www.wikidata.uk-ua.nina.az
Diferencialne rivnyannya z chastinnimi pohidnimi takozh vidome yak rivnyannya matematichnoyi fiziki diferencialne rivnyannya sho mistit nevidomi funkciyi dekilkoh zminnih i yihni chastinni pohidni Zmist 1 Vstup 2 Viznachennya 3 Linijni rivnyannya 3 1 Klasifikaciya rivnyan drugogo poryadku 4 Isnuvannya i yedinist rozv yazku 5 Prikladi 5 1 Odnovimirne rivnyannya teploprovidnosti 5 2 Rivnyannya kolivannya struni 5 3 Dvovimirne rivnyannya Laplasa 5 3 1 Zv yazok z analitichnimi funkciyami 5 3 2 Granichni umovi 5 4 Rivnyannya Ginzburga Landau 6 Rozv yazok rivnyan matematichnoyi fiziki 6 1 Analitichnij rozv yazok 6 1 1 Rivnyannya kolivan 6 2 Chiselnij rozv yazok 6 2 1 Rivnyannya kolivan struni 7 Div takozh 8 LiteraturaVstup red Rozglyanemo porivnyano proste rivnyannya z chastinnimi pohidnimi x u x y 0 displaystyle frac partial partial x u x y 0 nbsp Z cogo spivvidnoshennya viplivaye sho znachennya funkciyi u x y ne zalezhit vid x Otzhe zagalnij rozv yazok rivnyannya ye nastupnim u x y f y displaystyle u x y f y nbsp de f dovilna funkciya zminnoyi y Analogichne zvichajne diferencialne rivnyannya maye viglyad d f y d x 0 displaystyle frac df y dx 0 nbsp i jogo rozv yazok u x y c displaystyle u x y c nbsp de c dovilna konstanta nezalezhna vid x Ci dva prikladi pokazuyut sho zagalnij rozv yazok zvichajnogo diferencialnogo rivnyannya mistit dovilni konstanti a zagalnij rozv yazok diferencialnogo rivnyannya z chastinnimi pohidnimi mistit dovilni funkciyi Viznachennya red Diferencialnim rivnyannyam z chastinnimi pohidnimi nazivayetsya rivnyannya viduF x 1 x 2 x m u u x 1 u x m u x 1 a 1 x 2 a 2 x m a m k 0 displaystyle F x 1 x 2 ldots x m u u x 1 ldots u x m ldots u x 1 a 1 x 2 a 2 ldots x m a m k ldots 0 nbsp de F zadana dijsna funkciya tochki x 1 x 2 x m displaystyle x 1 x 2 x m nbsp oblasti D evklidovogo prostoru E m m 2 displaystyle E m m geqslant 2 nbsp i dijsnih zminnih u x 1 a 1 x 2 a 2 x m a m k k u x 1 x 2 x m x 1 a 1 x 2 a 2 x m a m displaystyle u x 1 a 1 x 2 a 2 ldots x m a m k frac partial k u x 1 x 2 x m partial x 1 alpha 1 partial x 2 alpha 2 partial x m alpha m nbsp u x nevidoma funkciya z nevid yemnimi cilochislovimi indeksami i 1 m a i k k 0 n displaystyle sum limits i 1 m alpha i k k 0 ldots n nbsp i prinajmni odna z pohidnih funkciyi F po zminnij sho vidpovidaye najvishomu poryadku chastkovih pohidnih vidminna vid nulya naturalne chislo m nazivayetsya poryadkom rivnyannya Viznachena u oblasti D zadannya rivnyannyam funkciya u x neperervna razom z svoyimi chastinnimi pohidnimi sho vhodyat v ce rivnyannya i sho obertaye jogo v totozhnist nazivayetsya regulyarnim rozv yazkom Razom z regulyarnimi rozv yazkami v teoriyi diferencialnih rivnyan z chastinnimi pohidnimi vazhlive znachennya mayut rozv yazki sho perestayut buti regulyarnimi poblizu izolovanih tochok abo mnogovidiv osoblivogo viglyadu do nih nalezhat zokrema elementarni fundamentalni rozv yazki Voni dozvolyayut buduvati shiroki klasi regulyarnih rozv yazkiv tak zvanih potencialiv i vstanovlyuvati yih strukturni i yakisni vlastivosti U vipadku neperervnosti chastkovih pohidnih F vidnosno zminnih u x 1 a 1 x 2 a 2 x m a m n displaystyle u x 1 a 1 x 2 a 2 ldots x m a m n nbsp tobto vidnosno chastkovih pohidnih najvishogo poryadku vazhlive znachennya vidigraye forma poryadku m k l 1 l 2 l m F u x 1 a 1 x 2 a 2 x m a m n l 1 a 1 l 2 a 2 l m a m displaystyle k lambda 1 lambda 2 ldots lambda m sum frac partial F partial u x 1 a 1 x 2 a 2 ldots x m a m n lambda 1 a 1 lambda 2 a 2 ldots lambda m a m nbsp Dana forma nazivayetsya harakteristichnoyu formoyu sho vidpovidaye rivnyannyu z chastinnimi pohidnimi Linijni rivnyannya red Diferencialne rivnyannya z chastinnimi pohidnimi nazivayetsya linijnim yaksho vono linijne vidnosno nevidomoyi funkciyi i vsih yiyi chastinnih pohidnih tobto funkciya F z oznachennya linijna vidnosno argumentiv u x 1 a 1 x 2 a 2 x m a m k displaystyle u x 1 a 1 x 2 a 2 ldots x m a m k nbsp Klasifikaciya rivnyan drugogo poryadku red Linijne rivnyannya 2 go poryadku maye viglyad i j 1 m A i j x u x i x j i 1 m B i x u x i C x u f x displaystyle sum limits i j 1 m A ij x u x i x j sum limits i 1 m B i x u x i C x u f x nbsp de A i j B i C f displaystyle A ij B i C f nbsp zadani v oblasti D dijsni funkciyi tochki x Dlya linijnogo rivnyannya 2 go poryadku harakteristichna forma ye kvadratichnoyu Q l 1 l 2 l m i 1 m A i j l i l j displaystyle Q lambda 1 lambda 2 ldots lambda m sum limits i 1 m A ij lambda i lambda j nbsp U kozhnij tochci x D displaystyle x in D nbsp kvadratichna forma Q za dopomogoyu nevirodzhenogo afinnogo peretvorennya zminnih l i l i s 1 s m i 1 m displaystyle lambda i lambda i sigma 1 ldots sigma m quad i 1 ldots m nbsp mozhe buti privedena do kanonichnogo vidu Q i 1 m A i s i 2 displaystyle Q sum limits i 1 m mathrm A i sigma i 2 nbsp de koeficiyenti A i i 1 n displaystyle mathrm A i quad i 1 ldots n nbsp prijmayut znachennya 1 1 0 prichomu chislo vid yemnih koeficiyentiv indeks inerciyi i chislo nulovih koeficiyentiv defekt formi ye afinnimi invariantami Koli vsi A i 1 displaystyle mathrm A i 1 nbsp abo vsi A i 1 displaystyle mathrm A i 1 nbsp tobto koli forma Q vidpovidno dodatno abo vid yemno viznachena definitna rivnyannya nazivayetsya eliptichnim v tochci x D displaystyle x in D nbsp Yaksho odin z koeficiyentiv A i displaystyle mathrm A i nbsp vid yemnij a vsi inshi dodatni abo navpaki to rivnyannya nazivayetsya giperbolichnim v tochci h U vipadku koli l 1 lt l lt n 1 displaystyle l 1 lt l lt n 1 nbsp koeficiyentiv A i displaystyle mathrm A i nbsp dodatni a reshta n l vid yemni rivnyannya nazivayetsya ultragiperbolichnim Yaksho zh hocha bi odin z cih koeficiyentiv ale ne vsi rivnij nulyu to rivnyannya nazivayetsya parabolichnim v tochci h Kazhut sho u oblasti viznachennya D rivnyannya ye rivnyannyam eliptichnogo giperbolichnogo abo parabolichnogo tipu yaksho vono vidpovidno eliptichne giperbolichne abo parabolichne u kozhnij tochci ciyeyi oblasti Eliptichne v oblasti D rivnyannya nazivayetsya rivnomirno eliptichnim yaksho isnuyut dijsni chisla k 0 displaystyle k 0 nbsp i k 1 odnakovogo znaku taki sho k 0 i 1 m l i 2 Q l 1 l 2 l m k 1 i 1 m l i 2 displaystyle k 0 sum limits i 1 m lambda i 2 leqslant Q lambda 1 lambda 2 ldots lambda m leqslant k 1 sum limits i 1 m lambda i 2 nbsp dlya vsih x D displaystyle x in D nbsp Koli v riznih chastinah oblasti D rivnyannya nalezhit do riznih tipiv to vono nazivayetsya rivnyannyam zmishanogo tipu v cij oblasti U vipadku linijnogo rivnyannya vid dvoh zminnih tip rivnyannya v tochci viznachiti dosit prosto Linijne rivnyannya drugogo poryadku zalezhne vid dvoh zminnih maye viglyad A 2 u x 2 2 B 2 u x y C 2 u y 2 0 displaystyle A frac partial 2 u partial x 2 2B frac partial 2 u partial x partial y C frac partial 2 u partial y 2 0 nbsp de A B C koeficiyenti zalezhni vid zminnih x i y a krapki poznachayut chleni zalezhni vid x y u i chastkovih pohidnih pershogo poryadku u x displaystyle partial u partial x nbsp i u y displaystyle partial u partial y nbsp Ce rivnyannya shozhe na rivnyannya konichnogo peretinu A x 2 2 B x y C y 2 0 displaystyle Ax 2 2Bxy Cy 2 cdots 0 nbsp Tak samo yak konichni peretini rozdilyayutsya na elipsi paraboli i giperboli zalezhno vid znaku diskriminanta D B 2 A C displaystyle D B 2 AC nbsp klasifikuyutsya rivnyannya drugogo poryadku v zadanij tochci D B 2 A C gt 0 displaystyle D B 2 AC gt 0 nbsp Giperbolichne rivnyannya D B 2 A C lt 0 displaystyle D B 2 AC lt 0 nbsp Eliptichne rivnyannya D B 2 A C 0 displaystyle D B 2 AC 0 nbsp Parabolichne rivnyannya tut peredbachayetsya sho v danij tochci koeficiyenti A B C ne rivni odnochasno nulyu U razi koli vsi koeficiyenti A B C stali rivnyannya maye odin i toj zhe tip v usih tochkah ploshini zminnih x i y U vipadku yaksho koeficiyenti A B C neperervno zalezhat vid x i y mnozhini tochok v yakih dane rivnyannya ye giperbolichnogo eliptichnogo tipu utvoryuye na ploshini vidkritu oblast sho nazivayetsya giperbolichnoyu eliptichnoyu a mnozhina tochok v yakih rivnyannya vidnositsya do parabolichnogo tipa ye zamknutoyu Rivnyannya nazivayetsya zmishanim yaksho v deyakih tochkah ploshini vono giperbolichne a v deyakih eliptichne V comu vipadku parabolichni tochki yak pravilo utvoryuyut liniyu zvanu liniyeyu zmini tipu abo liniyeyu virodzhennya Isnuvannya i yedinist rozv yazku red Hocha vidpovid na pitannya pro isnuvannya i yedinist rozv yazku zvichajnogo diferencialnogo rivnyannya maye cilkom vicherpnu vidpovid teorema Pikara Lindelefa dlya rivnyannya z chastinnimi pohidnimi odnoznachnoyi vidpovidi na ce pitannya nemaye Isnuye zagalna teorema teorema Koshi Kovalevskoi yaka stverdzhuye sho zadacha Koshi dlya bud yakogo rivnyannya z chastinnimi pohidnimi analitichnogo shodo nevidomih funkcij i yih pohidnih maye yedinij analitichnij rozv yazok Prote isnuyut prikladi linijnih rivnyan z chastinnimi pohidnimi sho ne mayut rozv yazku koeficiyenti yakih mayut pohidni vsih poryadkiv Navit yaksho rozv yazok isnuye i ye yedinim vin mozhe mati nebazhani vlastivosti Rozglyanemo poslidovnist zadach Koshi zalezhnu vid n dlya rivnyannya Laplasa 2 u x 2 2 u y 2 0 displaystyle frac partial 2 u partial x 2 frac partial 2 u partial y 2 0 nbsp z pochatkovimi umovami u x 0 0 displaystyle u x 0 0 nbsp u y x 0 sin n x n displaystyle frac partial u partial y x 0 frac sin nx n nbsp de n cile chislo Pohidna vid funkciyi u po zminnij y rivnomirno pryamuye do 0 po x pri zrostanni n prote rozv yazkom rivnyannya ye u x y sinh n y sin n x n 2 displaystyle u x y frac sinh ny sin nx n 2 nbsp Rozv yazok pryamuye do neskinchennosti yaksho nx ne kratno p displaystyle pi nbsp dlya bud yakogo nenulovogo znachennya y zadacha Koshi dlya rivnyannya Laplasa nazivayetsya nekorektnoyu oskilki nemaye neperervnoyi zalezhnosti rozv yazku vid pochatkovih danih Prikladi red Odnovimirne rivnyannya teploprovidnosti red Rivnyannya sho opisuye rozpovsyudzhennya tepla v odnoridnomu strizhni maye viglyad u t a 2 u x 2 displaystyle frac partial u partial t alpha frac partial 2 u partial x 2 nbsp de u t x temperatura i a displaystyle alpha nbsp dodatna konstanta sho opisuye shvidkist rozpovsyudzhennya tepla Zadacha Koshi stavitsya takim chinom u 0 x f x displaystyle u 0 x f x nbsp de f x dovilna funkciya Rivnyannya kolivannya struni red 2 u t 2 c 2 2 u x 2 displaystyle frac partial 2 u partial t 2 c 2 frac partial 2 u partial x 2 nbsp Tut u t x zsuv struni z polozhennya rivnovagi abo nadmirnij tisk povitrya v trubi abo magnituda elektromagnitnogo polya v trubi a c shvidkist rozpovsyudzhennya hvili Dlya togo shob sformulyuvati zadachu Koshi v pochatkovij moment chasu slid zadati zsuv i shvidkist struni v pochatkovij moment chasu u 0 x f x displaystyle u 0 x f x nbsp u t 0 x g x displaystyle u t 0 x g x nbsp Dvovimirne rivnyannya Laplasa red Rivnyannya Laplasa dlya nevidomoyi funkciyi dvoh zminnih maye viglyad 2 u x 2 2 u y 2 0 displaystyle frac partial 2 u partial x 2 frac partial 2 u partial y 2 0 nbsp Jogo rozv yazki nazivayutsya garmonichnimi funkciyami Zv yazok z analitichnimi funkciyami red Dijsna i uyavna chastini bud yakoyi golomorfnoyi funkciyi f displaystyle f nbsp kompleksnoyi zminnoyi z x i y displaystyle z x iy nbsp ye spryazheno garmonichnimi funkciyami voni obidvi zadovolnyayut rivnyannyu Laplasa i yih gradiyenti ortogonalni Yaksho f u iv to umovi Koshi Rimana stverdzhuyut nastupne u x v y v x u y displaystyle frac partial u partial x frac partial v partial y quad frac partial v partial x frac partial u partial y nbsp Dodayuchi i vidnimayuchi rivnyannya odin z odnogo oderzhuyemo 2 u x 2 2 u y 2 0 2 v x 2 2 v y 2 0 displaystyle frac partial 2 u partial x 2 frac partial 2 u partial y 2 0 quad frac partial 2 v partial x 2 frac partial 2 v partial y 2 0 nbsp Takozh mozhna pokazati sho bud yaka garmonichna funkciya ye dijsnoyu chastinoyu deyakoyi analitichnoyi funkciyi Granichni umovi red Granichni umovi stavlyatsya takim chinom znajti funkciyu u yaka zadovolnyaye rivnyannyu Laplasa u vsih vnutrishnih tochkah oblasti S a na mezhi oblasti S displaystyle partial S nbsp deyakij umovi Zalezhno vid vidu umovi rozriznyayut taki krayevi zadachi u S ps x y x y S displaystyle u partial S psi x y quad x y in partial S nbsp zadacha Dirihle u n S ps x y x y S displaystyle frac partial u partial n big partial S psi x y quad x y in partial S nbsp zadacha Nejmana Rivnyannya Ginzburga Landau red Rivnyannya Ginzburga Landau vikoristovuyutsya dlya modelyuvannya nadprovidnosti Rivnyannya maye viglyad t A x t A 1 i b 2 A x 2 1 i c A 2 A displaystyle frac partial partial t A x t A 1 ib frac partial 2 A partial x 2 1 ic A 2 A nbsp Rozv yazok rivnyan matematichnoyi fiziki red Isnuye dva vidi metodiv rozv yazuvannya danogo tipa rivnyan analitichni pri yakih rezultat vivoditsya riznimi matematichnimi peretvorennyami chiselni pri yakih oderzhanij rezultat vidpovidaye dijsnomu iz zadanoyu tochnistyu Analitichnij rozv yazok red Rivnyannya kolivan red Rozglyanemo zadachu pro kolivannya struni dovzhini L displaystyle L nbsp Vvazhatimemo sho na kincyah struni funkciya u x t displaystyle u x t nbsp nabuvaye znachennya nul u x t x 0 u x t x L 0 displaystyle u x t big x 0 u x t big x L 0 nbsp dd U pochatkovij moment chasu zadamo pochatkovi umovi u x t t 0 f x displaystyle u x t big t 0 f x nbsp u t x t t 0 g x displaystyle dfrac partial u partial t x t big t 0 g x nbsp dd Predstavimo rozv yazok u viglyadi u x t X x T t displaystyle u x t X x T t nbsp Pislya pidstanovki v pochatkove rivnyannya kolivan rozdilimo na dobutok X x T t displaystyle X x T t nbsp oderzhuyemo T t a 2 T t X x X x displaystyle dfrac T t a 2 T t dfrac X x X x nbsp dd Prava chastina cogo rivnyannya zalezhit vid t displaystyle t nbsp liva vid x displaystyle x nbsp otzhe ce rivnyannya mozhe vikonuvatisya lishe todi koli obidvi jogo chastini rivni stalij velichini yaku poznachimo cherez l 2 displaystyle lambda 2 nbsp T t a 2 T t X x X x l 2 displaystyle dfrac T t a 2 T t dfrac X x X x lambda 2 nbsp dd Zvidsi znahodimo rivnyannya dlya X x displaystyle X x nbsp X x l 2 X x 0 displaystyle X x lambda 2 X x 0 nbsp Netrivialni rozv yazki cogo rivnyannya za odnoridnih krayevih umov mozhlivi tilki pri l p n L displaystyle lambda dfrac pi n L nbsp i mayut viglyad X n x s i n p n x L displaystyle X n x sin left dfrac pi nx L right nbsp Rozglyanemo rivnyannya dlya znahodzhennya T t displaystyle T t nbsp T t a 2 l n 2 T t 0 displaystyle T t a 2 lambda n 2 T t 0 nbsp dd Jogo rozv yazok T t A n c o s a p n L t B n s i n a p n L t displaystyle T t A n cos left dfrac a pi n L t right B n sin left dfrac a pi n L t right nbsp dd Otzhe kozhna funkciya viglyadu u x t A n c o s a p n L t B n s i n a p n L t s i n p n x L displaystyle u x t left A n cos left dfrac a pi n L t right B n sin left dfrac a pi n L t right right sin left dfrac pi nx L right nbsp dd ye rishennyam hvilovogo rivnyannya Shob zadovolniti pochatkovi umovi utvorimo ryad u x t n 0 A n c o s a p n L t B n s i n a p n L t s i n p n x L displaystyle u x t sum limits n 0 infty left A n cos left dfrac a pi n L t right B n sin left dfrac a pi n L t right right sin left dfrac pi nx L right nbsp dd Pidstanovka v pochatkovi umovi daye n 0 A n s i n p n x L f x n 0 a p n L B n s i n p n x L g x displaystyle sum limits n 0 infty A n sin left dfrac pi nx L right f x quad sum limits n 0 infty dfrac a pi n L B n sin left dfrac pi nx L right g x nbsp dd Ostanni formuli ye rozkladom funkcij f x displaystyle f x nbsp i g x displaystyle g x nbsp u ryad Fur ye na vidrizku 0 L displaystyle 0 L nbsp Koeficiyenti rozkladu obchislyuyutsya za formulami A n 2 L 0 L f x s i n p n x L d x B n 2 n p a 0 L g x s i n p n x L d x displaystyle A n dfrac 2 L int limits 0 L f x sin left dfrac pi nx L right dx quad B n dfrac 2 n pi a int limits 0 L g x sin left dfrac pi nx L right dx nbsp dd Chiselnij rozv yazok red Rivnyannya kolivan struni red Cej sposib rishennya nazivayetsya metodom skinchennih riznic Cej metod zasnovanij na viznachenni pohidnoyi funkciyi y y x displaystyle y y x nbsp y lim D x 0 D y D x lim D x 0 f x D x f x D x displaystyle y lim Delta x to 0 Delta y over Delta x lim Delta x to 0 f x Delta x f x over Delta x nbsp dd Yaksho ye funkciya u u x t displaystyle u u x t nbsp to chastkova pohidna bude nastupna u x u x lim D x 0 u x D x t u x t D x displaystyle u x partial u over partial x lim Delta x to 0 u x Delta x t u x t over Delta x nbsp dd Oskilki D x displaystyle Delta x nbsp mi vikoristovuyemo dostatno malij znaki mezh mozhna vidkinuti Todi oderzhimo taki virazi u x u x D x t u x t D x displaystyle u x approx u x Delta x t u x t over Delta x nbsp dd u t u x t D t u x t D t displaystyle u t approx u x t Delta t u x t over Delta t nbsp dd u x t u i j displaystyle u x t u i j nbsp dd u x D x t u i 1 j displaystyle u x Delta x t u i 1 j nbsp dd u x t D t u i j 1 displaystyle u x t Delta t u i j 1 nbsp dd D x h displaystyle Delta x h nbsp D t t displaystyle Delta t tau nbsp dd Todi poperedni virazi mozhna zapisati tak u x u i 1 j u i j h displaystyle u x approx u i 1 j u i j over h nbsp u t u i j 1 u i j t displaystyle u t approx u i j 1 u i j over tau nbsp Ci virazi nazivayut pravimi diferencialami Yih mozhna zapisati i po inshomu u x u i j u i 1 j h displaystyle u x approx u i j u i 1 j over h nbsp u t u i j u i j 1 t displaystyle u t approx u i j u i j 1 over tau nbsp ce livi diferenciali Pidsumuvavshi obidva virazi oderzhimo nastupne 2 u x u i j u i 1 j u i 1 j u i j h displaystyle 2u x approx u i j u i 1 j u i 1 j u i j over h nbsp dd 2 u t u i j u i j 1 u i j 1 u i j t displaystyle 2u t approx u i j u i j 1 u i j 1 u i j over tau nbsp dd z yakih oderzhuyetsya u x u i 1 j u i 1 j 2 h displaystyle u x approx u i 1 j u i 1 j over 2h nbsp dd u t u i j 1 u i j 1 2 t displaystyle u t approx u i j 1 u i j 1 over 2 tau nbsp dd Analogichno mozhna oderzhati i diferenciali drugogo poryadku u x x 2 u x 2 u i 1 j 2 u i j u i 1 j h 2 displaystyle u xx partial 2 u over partial x 2 approx u i 1 j 2u i j u i 1 j over h 2 nbsp dd u t t 2 u t 2 u i j 1 2 u i j u i j 1 t 2 displaystyle u tt partial 2 u over partial t 2 approx u i j 1 2u i j u i j 1 over tau 2 nbsp dd Rivnyannya kolivan struni zapisuyetsya v takij formi 2 u t 2 a 2 2 u x 2 displaystyle frac partial 2 u partial t 2 a 2 frac partial 2 u partial x 2 nbsp Dodatkovi umovi zadayutsya u viglyadi u x 0 f 1 t displaystyle u x 0 f 1 t nbsp u x l f 2 t displaystyle u x l f 2 t nbsp u t 0 g 1 x displaystyle u t 0 g 1 x nbsp u t t 0 g 2 x displaystyle u t t 0 g 2 x nbsp de f 1 t displaystyle f 1 t nbsp i f 2 t displaystyle f 2 t nbsp poziciyi kinciv kriplen struni v chasi a g 1 x displaystyle g 1 x nbsp i g 2 x displaystyle g 2 x nbsp pochatkovij stan i shvidkist struni z yakoyi mi mozhemo otrimati stan struni v nastupnij moment chasu za formuloyuu i j 1 t g 2 x u i j displaystyle u i j 1 tau cdot g 2 x u i j nbsp dd U obchislennyah vikoristovuyut diskretizaciyu struni rozdilyayut yiyi na odnakovi intervali dovzhina yakih h displaystyle h nbsp Znachennya funkciyi dlya inshih x displaystyle x nbsp i t displaystyle t nbsp mozhna obchisliti z rivnyannya kolivan struni 2 u t 2 a 2 2 u x 2 displaystyle frac partial 2 u partial t 2 a 2 frac partial 2 u partial x 2 nbsp dd 2 u t 2 u i j 1 2 u i j u i j 1 t 2 displaystyle partial 2 u over partial t 2 u i j 1 2u i j u i j 1 over tau 2 nbsp dd 2 u x 2 u i 1 j 2 u i j u i 1 j h 2 displaystyle partial 2 u over partial x 2 u i 1 j 2u i j u i 1 j over h 2 nbsp dd u i j 1 2 u i j u i j 1 t 2 a 2 u i 1 j 2 u i j u i 1 j h 2 displaystyle u i j 1 2u i j u i j 1 over tau 2 a 2 u i 1 j 2u i j u i 1 j over h 2 nbsp dd u i j 1 t 2 a 2 h 2 u i 1 j 2 u i j u i 1 j 2 u i j u i j 1 displaystyle u i j 1 tau 2 a 2 over h 2 left u i 1 j 2u i j u i 1 j right 2u i j u i j 1 nbsp dd Takim chinom mi oderzhali shemu za yakoyu mozhna znajti znachennya funkciyi dlya bud yakih x displaystyle x nbsp i t displaystyle t nbsp vikoristovuyuchi znachennya funkciyi pri poperednih x displaystyle x nbsp i t displaystyle t nbsp Cej metod daye nablizhenu vidpovid stupin tochnosti 8 t 2 h 2 displaystyle Theta tau 2 h 2 nbsp Dlya dostatno tochnih rezultativ neobhidno vikoristovuvati intervali h lt 0 1 displaystyle h lt 0 1 nbsp i t h 2 2 displaystyle tau leq h 2 over 2 nbsp Div takozh red Diferencialne rivnyannya Zvichajne diferencialne rivnyannya Matematichna fizikaLiteratura red Vladimirov V S Uravneniya matematicheskoj fiziki M Nauka 1971 512 s Goncharenko V M Osnovi teoriyi rivnyan z chastinnimi pohidnimi K 1996 Kurant R Uravneniya s chastnymi proizvodnymi per s angl M 1964 Mihlin S G Linejnye uravneniya v chastnyh proizvodnyh M Vyssh shk 1977 432 s Perestyuk M O Marinec V V Teoriya rivnyan matematichnoyi fiziki K Libid 2002 336 s Rivnyannya matematichnoyi fiziki praktikum navch posib O I Bobik I O Bobik V V Litvin za nauk red V V Pasichnika M vo osviti i nauki Ukrayini L Novij Svit 2000 2010 253 s Komp yuting Bibliogr s 252 10 nazv ISBN 978 966 418 122 5 Tihonov A N Samarskij A A Uravneniya matematicheskoj fiziki M 1983 Evans L C 1998 Partial Differential Equations Providence American Mathematical Society ISBN 0 8218 0772 2 John F 1982 Partial Differential Equations 4th ed New York Springer Verlag ISBN 0 387 90609 6 Polyanin A D 2002 Handbook of Linear Partial Differential Equations for Engineers and Scientists Boca Raton Chapman amp Hall CRC Press ISBN 1 58488 299 9 Polyanin A D amp Zaitsev V F 2004 Handbook of Nonlinear Partial Differential Equations Boca Raton Chapman amp Hall CRC Press ISBN 1 58488 355 3 Otrimano z https uk wikipedia org w index php title Diferencialne rivnyannya z chastinnimi pohidnimi amp oldid 27314222