www.wikidata.uk-ua.nina.az
Osnovna teorema teoriyi Galua u teoriyi poliv teorema pro vlastivosti rozshiren Galua Nehaj E F displaystyle E supset F skinchenne rozshirennya Galua Osnovna teorema vkazuye vzayemno odnoznachnu vidpovidnist mizh mnozhinoyu promizhnih poliv H vidu E H F displaystyle E supset H supset F i mnozhinoyu pidgrup grupi Galua danogo rozshirennya Zmist 1 Tverdzhennya teoremi 1 1 Vidpovidnosti Galua 1 2 Tverdzhennya teoremi 2 Priklad 1 3 Priklad 2 4 Priklad 3 5 Zastosuvannya 6 Div takozh 7 LiteraturaTverdzhennya teoremi RedaguvatiVidpovidnosti Galua Redaguvati Nehaj E F displaystyle E F nbsp rozshirennya polya i Aut E F displaystyle operatorname Aut E F nbsp pidgrupa avtomorfizmiv polya E sho zalishayut vsi elementi pidpolya F neruhomimi Yaksho E H F displaystyle E supset H supset F nbsp deyake promizhne pole to mozhna vvesti pidgrupu G H a Aut E a z z z H displaystyle Gamma H alpha in operatorname Aut E alpha z z forall z in H nbsp Dlya bud yakoyi pidgrupi D grupi Aut E F displaystyle operatorname Aut E F nbsp mozhna vvesti vidpovidne yij pidpole F D x E a x x a D displaystyle Phi D x in E alpha x x forall alpha in D nbsp Todi G H displaystyle Gamma H nbsp dijsno bude pidgrupoyu dlya kozhnogo promizhnogo polya i F D displaystyle Phi D nbsp bude promizhnim pidpolem dlya kozhnoyi pidgrupi Aut E F displaystyle operatorname Aut E F nbsp Do togo zh zavzhdi H F G H displaystyle H subseteq Phi Gamma H nbsp i D G F D displaystyle D subseteq Gamma Phi D nbsp Osnovna teorema teoriyi Galua stverdzhuye sho dlya skinchennih rozshiren Galua ci vklyuchennya ye rivnostyami tobto mizh promizhnimi polyami i pidgrupami grupi Galua ye vzayemno odnoznachna vidpovidnist Tverdzhennya teoremi Redaguvati Nehaj E F displaystyle E F nbsp skinchenne rozshirennya Galua Todi z poznachennyami yak i vishe Dlya vsih promizhnih poliv H F G H displaystyle H Phi Gamma H nbsp i dlya vsih pidgrup grupi Galua D G F D displaystyle D Gamma Phi D nbsp Takozh G H E H displaystyle Gamma H E H nbsp stepenyu skinchennogo rozshirennya i Gal E F G H H F displaystyle operatorname Gal E F Gamma H H F nbsp Sered skinchennih rozshiren rozshirennya Galua yedini yaki zadovolnyayut taki vlastivosti adzhe napriklad yaksho dlya skinchennogo rozshirennya E F displaystyle E F nbsp vikonuyetsya rivnist F F Gal E F displaystyle F Phi operatorname Gal E F nbsp to rozshirennya ye rozshirennyam Galua Promizhne pidpole H displaystyle H nbsp ye normalnim rozshirennyam polya F displaystyle F nbsp todi i tilki todi koli G H displaystyle Gamma H nbsp ye normalnoyu pidgrupoyu grupi Galua Gal E F displaystyle operatorname Gal E F nbsp U comu vipadku grupa Gal H F displaystyle operatorname Gal H F nbsp ye izomorfnoyu faktorgrupi Gal E F G H displaystyle operatorname Gal E F Gamma H nbsp Priklad 1 Redaguvati nbsp Gratka pidpoliv i vidpovidna gratka pidgrupRozglyanemo pole Q 2 3 displaystyle mathbb Q sqrt 2 sqrt 3 nbsp Kozhen jogo element mozhna zapisati u viglyadi a b 2 c 3 d 2 3 displaystyle a b sqrt 2 c sqrt 3 d sqrt 2 cdot sqrt 3 nbsp de a b c d racionalni chisla Rozglyanemo avtomorfizm rozshirennya Q 2 3 Q displaystyle mathbb Q sqrt 2 sqrt 3 supset mathbb Q nbsp oskilki ce rozshirennya porodzhuyetsya 2 displaystyle sqrt 2 nbsp i 3 displaystyle sqrt 3 nbsp bud yakij avtomorfizm odnoznachno viznachayetsya yih obrazami Avtomorfizm bud yakogo rozshirennya maye tilki perestavlyati miscyami koreni mnogochlena nad menshim polem otzhe v danomu vipadku vsi mozhlivi netrivialni avtomorfizmi ce perestanovka 2 displaystyle sqrt 2 nbsp i 2 displaystyle sqrt 2 nbsp poznachimo cej avtomorfizm f displaystyle f nbsp perestanovka 3 displaystyle sqrt 3 nbsp i 3 displaystyle sqrt 3 nbsp avtomorfizm g displaystyle g nbsp i yih kompoziciya f g displaystyle fg nbsp Bilsh tochno ci peretvorennya zadayutsya nastupnim chinom f a b 2 c 3 d 6 a b 2 c 3 d 6 displaystyle f a b sqrt 2 c sqrt 3 d sqrt 6 a b sqrt 2 c sqrt 3 d sqrt 6 nbsp g a b 2 c 3 d 6 a b 2 c 3 d 6 displaystyle g a b sqrt 2 c sqrt 3 d sqrt 6 a b sqrt 2 c sqrt 3 d sqrt 6 nbsp Ochevidno sho ci vidobrazhennya ye biyektivnimi i perevodyat sumu v sumu otzhe dlya perevirki rivnosti f a b f a f b displaystyle f ab f a cdot f b nbsp dosit pereviriti jogo na parah bazisnih elementiv sho takozh trivialno Takim chinom grupa Galua danogo rozshirennya 4 grupa Klejna G 1 f g f g displaystyle G 1 f g fg nbsp Vona maye tri netrivialni pidgrupi Avtomorfizmi z pidgrupi 1 f fiksuyut elementi promizhnogo polya Q 3 displaystyle mathbb Q sqrt 3 nbsp Avtomorfizmi z 1 g fiksuyut Q 2 displaystyle mathbb Q sqrt 2 nbsp Avtomorfizmi z 1 fg fiksuyut Q 6 displaystyle mathbb Q sqrt 6 nbsp Priklad 2 Redaguvati nbsp Gratka pidgrup i pidpolivU comu prikladi grupa Galua ne ye komutativnoyu Rozglyanemo pole rozkladu K mnogochlena x 3 2 displaystyle x 3 2 nbsp nad Q displaystyle mathbb Q nbsp tobto K Q w 8 displaystyle K mathbb Q omega theta nbsp de 8 ye kubichnim korenem 2 i w ye kubichnim korenem 1 ne rivnim 1 Napriklad mozhna vzyati 8 2 3 displaystyle theta sqrt 3 2 nbsp dijsnij kubichnij korin i w 1 2 i 3 2 displaystyle omega frac 1 2 i frac sqrt 3 2 nbsp Grupa Galua G Gal K Q displaystyle G text Gal K mathbb Q nbsp maye shist elementiv i ye izomorfnoyu grupi perestanovok troh elementiv Yiyi mozhna zgeneruvati dvoma elementami f i g yaki viznachayutsya za dopomogoyu yih diyi na 8 i w f 8 w 8 f w w displaystyle f theta omega theta quad f omega omega nbsp g 8 8 g w w 2 displaystyle g theta theta quad g omega omega 2 nbsp i tomu G 1 f f 2 g g f g f 2 displaystyle G left 1 f f 2 g gf gf 2 right nbsp Pidgrupami G i vidpovidnimi pidpolyami ye Usya grupa G sho vidpovidaye bazovomu polyu Q displaystyle mathbb Q nbsp i trivialna grupa 1 sho vidpovidaye usomu polyu K Pidgrupa poryadku 3 z elementami 1 f f 2 displaystyle 1 f f 2 nbsp Vidpovidnim pidpolem ye Q w displaystyle mathbb Q omega nbsp yake ye rozshirennyam stepenya 2 nad Q displaystyle mathbb Q nbsp minimalnij mnogochlen elementa w ye x 2 x 1 displaystyle x 2 x 1 nbsp sho ye rivnim indeksu pidgrupi u grupi G Takozh cya pidgrupa ye normalnoyu i tomu vidpovidne pidpole ye normalnim rozshirennyam polya Q displaystyle mathbb Q nbsp Tri pidgrupi poryadku 2 a same 1 g 1 g f displaystyle 1 g 1 gf nbsp i 1 g f 2 displaystyle 1 gf 2 nbsp Yim vidpovidayut tri pidpolya Q 8 Q w 8 Q w 2 8 displaystyle mathbb Q theta mathbb Q omega theta mathbb Q omega 2 theta nbsp Ci pidpolya ye rozshirennyami stepenya 3 nad Q displaystyle mathbb Q nbsp Ci pidgrupi ne ye normalnimi u G i tomu pidpolya tezh ne ye normalnimi rozshirennyami nad Q displaystyle mathbb Q nbsp Napriklad Q 8 displaystyle mathbb Q theta nbsp mistit lishe odin korin mnogochlena x 3 2 displaystyle x 3 2 nbsp Priklad 3 RedaguvatiNehaj E Q l displaystyle E mathbb Q lambda nbsp pole racionalnih funkcij argumenta l displaystyle lambda nbsp i G l 1 1 l l 1 l 1 l l l 1 1 l A u t E displaystyle G left lbrace lambda frac 1 1 lambda frac lambda 1 lambda frac 1 lambda frac lambda lambda 1 1 lambda right rbrace subset rm Aut E nbsp Z operaciyeyu kompoziciyi vidobrazhen G displaystyle G nbsp ye grupoyu izomorfnoyu S 3 displaystyle S 3 nbsp Nehaj F displaystyle F nbsp fiksovane pole grupi G displaystyle G nbsp todi G a l E F G displaystyle rm Gal E F G nbsp Yaksho H displaystyle H nbsp ye pidgrupoyu G displaystyle G nbsp to koeficiyenti mnogochlena P T h H T h E T displaystyle P T prod h in H T h in E T nbsp porodzhuyut fiksovane pole grupi H displaystyle H nbsp Vidpovidnist Galua oznachaye sho kozhne promizhne pole u E F displaystyle E F nbsp mozhe buti oderzhanie takim chinom Napriklad yaksho H l 1 l displaystyle H lambda 1 lambda nbsp to fiksovanim polem ye Q l 1 l displaystyle mathbb Q lambda 1 lambda nbsp yaksho H l 1 l displaystyle H lambda 1 lambda nbsp to fiksovanim polem ye Q l 1 l displaystyle mathbb Q lambda 1 lambda nbsp Zastosuvannya RedaguvatiOsnovna teorema zvodit pitannya isnuvannya promizhnih poliv do pitannya pro isnuvannya pidgrup deyakoyi skinchennoyi grupi tak yak poryadok grupi Galua dorivnyuye rozmirnosti rozshirennya bagato zavdan teoriyi Galua virishuyutsya prostim zastosuvannyam osnovnoyi teoremi Napriklad pitannya pro mozhlivist rozv yazannya rivnyannya v radikalah zazvichaj formulyuyut tak chi mozhna zapisati koreni danogo mnogochlena cherez jogo koeficiyenti vikoristovuyuchi lishe arifmetichni operaciyi i operaciyu oderzhannya korenya n go stepenya Movoyu teoriyi poliv ce pitannya mozhna sformulyuvati tak rozglyanemo pole F porodzhene koeficiyentami mnogochlena i pole E otrimane priyednannyam jogo koreniv Chi isnuye takij lancyuzhok promizhnih poliv E K n K n 1 K 1 K 0 F displaystyle E K n supset K n 1 supset ldots supset K 1 supset K 0 F nbsp sho K i 1 K i a displaystyle K i 1 K i alpha nbsp de a displaystyle alpha nbsp korin rivnyannya x n a a K i displaystyle x n a a in K i nbsp prichomu pole K i displaystyle K i nbsp mistit vsi koreni rivnyannya x n 1 displaystyle x n 1 nbsp V comu vipadku mozhna dovesti sho vidpovidnij ryad pidgrup grupi Galua maye vlastivist sho faktorgrupa G i G i 1 displaystyle G i G i 1 nbsp isnuye i ye ciklichnoyu Grupi dlya yakih isnuye hocha b odin ryad z takoyu vlastivistyu nazivayutsya rozv yaznimi Takim chinom rivnyannya rozv yazuyetsya v radikalah todi i tilki todi koli jogo grupa Galua ye rozv yaznoyu Taki teoriyi yak teoriya Kummera i teoriya poliv klasiv gruntuyutsya na fundamentalnij teoremi teoriyi Galua Div takozh RedaguvatiGrupa Galua Normalne rozshirennya Rozshirennya Galua Separabelne rozshirennya Teoriya GaluaLiteratura RedaguvatiDrozd Yu A 1997 Teoriya Galua Kiyiv RVC Kiyivskij universitet ISBN 966 594 022 8 ukr E Artin Teoriya Galua per z nim V A Vishenskogo Kiyiv Radyanska shkola 1963 98 s ukr Garling D J H 1986 A Course in Galois Theory Cambridge University Press ISBN 0 521 31249 3 Howie John Mackintosh 2006 Fields and Galois Theory London Springer ISBN 1852339861 Otrimano z https uk wikipedia org w index php title Osnovna teorema teoriyi Galua amp oldid 37518326