www.wikidata.uk-ua.nina.az
Arifmetichni diyi ye dvomisnimi operaciyami na mnozhini chisel na vhodi berut dva chisla operanda i povertayut odne chislo yak rezultat Dvi diyi dodavannya i mnozhennya ye pryamimi diyami a reshta dvi diyi vidnimannya i dilennya ye obernenimi diyami vidpovidno Zmist 1 Dodavannya i mnozhennya 2 Vidnimannya 3 Vid yemni chisla i nul 4 Yedinist nulya 5 Unarnij minus i protilezhni chisla 6 Rozkrittya duzhok z unarnim minusom 7 Mnozhennya na nul 8 Mnozhennya vid yemnih chisel 9 Dilennya 10 Div takozhDodavannya i mnozhennya RedaguvatiDodavannya poznachayetsya zavzhdi znakom plyus U formuli a b c displaystyle a b c operandi a displaystyle a b displaystyle b nazivayutsya dodanki vidpovidno pershij dodanok i drugij dodanok a rezultat suma Mnozhennya mozhe poznachatisya krapkoyu poseredini visoti displaystyle cdot kosim hrestikom displaystyle times zirochkoyu displaystyle abo v algebrayichnih formulah z bukvenimi parametrami i vzagali nichim U formuli a b c displaystyle a cdot b c operandi nazivayutsya mnozhniki abo spivmnozhniki vidpovidno pershij mnozhnik i drugij mnozhnik a rezultat dobutok Dodavannya i mnozhennya pidkoryayutsya takim zakonam v duzhkah nizhche navedeno latinski nazvi vidpovidnih zakoniv Perestanovochnij komutativnnist 1 a b b a a b b a displaystyle 1 qquad a b b a qquad qquad a cdot b b cdot a Spoluchnij asociativnist 2 a b c a b c a b c a b c displaystyle 2 qquad a b c a b c qquad qquad a cdot b cdot c a cdot b cdot c Rozpodilchij distributivnist mnozhennya vidnosno dodavannya 3 a b c a b a c displaystyle 3 qquad a cdot b c a cdot b a cdot c Okrim operacij dodavannya displaystyle i mnozhennya displaystyle cdot u vishenavedenih formulah vikoristano krugli duzhki Duzhki ne ye operaciyeyu ale prosto matematichnimi znakami yakimi vkazuyetsya poryadok vikonannya dvomisnih operacij Pershimi vikonuyutsya ti operaciyi sho zapisani vseredini duzhok Dlya bud yakoyi formuli z pidryad zapisanimi dvomisnimi operaciyami plyus minus pomnozhiti podiliti i bazhanim poryadkom vikonannya yih mozhna tak rozstaviti duzhki sho stane ochevidnim yaku operaciyu za yakoyu treba vikonuvati Ale pri comu kilkist duzhok mozhe buti velikoyu i zaharashuvati formuli Tomu matematiki vikoristovuyut kilka domovlenostej pro poryadok vikonannya operacij yaki dozvolyayut odnoznachno interpretuvati formulu i pri comu zmenshiti kilkist duzhok V pravij chastini ostannoyi formuli mayetsya na uvazi domovlenist sho spochatku vikonuyutsya dva mnozhennya a b displaystyle a cdot b i a c displaystyle a cdot c a potim lishe dodavannya tobto prioritet mnozhennya vishij za prioritet dodavannya yaksho cej poryadok ne zmineno rozstavlennyam duzhok Spoluchnij zakon daye zmogu zapisuvati sumu S displaystyle S velikoyi kilkosti dodankiv a b c displaystyle a b c bilshe dvoh dodankiv vzagali bez duzhok S a b c displaystyle S a b c cdots Rozstavlyannya duzhok v cij formuli ne zminit rezultatu sumi Te same stosuyetsya dobutku kilkoh spivmnozhnikiv Mnozhinoyu naturalnih chisel ye chislo 1 odin i vsi chisla yaki mozhna oderzhati dodavnnyam odinici Napriklad 2 1 1 displaystyle qquad 2 1 1 3 2 1 1 1 1 displaystyle qquad 3 2 1 1 1 1 4 3 1 1 1 1 1 displaystyle qquad 4 3 1 1 1 1 1 n 1 1 1 1 displaystyle qquad n 1 1 1 1 chislo 1 v cij formuli zustrichayetsya n displaystyle n raziv Vnaslidok spoluchnogo zakonu naturalne chislo n displaystyle n mozhna zapisati tak n n p a 3 i b 1 1 1 displaystyle begin matrix n end matrix begin matrix n pa mathfrak 3 ib overbrace 1 1 cdots 1 end matrix Operaciya dodavannya odinici do naturalnogo chisla nazivayetsya takozh perehodom do nastupnogo naturalnogo chisla Yaksho a b 1 displaystyle a b 1 to chislo a displaystyle a ye nastupnim za chislom b displaystyle b a chislo b displaystyle b nazivayetsya poperednim dlya chisla a displaystyle a Zaznachimo sho takim chinom poslidovno dodayuchi do naturalnogo chisla odinicyu mi oderzhuyemo shoraz inshe naturalne chislo bilshe za vsi poperedni a tomu vidminne vid usih poperednih chisel Mnozhina vsih naturalnih chisel neskinchenna Yaksho u matematichnih formulah figuruyut dekilka dodankiv yaki mozhna poznachiti odniyeyu bukvoyu z indeksom indeks zazvichaj ye nomerom dodanka v sumi a 1 a 2 a n displaystyle a 1 a 2 a n to alternativno sumu cih dodankiv prijnyato poznachati velikoyu greckoyu bukvoyu sigma S displaystyle Sigma i 1 n a i a 1 a 2 a n displaystyle qquad sum i 1 n a i a 1 a 2 cdots a n Analogichno dlya dobutku vikoristovuyut veliku grecku bukvu pi i 1 n a i a 1 a 2 a n displaystyle qquad prod i 1 n a i a 1 cdot a 2 cdot cdots cdot a n Chislo 1 ye nejtralnim shodo operaciyi mnozhennya tobto dobutok bud yakogo chisla na odinicyu daye v rezultati ce same chislo a 1 a displaystyle a cdot 1 a Dlya mnozhennya na naturalne chislo n displaystyle n mi mozhemo vivesti taku formulu skoristavshis rozpodilchim zakonom a n a 1 1 1 n p a 3 i b a a a displaystyle begin matrix a cdot n a cdot 1 1 cdots 1 end matrix begin matrix n pa mathfrak 3 ib overbrace a a cdots a end matrix Pri fiksovanomu odnomu z dodankiv nehaj napriklad pershij dodanok dorivnyuye a displaystyle a znachennya sumi ye unikalnim dlya kozhnogo iz znachen drugogo dodanku Tobto yaksho mi mayemo dva rivnyannya a b 1 c displaystyle qquad a b 1 c a b 2 c displaystyle qquad a b 2 c to z nih obov yazkovo sliduye b 1 b 2 displaystyle b 1 b 2 Cya vlastivist daye zmogu rozglyadati obernenu do dodavannya operaciyu Taka zh vlastivist za vinyatkom nulovogo mnozhnika stosuyetsya i operaciyi mnozhennya Vidnimannya RedaguvatiVidnimannya ye diyeyu obernenoyu do dodavannya Poznachayetsya znakom minus U formuli a b c displaystyle a b c pershij operand nazivayetsya zmenshuvane drugij operand vid yemnik a rezultat riznicya Yaksho 4 a b c displaystyle 4 qquad a b c to 4 a a b c displaystyle 4a qquad a b c Primitka vzagali kazhuchi dlya dvomisnoyi operaciyi mozhna rozglyadati dvi oberneni operaciyi 1 yaka znahodit drugij operand pri fiksovanih pershomu operandu i rezultatu 2 yaka znahodit pershij operand za fiksovanim drugim operandom i rezultatom Vnaslidok komutativnosti dodavannya ci dvi operaciyi ye odnakovimi Dlya inshih dvomisnih operacij ce ne tak Napriklad operaciya pidnesennya do stepenya nekomutativna ne mozhna perestavlyati osnovu i pokaznik stepenya Tomu operaciya pidnesennya do stepenya maye dvi oberneni operaciyi korin i logarifm Zauvazhimo sho stosovno vidnimannya nemaye spoluchnogo zakonu virazi a b c displaystyle a b c i a b c displaystyle a b c dayut riznij rezultat Mozhna pisati formulu z dodavannyami i vidnimannyami bez duzhok koristuyuchis zagalnoprijnyatoyu domovlenistyu sho ci operaciyi treba vikonuvati postupovo zliva napravo Napriklad dvi formuli ekvivalentni a b c d e a b c d e displaystyle qquad a b c d e a b c d e Yaksho spochatku do chisla a displaystyle a dodati chislo b displaystyle b a potim vidnyati ce same chislo b displaystyle b to v rezultati oderzhimo chislo a displaystyle a 5 a b b a displaystyle 5 qquad a b b a Dovedemo ce Nehaj a b b a 1 displaystyle qquad a b b a 1 Iz oznachennya operaciyi vidnimannya 4 4a mayemo a b b a 1 displaystyle qquad a b b a 1 abo b a b a 1 displaystyle qquad b a b a 1 Iz unikalnosti znachen operaciyi dodavannya oderzhuyemo a 1 a displaystyle a 1 a Na mnozhini naturalnih chisel mozhna vidnimati tilki vid bilshogo chisla menshe tobto maye buti a gt b displaystyle a gt b Cyu vlastivist mozhna proilyustruvati na prikladi yashika z yablukami ne mozhna vzyati z yashika bilshe yabluk nizh tam ye Vid yemni chisla i nul RedaguvatiShob vidnimannya mozhna bulo vikonuvati zavzhdi treba rozshiriti ponyattya chisla vvivshi nul i vid yemni cili chisla Vidnimannya chisla samogo vid sebe daye nul a a 0 displaystyle a a 0 a vidnimannya vid menshogo chisla bilshogo daye v rezultati vid yemne chislo Cili chisla mozhna proilyustruvati vidnosinami banka bezmezhno velikogo i z nulovimi vidsotkami takih bankiv naspravdi ne isnuye z kliyentom Kliyent mozhe zavzhdi klasti groshi v bank abo brati groshi Dodatnij zalishok na rahunku kliyenta ye depozitom vid yemnij borgom a nulovij koli nihto nikomu ne vinen Yedinist nulya RedaguvatiDovedemo yedinist nulya prijnyavshi sho vlastivosti operaciyi dodavannya zberigayutsya pri poshirenni na oblast vid yemnih chisel i nulya Nehaj pri vidnimanni yakogos chisla b displaystyle b samogo vid sebe mi oderzhali osoblivij nul b b 0 b displaystyle qquad b b 0 b Todi b 0 b b displaystyle qquad b 0 b b Dodamo do chisla a displaystyle a i potim vidnimemo chislo b displaystyle b a a b b a 0 b b b a 0 b b b a 0 b displaystyle qquad a a b b a 0 b b b a 0 b b b a 0 b Oskilki takozh dlya inshogo nulya 0 c c c displaystyle 0 c c c mayemo a a 0 c displaystyle qquad a a 0 c to iz unikalnosti rezultatu dodavannya mayemo sho vsi nuli zbigayutsya 0 b 0 c 0 displaystyle 0 b 0 c 0 Nul ye nejtralnim elementom shodo operaciyi dodavannya 6 a a 0 displaystyle 6 qquad a a 0 V ostannij formuli mi mozhemo viraziti pershij dodanok cherez operaciyu vidnimannya vid rezultatu vidnyati drugij dodanok tobto nul 6 a a a 0 displaystyle 6a qquad a a 0 Takim chinom nul ye nejtralnim elementom takozh shodo vidnimannya Tomu v matematichnih formulah de figuruyut kilka dodankiv deyaki z nih mozhut buti vzyati v duzhki virazi mozhna opuskati nulovi dodanki takim chinom sproshuyuchi formulu Unarnij minus i protilezhni chisla RedaguvatiRezultat vidnimannya chisla a displaystyle a vid nulya poznachayetsya a displaystyle a i nazivayetsya chislom protilezhnim do a displaystyle a 7 a 0 a displaystyle 7 qquad a 0 a Znak minus v poznachenni protilezhnogo chisla maye tilki odin operand chislo a displaystyle a i tomu ye odnomisnoyu operaciyeyu Cya operaciya vzyattya protilezhnogo chisla nazivayetsya unarnim minusom Inodi dlya simetriyi vikoristovuyut takozh unarnij plyus yakij vzagali ye pustoyu operaciyeyu totozhnim peretvorennyam a a displaystyle qquad a a Napriklad unarnij plyus poryad z unarnim minusom vikoristovuyut pri poznachenni temperaturi 10 C 8 C Oskilki iz formuli 7 sliduye sho 8 a a 0 displaystyle 8 qquad a a 0 to pomichayemo sho u formuli 8 chisla a displaystyle a i a displaystyle a vhodyat simetrichnim chinom Otzhe i navpaki chislo a displaystyle a ye protilezhnim do svogo protilezhnogo a displaystyle a 9 a a a displaystyle 9 qquad a a a Primitka ostannyu rivnist neformalno mozhna chitati tak minus na minus daye plyus Chisla protilezhni naturalnim chislam nazivayutsya vid yemnimi cilimi chislami i poznachayutsya za dopomogoyu unarnogo minusa i cifr napriklad 2 15 chitayetsya minus dva minus p yatnadcyat Vikoristovuyuchi unarnij minus mi mozhemo zapisati operaciyu vidnimannya cherez dodavannya protilezhnogo chisla yak ce sliduye z nastupnogo lancyuzhka rivnostej 10 a b a 0 b a b b b a b b b a b displaystyle 10 qquad a b a 0 b a b b b a b b b a b Formulu v yakij zustrichayutsya tilki dodavannya i vidnimannya mozhna predstaviti u viglyadi sumi dodatnih i vidpovidno vidyemnih dodankiv a b c d a b c d displaystyle qquad a b c d a b c d Rozkrittya duzhok z unarnim minusom RedaguvatiNehaj mayemo chislo c displaystyle c protilezhne sumi dvoh chisel a displaystyle a i b displaystyle b c a b displaystyle qquad c a b todi a b c a b c a b a b 0 displaystyle qquad a b c a b c a b a b 0 Dodamo do ostannoyi rivnosti spochatku a displaystyle a a potim b displaystyle b b c a a b c 0 a a displaystyle qquad b c a a b c 0 a a c b b c a b displaystyle qquad c b b c a b c a b a b displaystyle qquad c a b a b 11 a b a b displaystyle qquad 11 qquad a b a b Koristuyuchis formuloyu 10 dlya vidnimannya znajdemo protilezhne chislo do riznici a b a b a b a b b a b a displaystyle qquad a b a b a b a b b a b a Pro cyu vlastivist mozhna govoriti sho operaciya vidnimannya ye antikomutativnoyu pri perestanovci operandiv mi oderzhuyemo protilezhnij rezultat na vidminu vid komutativnogo dodavannya Nehaj teper mayemo viraz v yakomu zdijsnyuyutsya kilka operacij dodavan i vidniman napriklad S a b c d e displaystyle qquad S a b c d e Znajdemo protilezhnij viraz po cherzi pochinayuchi z ostannogo dodanka rozkrivayuchi duzhki zgidno z formuloyu 11 S a b c d e a b c d e a b c d e a b c d e a b c d e a b c d e displaystyle qquad S a b c d e a b c d e a b c d e a b c d e cdots a b c d e a b c d e Otzhe z ostannogo prikladu mi mozhemo sformulyuvati pravilo protilezhne chislo vid virazu v yakomu ye tilki operaciyi dodavannya i vidnimannya utvoryuyetsya zaminoyu vsih znakiv plyus na minus i znakiv minus na plyus Mnozhennya na nul RedaguvatiSkoristayemosya rozpodilchim zakonom mnozhennya i vlastivistyu nulya 6 a b a b 0 a b a 0 displaystyle qquad a cdot b a cdot b 0 a cdot b a cdot 0 Z inshogo boku a b a b 0 displaystyle qquad a cdot b a cdot b 0 Iz unikalnosti rezultatu operaciyi dodavannya z dvoh ostannih formul mayemo sho mnozhennya bud yakogo chisla a displaystyle a na nul daye v rezultati nul 12 a 0 0 displaystyle 12 qquad a cdot 0 0 Cej rezultat mozhna poshiriti na dobutok kilkoh mnozhnikiv Nehaj sered spivmnozhnikiv a 1 a 2 a n displaystyle a 1 a 2 a n ye nul napriklad a k 0 displaystyle a k 0 dlya yakogos indeksu k 1 k n displaystyle k 1 leqslant k leqslant n todi i 1 n a i a 1 a 2 a n 0 displaystyle qquad prod i 1 n a i a 1 cdot a 2 cdot dots cdot a n 0 Spravedlive i obernene tverdzhennya yaksho dobutok kilkoh mnozhnikiv dorivnyuye nulyu to obov yazkovo sered cih mnozhnikiv znajdetsya nulovij sho dorivnyuye nulyu Tobto dobutok nenulovih chisel ne dorivnyuye nulyu vidsutnist dilnikiv nulya Mnozhennya vid yemnih chisel RedaguvatiA mozhna i navpaki dodavati nulovij dodanok Napriklad dovedemo isnuvannya rozpodilchogo zakonu mnozhennya vidnosno vidnimannya Poznachimo bukvoyu c displaystyle c riznicyu chisel a displaystyle a i b displaystyle b a b c displaystyle a b c Todi dlya dovilnogo chisla x displaystyle x x a b x c x c 0 x c x b x b x c x b x b x c b x b x a x b displaystyle qquad x cdot a b x cdot c x cdot c 0 x cdot c x cdot b x cdot b x cdot c x cdot b x cdot b x cdot c b x cdot b x cdot a x cdot b Dilennya RedaguvatiDilennya ye diyeyu obernenoyu do mnozhennya Mozhe poznachatisya dvokrapkoyu displaystyle abo kosoyu riskoyu displaystyle U formuli a b c displaystyle a b c pershij operand nazivayetsya dilene drugij operand dilnik a rezultat chastka Prijnyato govoriti sho chastka ye rezultatom dilennya dilenogo na dilnik Obernenist do mnozhennya oznachaye sho dilene a displaystyle a ye dobutkom dilnika b displaystyle b i chastki c displaystyle c Tobto yaksho 13 a b c displaystyle 13 qquad a b c to 13 a a b c displaystyle 13a qquad a b cdot c Cya para formul dlya dilennya ta mnozhennya povnistyu analogichna formulam 4 i 4a dlya vidnimannya ta dodavannya vklyuchno iz primitkoyu Ale okrim analogiyi z vidnimannyam dilennya maye i svoyu specifiku Po pershe diliti na nul ne mozhna Dijsno yaksho dilnik b displaystyle b dorivnyuvatime nulyu to iz formul 13a i 12 sliduye sho dilene a displaystyle a tezh musit buti nulem a chastka c displaystyle c mozhe buti bud yakim chislom Tobto dilennya nulya na nul ye neodnoznachnim a dilennya nenulovogo chisla na nul vzagali ne mozhna viraziti chislom nepripustima operaciya Po druge daleko ne zavzhdi pri dilenni cilih chisel mozhna oderzhati cile chislo Cya problema maye tri naslidki rezultat dilennya ye zagalnishim vidom chisla drobom Drobi razom z cilimi chislami utvoryuyutmnozhinu racionalnih chisel de dilennya na nenulove chislo zavzhdi vikonuyetsya mozhna rozglyadati trohi zminenu operaciyu dilennya z ostacheyu mozhna rozglyadati podilnist odnogo cilogo chisla na inshe yak oznaku dilitsya ne dilitsya nacilo Oskilki odinicya ye nejtralnoyu shodo mnozhennya to z formul 13 13a sliduye sho i dilennya na odinicyu zalishaye chislo nezminnim a 1 a displaystyle qquad a 1 a Yaksho zh mi navpaki odinicyu podilimo na chislo a displaystyle a to oderzhimo tak zvane obernene chislo yake poznachayetsya u viglyadi stepenya z pokaznikom minus odinicya a 1 1 a displaystyle qquad a 1 1 a Ochevidno sho mnozhennya chisla na svoye obernene daye v rezultati odinicyu a a 1 1 displaystyle qquad a cdot a 1 1 Za analogiyeyu z protilezhnimi chislami chislo obernene do obernenogo zbigayetsya z samim chislom a displaystyle a a 1 1 a displaystyle qquad left a 1 right 1 a Div takozh RedaguvatiDodavannya Vidnimannya Mnozhennya Dilennya Dilennya stovpchikom Otrimano z https uk wikipedia org w index php title Chotiri arifmetichni diyi amp oldid 37225828