www.wikidata.uk-ua.nina.az
Giperbolo yidna mode l vidoma takozh yak mode l Minko vskogo abo lo renceva mode l model n vimirnoyi geometriyi Lobachevskogo v yakij kozhnu tochku predstavleno tochkoyu na verhnij poverhni S displaystyle S dvoporozhninnogo giperboloyida v n 1 vimirnomu prostori Minkovskogo a m ploshini predstavleno peretinom m 1 ploshin u prostori Minkovskogo z S Funkciya giperbolichnoyi vidstani v cij modeli zadovolnyaye prostomu virazu Giperboloyidna model n vimirnogo giperbolichnogo prostoru tisno pov yazana z modellyu Beltrami Klyajna i diskovoyu modellyu Puankare oskilki voni ye proyektivnimi modelyami v sensi sho grupa ruhiv en ye pidgrupoyu proyektivnoyi grupi Chervona duga kola ye geodezichnoyu v diskovij modeli Puankare Vona proyektuyetsya na korichnevu geodezichnu na zelenomu giperboloyidi Zmist 1 Kvadratichna forma Minkovskogo 2 Pryami 3 Ruhi 4 Istoriya 5 Div takozh 6 Primitki 7 LiteraturaKvadratichna forma Minkovskogo red Yaksho x 0 x 1 x n displaystyle x 0 x 1 dots x n nbsp ye vektorami v n 1 vimirnomu koordinatnomu prostori R n 1 displaystyle mathbb R n 1 nbsp kvadratichna forma Minkovskogo viznachayetsya yak Q x 0 x 1 x n x 0 2 x 1 2 x n 2 displaystyle Q x 0 x 1 ldots x n x 0 2 x 1 2 ldots x n 2 nbsp Vektori v R n 1 displaystyle v in mathbb R n 1 nbsp taki sho Q v 1 displaystyle Q v 1 nbsp utvoryuyut n vimirnij giperboloyid S sho skladayetsya z dvoh zv yazanih komponent abo listkiv verhnij abo majbutnye list S displaystyle S nbsp de x 0 gt 0 displaystyle x 0 gt 0 nbsp i nizhnij abo minule list S displaystyle S nbsp de x 0 lt 0 displaystyle x 0 lt 0 nbsp Tochki n vimirnoyi giperboloyidnoyi modeli ye tochkami na listku majbutnogo S displaystyle S nbsp Bilinijna forma Minkovskogo B ye polyarizaciyeyu kvadratichnoyi formi Minkovskogo Q B u v Q u v Q u Q v 2 displaystyle B mathbf u mathbf v Q mathbf u mathbf v Q mathbf u Q mathbf v 2 nbsp Abo v yavnomu viglyadi B x 0 x 1 x n y 0 y 1 y n x 0 y 0 x 1 y 1 x n y n displaystyle B x 0 x 1 ldots x n y 0 y 1 ldots y n x 0 y 0 x 1 y 1 ldots x n y n nbsp Giperbolichna vidstan mizh dvoma tochkami u i v prostoru S displaystyle S nbsp zadayut formuloyu d u v a r c h B u v displaystyle d mathbf u mathbf v operatorname mathrm arch B mathbf u mathbf v nbsp de arch obernena funkciya giperbolichnogo kosinusa Pryami red Pryama v giperbolichnomu n prostori modelyuyetsya geodezichnoyu na giperboloyidi Geodezichna na giperboloyidi ye neporozhnim peretinom z dvovimirnim linijnim pidprostorom vklyuchno z pochatkom koordinat n 1 vimirnogo prostoru Minkovskogo Yaksho mi vizmemo yak u i v bazisni vektori linijnogo pidprostoru z B u u 1 displaystyle B mathbf u mathbf u 1 nbsp B v v 1 displaystyle B mathbf v mathbf v 1 nbsp B u v B v u 0 displaystyle B mathbf u mathbf v B mathbf v mathbf u 0 nbsp i vikoristayemo w yak parametr dlya tochok na geodezichnij to u c h w v s h w displaystyle mathbf u mathrm ch w mathbf v mathrm sh w nbsp bude tochkoyu na geodezichnij 1 Zagalnishe k vimirna ploshina v giperbolichnomu n prostori modelyuvatimetsya neporozhnim peretinom giperboloyida z k 1 vimirnim linijnim pidprostorom vklyuchno z pochatkom koordinat prostoru Minkovskogo Ruhi red Neviznachena ortogonalna grupa O 1 n zvana takozh n 1 vimirnoyu grupoyu Lorenca ye grupoyu Li dijsnih n 1 n 1 matric yaka zberigaye bilinijnu formu Minkovskogo Inshimi slovami ce grupa linijnih ruhiv prostoru Minkovskogo Zokrema cya grupa zberigaye giperboloyid S Nagadayemo sho neviznacheni ortogonalni grupi mayut chotiri zv yazani komponenti yaki vidpovidayut obernennyu abo zberezhennyu oriyentaciyi na kozhnomu pidprostori tut 1 vimirnomu i n vimirnomu i utvoryuyut 4 grupu Klyajna Pidgrupa O 1 n yaka zberigaye znak pershoyi koordinati ye ortohronnoyu grupoyu Lorenca sho poznachayetsya O 1 n i maye dvi komponenti yaki vidpovidayut zberezhennyu abo obernennyu oriyentaciyi pidprostoru Yiyi pidgrupa SO 1 n sho skladayetsya z matric z viznachnikom odinicya ye zv yazanoyu grupoyu Li rozmirnosti n n 1 2 yaka diye na S linijnimi avtomorfizmami i zberigaye giperbolichnu vidstan Cya diya tranzitivna i ye stabilizatorom vektora 1 0 0 sho skladayetsya z matric viglyadu 1 0 0 0 A 0 displaystyle begin pmatrix 1 amp 0 amp ldots amp 0 0 amp amp amp vdots amp amp A amp 0 amp amp amp end pmatrix nbsp de A displaystyle A nbsp nalezhit do kompaktnoyi specialnoyi ortogonalnoyi grupi SO n yaka uzagalnyuye grupu obertan SO 3 dlya n 3 Zvidsi viplivaye sho n vimirnij giperbolichnij prostir mozhna podati yak odnoridnij prostir i Rimaniv simetrichnij prostir rangu 1 H n S O 1 n S O n displaystyle mathbb H n mathrm SO 1 n mathrm SO n nbsp Grupa SO 1 n ye povnoyu grupoyu ruhiv n vimirnogo giperbolichnogo prostoru sho zberigayut oriyentaciyu Istoriya red U kilkoh stattyah mizh 1878 i 1885 Vilgelm Killing 2 3 4 vikoristav podannya geometriyi Lobachevskogo yake vin pripisuye Karlu Veyershtrassu Zokrema vin obgovoryuye kvadratichni formi taki yak k 2 t 2 u 2 v 2 w 2 k 2 displaystyle k 2 t 2 u 2 v 2 w 2 k 2 nbsp abo dlya dovilnih rozmirnostej k 2 x 0 2 x 1 2 x n 2 k 2 displaystyle k 2 x 0 2 x 1 2 dots x n 2 k 2 nbsp de k displaystyle k nbsp ye dvoyistoyu miroyu krivini k 2 displaystyle k 2 infty nbsp oznachaye Evklidovu geometriyu k 2 gt 0 displaystyle k 2 gt 0 nbsp eliptichnu geometriyu a k 2 lt 0 displaystyle k 2 lt 0 nbsp oznachaye giperbolichnu geometriyu Za Dzheremi Greyem 1986 5 Puankare vikoristav giperboloyidnu model u jogo personalnih notatkah 1880 roku Puankare opublikuvav svoyi rezultati v 1881 u yakih vin obgovoryuye invariantnist kvadratichnoyi formi 3 2 h 2 z 2 1 displaystyle xi 2 eta 2 zeta 2 1 nbsp 6 Grej pokazuye de giperboloyidna model yavno zgaduyetsya v piznishih robotah Puankare 7 Dokladnishe div Istoriya peretvoren Lorenca rozdil Puankare en Takozh Gomershem Koks u 1882 8 9 vikoristav koordinati Veyershtrassa bez zaznachennya cogo imeni sho zadovolnyayut spivvidnoshennyu z 2 x 2 y 2 1 displaystyle z 2 x 2 y 2 1 nbsp a takozh spivvidnoshennyu w 2 x 2 y 2 z 2 1 displaystyle w 2 x 2 y 2 z 2 1 nbsp Dali model vikoristali Alfred Klebsh i Ferdinand fon Lindeman 1891 roku pri obgovorenni spivvidnoshen x 1 2 x 2 2 4 k 2 x 3 2 4 k 2 displaystyle x 1 2 x 2 2 4k 2 x 3 2 4k 2 nbsp i x 1 2 x 2 2 x 3 2 4 k 2 x 4 2 4 k 2 displaystyle x 1 2 x 2 2 x 3 2 4k 2 x 4 2 4k 2 nbsp 10 Koordinati Veyershtrassa vikoristovuvali takozh Gerard 1892 Gausdorf 1899 Vuds 1903 i Libman 1905 en Piznishe 1885 Kiling stverdzhuvav sho fraza koordinati Veyershtrassa spivvidnositsya z elementami giperboloyidnoyi modeli tak yaksho zadano skalyarnij dobutok displaystyle langle cdot cdot rangle nbsp na R n displaystyle mathbb R n nbsp koordinati Veyershtrassa tochki x R n displaystyle x in mathbb R n nbsp dorivnyuyut x 1 x x R n 1 displaystyle x sqrt 1 langle x x rangle in mathbb R n 1 nbsp sho mozhna porivnyati z virazom x 1 x x R n 1 displaystyle x sqrt 1 langle x x rangle in mathbb R n 1 nbsp dlya modeli pivsferi 11 Yak metrichnij prostir giperboloyid rozglyadav Aleksander Makfarlejn en u knizi Papers in Space Analysis 1894 Vin zauvazhiv sho tochki na giperboloyidi mozhna zapisati yak s h A a s h A displaystyle mathrm sh A alpha mathrm sh A nbsp de a ye bazisnim vektorom ortogonalnim do osi giperboloyida Napriklad vin otrimav giperbolichnij zakon kosinusiv en vikoristavshi algebri fiziki 1 H Dzhensen sfokusuvavsya na giperboloyidnij modeli v statti 1909 roku Podannya giperbolichnoyi geometriyi na dvoporozhninnomu giperboloyidi 12 1993 roku U F Rejnolds viklav rannyu istoriyu modeli v statti nadrukovanij u zhurnali American Mathematical Monthly 13 Yak zagalnoviznanu model u XX stolitti yiyi ototozhniv z Geschwindigkeitsvectoren nim vektorami shvidkosti German Minkovskij u prostori Minkovskogo Skott Valter u statti 1999 roku Neevklidiv stil specialnoyi teoriyi vidnosnosti 14 zgaduye obiznanist Minkovskogo ale vivodit pohodzhennya modeli vid Gelmgolca a ne vid Veyershtrassa chi Killinga U ranni roki Vladimir Varichak en vikoristovuvav relyativistsku giperboloyidnu model dlya poyasnennya fiziki shvidkosti U jogo dopovidi v Nimeckomu matematichnomu tovaristvi 1912 roku vin posilavsya na koordinati Veyershtrassa 15 Div takozh red Konformno evklidova model Giperbolichnij kvaternionPrimitki red a b Macfarlane 1894 Killing 1878 s 72 83 Killing 1880 s 265 287 Killing 1885 Gray 1986 s 271 2 Poincare 1881 s 132 138 Poincare 1887 s 71 91 Cox 1881 s 178 192 Cox 1882 s 193 215 Lindemann 1891 s 524 Deza E Deza M 2006 Jansen 1909 s 409 440 Reynolds 1993 s 442 55 Scott 1999 s 91 127 Varicak 1912 s 103 127 Literatura red Killing W Ueber zwei Raumformen mit constanter positiver Krummung Journal fur die reine und angewandte Mathematik 1878 T 86 21 zhovtnya S 72 83 Killing W Die Rechnung in den Nicht Euklidischen Raumformen Journal fur die reine und angewandte Mathematik 1880 T 89 21 zhovtnya S 265 287 Killing W Die nicht euklidischen Raumformen Leipzig 1885 Jeremy Gray Linear differential equations and group theory from Riemann to Poincare 1986 S 271 2 Poincare H Sur les applications de la geometrie non euclidienne a la theorie des formes quadratiques Association francaise pour l avancement des sciences 1881 T 10 21 zhovtnya S 132 138 Arhivovano z dzherela 25 grudnya 2021 Procitovano 25 grudnya 2021 Poincare H On the fundamental hypotheses of geometry Collected works 1887 T 11 S 71 91 Cox H Homogeneous coordinates in imaginary geometry and their application to systems of forces The quarterly journal of pure and applied mathematics 1881 T 18 vip 70 21 zhovtnya S 178 192 Arhivovano z dzherela 23 bereznya 2018 Procitovano 25 grudnya 2021 Cox H Homogeneous coordinates in imaginary geometry and their application to systems of forces continued The quarterly journal of pure and applied mathematics 1882 T 18 vip 71 21 zhovtnya S 193 215 Arhivovano z dzherela 23 bereznya 2018 Procitovano 25 grudnya 2021 Lindemann F Vorlesungen uber Geometrie von Clebsch II 1890 Leipzig 1891 S 524 Elena Deza Michel Deza Dictionary of Distances 2006 Jansen H Abbildung hyperbolische Geometrie auf ein zweischaliges Hyperboloid Mitt Math Gesellsch Hamburg 1909 Vip 4 21 zhovtnya S 409 440 Alexander Macfarlane Papers on Space Analysis New York B Westerman 1894 Alekseevskij D V Vinberg E B Solodovnikov A S Geometry of Spaces of Constant Curvature Berlin New York Springer Verlag 1993 Encyclopaedia of Mathematical Sciences ISBN 3 540 52000 7 James Anderson Hyperbolic Geometry 2nd Berlin New York Springer Verlag 2005 Springer Undergraduate Mathematics Series ISBN 978 1 85233 934 0 John G Ratcliffe Glava 3 Foundations of hyperbolic manifolds Berlin New York Springer Verlag 1994 ISBN 978 0 387 94348 0 Miles Reid Balazs Szendroi Geometry and Topology Cambridge University Press 2005 S Figure 3 10 p 45 ISBN 0 521 61325 6 Patrick J Ryan Euclidean and non Euclidean geometry An analytical approach Cambridge London New York New Rochelle Melbourne Sydney Cambridge University Press 1986 ISBN 0 521 25654 2 William F Reynolds Hyperbolic geometry on a hyperboloid American Mathematical Monthly 1993 Vip 100 21 zhovtnya Arhivovano z dzherela 25 grudnya 2021 Procitovano 25 grudnya 2021 Scott Walter The non Euclidean style of Minkowskian relativity The Symbolic Universe Geometry and Physics Oxford University Press 1999 S 91 127 Varicak V On the Non Euclidean Interpretation of the Theory of Relativity Jahresbericht der Deutschen Mathematiker Vereinigung 1912 T 21 21 zhovtnya Otrimano z https uk wikipedia org w index php title Giperboloyidna model amp oldid 36865783