploshi Izometrichna simetriya RedaguvatiDiya proyektivnoyi specialnoyi linijnoyi grupi P S L 2 R displaystyle rm PSL 2 mathbb R nbsp na H displaystyle mathbb H nbsp viznachayetsya yak a b c d z a z b c z d a c z 2 b d a d b c ℜ z i a d b c ℑ z c z d 2 displaystyle left begin matrix a amp b c amp d end matrix right cdot z frac az b cz d ac z 2 bd ad bc Re z i ad bc Im z over cz d 2 nbsp Zauvazhimo sho diya tranzitivna oskilki dlya bud yakih z 1 z 2 H displaystyle z 1 z 2 in mathbb H nbsp isnuye element g P S L 2 R displaystyle g in rm PSL 2 mathbb R nbsp takij sho g z 1 z 2 displaystyle gz 1 z 2 nbsp Takozh yaksho dlya vsih z displaystyle z nbsp iz H displaystyle mathbb H nbsp g z z displaystyle gz z nbsp to g e displaystyle g e nbsp Stabilizator abo stacionarna pidgrupa elementa z displaystyle z nbsp iz H displaystyle mathbb H nbsp ce mnozhina g P S L 2 R displaystyle g in rm PSL 2 mathbb R nbsp yaki zalishayut z displaystyle z nbsp nezminnim g z z displaystyle gz z nbsp Stabilizator i displaystyle i nbsp grupa obertannya S O 2 cos 8 sin 8 sin 8 cos 8 8 R displaystyle rm SO 2 left left begin matrix cos theta amp sin theta sin theta amp cos theta end matrix right theta in mathbf R right nbsp Oskilki bud yakij element z displaystyle z nbsp iz H displaystyle mathbb H nbsp vidobrazhayetsya v i deyakim elementom P S L 2 R displaystyle rm PSL 2 mathbb R nbsp ce oznachaye sho stacionarna grupa bud yakogo elementa z displaystyle z nbsp izomorfna S O 2 displaystyle rm SO 2 nbsp Takim chinom H P S L 2 R S O 2 displaystyle mathbb H rm PSL 2 mathbb R rm SO 2 nbsp Takozh rozsharovannya dotichnih vektoriv odinichnoyi dovzhini na verhnij polovini ploshini zvane odinichnim dotichnim rozsharuvannyam en izomorfne P S L 2 R displaystyle rm PSL 2 mathbb R nbsp Verhnya polovina ploshini zamoshuyetsya vilnimi regulyarnimi mnozhinami en modulyarnoyu grupoyu S L 2 Z displaystyle rm SL 2 mathbb Z nbsp Geodezichni RedaguvatiGeodezichni dlya metrichnogo tenzora ye pivkolami z centrami na osi x displaystyle x nbsp i vertikalnimi promenyami z pochatkom na osi x displaystyle x nbsp Geodezichni zi shvidkistyu odinicya sho jdut vertikalno cherez tochku i displaystyle i nbsp zadayut virazom g t e t 2 0 0 e t 2 i i e t displaystyle gamma t left begin matrix e t 2 amp 0 0 amp e t 2 end matrix right cdot i ie t nbsp Oskilki P S L 2 R displaystyle rm PSL 2 mathbb R nbsp diye tranzitivno na verhnij polovini ploshini shlyahom izometrij cya geodezichna vidobrazhayetsya v inshi geodezichni za dopomogoyu diyi P S L 2 R displaystyle rm PSL 2 mathbb R nbsp Takim chinom geodezichna zagalnogo viglyadu z odinichnoyu shvidkistyu zadayetsya yak g t a b c d e t 2 0 0 e t 2 i a i e t b c i e t d displaystyle gamma t left begin matrix a amp b c amp d end matrix right left begin matrix e t 2 amp 0 0 amp e t 2 end matrix right cdot i frac aie t b cie t d nbsp Ce daye povnij opis geodezichnogo potoku rozsharovannya dotichnih odinichnoyi dovzhini kompleksne linijne rozsharovannya en na verhnij polovini ploshini Model u trivimirnih prostorah RedaguvatiMetrika modeli u pivprostori x y z z gt 0 displaystyle langle x y z rangle z gt 0 nbsp zadayetsya virazom d s 2 d x 2 d y 2 d z 2 z 2 displaystyle ds 2 frac dx 2 dy 2 dz 2 z 2 nbsp de s vimiryuye vidstan uzdovzh mozhlivo krivoyi liniyi Pryami v giperbolichnomu prostori geodezichni dlya cogo metrichnogo tenzora tobto krivi yaki minimizuyut vidstan podayutsya v cij modeli dugami kil sho vihodyat perpendikulyarno vid ploshini z 0 displaystyle z 0 nbsp pivkola centri yakih lezhat na ploshini z 0 displaystyle z 0 nbsp i promenyami sho vihodyat perpendikulyarno vid ploshini z 0 displaystyle z 0 nbsp Vidstan mizh dvoma tochkami vimiryuyetsya v cij metrici vzdovzh geodezichnoyi i dorivnyuye dist x 1 y 1 z 1 x 2 y 2 z 2 arch 1 x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 2 z 1 z 2 displaystyle operatorname dist langle x 1 y 1 z 1 rangle langle x 2 y 2 z 2 rangle operatorname arch left 1 frac x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 2z 1 z 2 right nbsp 2 arsh x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 2 z 1 z 2 displaystyle 2 operatorname arsh left frac sqrt x 2 x 1 2 y 2 y 1 2 z 2 z 1 2 2 sqrt z 1 z 2 right nbsp Model v n vimirnomu prostori RedaguvatiModel mozhna uzagalniti do modeli n 1 vimirnogo prostoru Lobachevskogo zaminivshi dijsni chisla x displaystyle x nbsp vektorami v n vimirnomu evklidovomu prostori Div takozh RedaguvatiKut paralelnosti Difeomorfizm Anosova Fuksova grupa Fuksova model Giperbolichnij ruh en Model Klyajna Psevdosfera Teorema PikaPrimitki Redaguvati mathematics stackexchange Procitovano 19 veresnya 2015 Bochaca Judit Abardia Tools to work with the Half Plane model Tools to work with the Half Plane mode Arhiv originalu za 22 lyutogo 2018 Procitovano 25 chervnya 2015 Cannon Floyd Kenyon Parry 1997 s 87 Literatura RedaguvatiCannon J W Floyd W J Kenyon R Parry W R Figure 19 Constructing the hyperbolic center of a circle Hyperbolic Geometry MSRI Publications 1997 T Volume 31 Flavors of Geometry Eugenio Beltrami Teoria fondamentale degli spazi di curvatura constant Annali di Mat 1868 T 2 22 zhovtnya S 232 255 ser II Henri Poincare Theorie des Groupes Fuchsiens Acta Mathematica 1882 T 1 22 zhovtnya S 1 Persha stattya legendarnoyi seriyi pro model u verhnij pivploshini Hershel M Farkas Irwin Kra Riemann Surfaces New York Springer Verlag 1980 ISBN 0 387 90465 4 Jurgen Jost Section 2 3 Compact Riemann Surfaces New York Springer Verlag 2002 ISBN 3 540 43299 X Saul Stahl The Poincare Half Plane Jones and Bartlett 1993 ISBN 0 86720 298 X John Stillwell Numbers and Geometry NY Springer Verlag 1998 S 100 104 ISBN 0 387 98289 2 Elementarnij vstup do modeli Puankare Otrimano z https uk wikipedia org w index php title Model Puankare u verhnij pivploshini amp oldid 39519005