www.wikidata.uk-ua.nina.az
Rozpodil Pareto v teoriyi imovirnostej dvoparametrichna sim ya absolyutno neperervnih rozpodiliv Nazvanij na chest italijskogo inzhenera z civilnogo budivnictva en ekonomista i sociologa Vilfredo Pareto Ce stepenevij rozpodil jmovirnostej yakij vikoristovuyetsya dlya opisannya socialnih naukovih geofizichnih aktuarnih ta bagatoh inshih tipiv sposterezhuvanih yavish Pochatkovo zastosovuvalasya dlya opisannya rozpodilu bagatstva en sered suspilstva sho vidpovidaye tendenciyi sho velika chastina bagatstva zoseredzhena v rukah nevelikoyi chastini naselennya lyudej U rozmovnij versiyi rozpodil Pareto vidomij yak princip Pareto abo pravilo 80 20 a takozh inodi mozhe nazivatisya efektom Matviya Ce pravilo stverdzhuye sho napriklad 80 bagatstva suspilstva utrimuyut 20 jogo naselennya Odnak rozpodil Pareto daye cej rezultat tilki pri pevnomu znachenni stepenya a displaystyle alpha a log45 1 16 Hocha a displaystyle alpha ye zminnoyu empirichni sposterezhennya ustanovili sho rozpodil 80 20 vidpovidaye shirokomu zagalu vipadkiv vklyuchayuchi prirodni yavisha i diyalnist lyudini Rozpodil ParetoShilnist rozpodilu Funkciyi shilnosti rozpodilu Pareto tipu I dlya riznih a displaystyle alpha pri x m 1 displaystyle x mathrm m 1 Pri tomu yak a displaystyle alpha rightarrow infty rozpodil nablizhayetsya do d x x m displaystyle delta x x mathrm m de d displaystyle delta ce Delta funkciya Diraka Funkciya rozpodilu jmovirnostej Kumulyativna funkciya rozpodilu Pareto tipu 1 dlya riznih a displaystyle alpha pri x m 1 displaystyle x mathrm m 1 Parametri x m gt 0 displaystyle x mathrm m gt 0 masshtab dijsne a gt 0 displaystyle alpha gt 0 parametr formi dijsne Nosij funkciyi x x m displaystyle x in x mathrm m infty Rozpodil imovirnostej a x m a x a 1 displaystyle frac alpha x mathrm m alpha x alpha 1 Funkciya rozpodilu jmovirnostej cdf 1 x m x a displaystyle 1 left frac x mathrm m x right alpha Serednye dlya a 1 a x m a 1 dlya a gt 1 displaystyle begin cases infty amp text dlya alpha leq 1 dfrac alpha x mathrm m alpha 1 amp text dlya alpha gt 1 end cases Mediana x m 2 a displaystyle x mathrm m sqrt alpha 2 Moda x m displaystyle x mathrm m Dispersiya dlya a 2 x m 2 a a 1 2 a 2 dlya a gt 2 displaystyle begin cases infty amp text dlya alpha leq 2 dfrac x mathrm m 2 alpha alpha 1 2 alpha 2 amp text dlya alpha gt 2 end cases Koeficiyent asimetriyi 2 1 a a 3 a 2 a dlya a gt 3 displaystyle frac 2 1 alpha alpha 3 sqrt frac alpha 2 alpha text dlya alpha gt 3 Koeficiyent ekscesu 6 a 3 a 2 6 a 2 a a 3 a 4 dlya a gt 4 displaystyle frac 6 alpha 3 alpha 2 6 alpha 2 alpha alpha 3 alpha 4 text dlya alpha gt 4 Entropiya log x m a e 1 1 a displaystyle log left left frac x mathrm m alpha right e 1 tfrac 1 alpha right Tvirna funkciya momentiv mgf a x m t a G a x m t dlya t lt 0 displaystyle alpha x mathrm m t alpha Gamma alpha x mathrm m t text dlya t lt 0 Harakteristichna funkciya a i x m t a G a i x m t displaystyle alpha ix mathrm m t alpha Gamma alpha ix mathrm m t Zmist 1 Viznachennya 2 Vlastivosti 2 1 Kumulyativna funkciya rozpodilu 2 2 Funkciya gustini imovirnostej 2 3 Momenti i harakteristichna funkciya 2 4 Umovnij rozpodil 2 5 Harakteristichna teorema 2 6 Serednye geometrichne 2 7 Serednye garmonijne 3 Uzagalnenij rozpodil Pareto 3 1 Pareto I IV tipiv 3 2 Rozpodil Fellera Pareto 4 Zastosuvannya 5 Zv yazok iz inshimi rozpodilami 5 1 Zv yazok iz eksponencijnim rozpodilom 5 2 Zv yazok iz uzagalnenim rozpodilom Pareto 5 3 Zv yazok iz zakonom Cipfa 5 4 Zv yazok iz Principom Pareto 6 Rozpodil Lorenca i koeficiyent Dzhini 7 Ocinka parametriv 8 Grafichne predstavlennya 9 Generuvannya vipadkovoyi vibirki 10 Varianti 10 1 Obmezhenij rozpodil Pareto 10 1 1 Generuvannya vipadkovih velichin obmezhenogo rozpodilu Pareto 10 2 Simetrichnij rozpodil Pareto 11 Div takozh 12 Dzherela 13 PrimitkiViznachennya RedaguvatiYaksho X ye vipadkovoyu velichinoyu iz rozpodilom Pareto Tipu I 1 todi imovirnist togo sho X ye bilshoyu za deyake chislo x tobto funkciya vizhivannya en inodi nazivayetsya funkciyeyu nadijnosti viznachayetsya yak F x Pr X gt x x m x a x x m 1 x lt x m displaystyle overline F x Pr X gt x begin cases left frac x mathrm m x right alpha amp x geq x mathrm m 1 amp x lt x mathrm m end cases nbsp de xm de obov yazkovo dodatne minimalno mozhlive znachennya X ta a ye dodatnim parametrom Rozpodil Pareto tipu I harakterizuyetsya parametrom masshtabuvannya xm i parametrom formi a Yaksho rozpodil vikoristovuyut dlya modelyuvannya rozpodilu bagatstva todi parametr a v danomu konteksti nazivayut indeksom Pareto en Vlastivosti RedaguvatiKumulyativna funkciya rozpodilu Redaguvati Iz viznachennya kumulyativnoyu funkciyeyu rozpodilu imovirnostej vipadkovoyi velichini Pareto iz parametrami a i xm ye F X x 1 x m x a x x m 0 x lt x m displaystyle F X x begin cases 1 left frac x mathrm m x right alpha amp x geq x mathrm m 0 amp x lt x mathrm m end cases nbsp Funkciya gustini imovirnostej Redaguvati Zvidsi viplivaye shlyahom diferenciyuvannya sho funkciyeyu gustini imovirnostej ye f X x a x m a x a 1 x x m 0 x lt x m displaystyle f X x begin cases frac alpha x mathrm m alpha x alpha 1 amp x geq x mathrm m 0 amp x lt x mathrm m end cases nbsp Pri vidobrazheni na grafiku funkciya gustini nagaduye vignutu krivu yaka asimptotichno nablizhayetsya do kozhnoyi iz osej Vsi segmenti krivoyi ye samopodibnimi z urahuvannyam vidpovidnih koeficiyentiv masshtabuvannya Pri zobrazhenni na logarifmichnomu grafiku rozpodil predstavlyayetsya u viglyadi pryamoyi liniyi Momenti i harakteristichna funkciya Redaguvati Matematichne spodivannya vipadkovoyi velichini sho maye rozpodil Pareto viznachayetsya yakE X a 1 a x m a 1 a gt 1 displaystyle operatorname E X begin cases infty amp alpha leq 1 frac alpha x mathrm m alpha 1 amp alpha gt 1 end cases nbsp dd Dispersiya vipadkovoyi velichini sho vidpovidaye rozpodilu Pareto viznachayetsya yakD X a 1 2 x m a 1 2 a a 2 a gt 2 displaystyle operatorname D X begin cases infty amp alpha in 1 2 left frac x mathrm m alpha 1 right 2 frac alpha alpha 2 amp alpha gt 2 end cases nbsp dd Yaksho a 1 dispersiya ne isnuye Zagalna formula dlya viznachennya momentiv ye nastupnoyu m n a n a x m n a n a gt n displaystyle mu n begin cases infty amp alpha leq n frac alpha x mathrm m n alpha n amp alpha gt n end cases nbsp dd Tvirna funkciya momentiv viznachena lishe dlya ne dodatnih znachen t 0 oskilkiM t a x m E e t X a x m t a G a x m t displaystyle M left t alpha x mathrm m right operatorname E left e tX right alpha x mathrm m t alpha Gamma alpha x mathrm m t nbsp M 0 a x m 1 displaystyle M left 0 alpha x mathrm m right 1 nbsp dd Harakteristichna funkciya vipadkovoyi velichini viznachayetsya yakf t a x m a i x m t a G a i x m t displaystyle varphi t alpha x mathrm m alpha ix mathrm m t alpha Gamma alpha ix mathrm m t nbsp dd de G a x ye nepovnoyu Gamma funkciyeyu Umovnij rozpodil Redaguvati Umovnij rozpodil imovirnostej vipadkovoyi velichini iz rozpodilom Pareto zadaye podiyu sho velichina ye bilshoyu abo rivnoyu u porivnyanni iz pevnim chislom x 1 displaystyle x 1 nbsp yake perevishuye x m displaystyle x text m nbsp ye rozpodilom Pareto iz tim samim indeksom Pareto a displaystyle alpha nbsp ale iz minimalnim x 1 displaystyle x 1 nbsp zamist x m displaystyle x text m nbsp Harakteristichna teorema Redaguvati Pripustimo sho X 1 X 2 X 3 displaystyle X 1 X 2 X 3 dotsc nbsp ye nezalezhni odnakovo rozpodileni vipadkovi velichini rozpodil imovirnostej yakih znahoditsya v intervali supported x m displaystyle x text m infty nbsp dlya deyakogo znachennya x m gt 0 displaystyle x text m gt 0 nbsp Pripustimo sho dlya vsih n displaystyle n nbsp para vipadkovih velichin min X 1 X n displaystyle min X 1 dotsc X n nbsp i X 1 X n min X 1 X n displaystyle X 1 dotsb X n min X 1 dotsc X n nbsp ye nezalezhnimi Todi yih spilnij rozpodil bude rozpodilom Pareto Serednye geometrichne Redaguvati Serednye geometrichne G viznachayetsya yak 2 G x m exp 1 a displaystyle G x text m exp left frac 1 alpha right nbsp Serednye garmonijne Redaguvati Serednye garmonijne H viznachayetsya yak 2 H x m 1 1 a displaystyle H x text m left 1 frac 1 alpha right nbsp Uzagalnenij rozpodil Pareto RedaguvatiDiv takozh Uzagalnenij rozpodil Pareto Isnuye iyerarhiya 1 3 rozpodiliv Pareto sho vidomi yak Pareto Tip I II III IV i rozpodil Fellera Pareto 1 3 4 Pareto tipu IV vklyuchaye Pareto tipiv I III yak osoblivi vipadki Rozpodil Fellera Pareto 3 5 uzagalnyuye Pareto IV tipu Pareto I IV tipiv Redaguvati Iyerarhiya rozpodiliv Pareto uzagalnena u nastupnij tablici yaka porivnyuye funkciyi vizhivannya en dopovnena kumulyativna funkciya rozpodilu Koli m 0 rozpodil Pareto II tipu vidomij takozh yak rozpodil Lomaksa 6 V danomu rozdili simvol xm sho vikoristovuyetsya dlya poznachennya minimalnogo znachennya x zamineno na simvol s Rozpodili Pareto F x 1 F x displaystyle overline F x 1 F x nbsp Umova ParametriTip I x s a displaystyle left frac x sigma right alpha nbsp x s displaystyle x geq sigma nbsp s gt 0 a displaystyle sigma gt 0 alpha nbsp Tip II 1 x m s a displaystyle left 1 frac x mu sigma right alpha nbsp x m displaystyle x geq mu nbsp m R s gt 0 a displaystyle mu in mathbb R sigma gt 0 alpha nbsp Lomaksa 1 x s a displaystyle left 1 frac x sigma right alpha nbsp x 0 displaystyle x geq 0 nbsp s gt 0 a displaystyle sigma gt 0 alpha nbsp Tip III 1 x m s 1 g 1 displaystyle left 1 left frac x mu sigma right 1 gamma right 1 nbsp x m displaystyle x geq mu nbsp m R s g gt 0 displaystyle mu in mathbb R sigma gamma gt 0 nbsp Tip IV 1 x m s 1 g a displaystyle left 1 left frac x mu sigma right 1 gamma right alpha nbsp x m displaystyle x geq mu nbsp m R s g gt 0 a displaystyle mu in mathbb R sigma gamma gt 0 alpha nbsp Parametr formi poznacheno yak a m polozhennya s ce masshtab g parametr nerivnosti Deyakimi osoblivimi vipadkami rozpodilu Pareto IV tipu ye P I V s s 1 a P I s a displaystyle P IV sigma sigma 1 alpha P I sigma alpha nbsp P I V m s 1 a P I I m s a displaystyle P IV mu sigma 1 alpha P II mu sigma alpha nbsp P I V m s g 1 P I I I m s g displaystyle P IV mu sigma gamma 1 P III mu sigma gamma nbsp dd Skinchennist serednogo znachennya a takozh isnuvannya i skinchennist dispersiyi zalezhit vid indeksu a indeksu nerivnosti g Zokrema chastkovi d momenti ye skinchennimi dlya deyakih d gt 0 yak pokazano u tablici nizhche de d ne obov yazkovo ye cilim chislom Momenti rozpodiliv Pareto I IV dlya vipadku m 0 E X displaystyle operatorname E X nbsp Umova E X d displaystyle operatorname E X delta nbsp UmovaTip I s a a 1 displaystyle frac sigma alpha alpha 1 nbsp a gt 1 displaystyle alpha gt 1 nbsp s d a a d displaystyle frac sigma delta alpha alpha delta nbsp d lt a displaystyle delta lt alpha nbsp Tip II s a 1 displaystyle frac sigma alpha 1 nbsp a gt 1 displaystyle alpha gt 1 nbsp s d G a d G 1 d G a displaystyle frac sigma delta Gamma alpha delta Gamma 1 delta Gamma alpha nbsp 1 lt d lt a displaystyle 1 lt delta lt alpha nbsp Tip III s G 1 g G 1 g displaystyle sigma Gamma 1 gamma Gamma 1 gamma nbsp 1 lt g lt 1 displaystyle 1 lt gamma lt 1 nbsp s d G 1 g d G 1 g d displaystyle sigma delta Gamma 1 gamma delta Gamma 1 gamma delta nbsp g 1 lt d lt g 1 displaystyle gamma 1 lt delta lt gamma 1 nbsp Tip IV s G a g G 1 g G a displaystyle frac sigma Gamma alpha gamma Gamma 1 gamma Gamma alpha nbsp 1 lt g lt a displaystyle 1 lt gamma lt alpha nbsp s d G a g d G 1 g d G a displaystyle frac sigma delta Gamma alpha gamma delta Gamma 1 gamma delta Gamma alpha nbsp g 1 lt d lt a g displaystyle gamma 1 lt delta lt alpha gamma nbsp Rozpodil Fellera Pareto Redaguvati Feller 3 5 viznachaye zminnu Pareto shlyahom peretvorennya U Y 1 1 vipadkovoyi velichini Y iz Beta rozpodilom funkciya gustini rozpodilu yakoyi dorivnyuye f y y g 1 1 1 y g 2 1 B g 1 g 2 0 lt y lt 1 g 1 g 2 gt 0 displaystyle f y frac y gamma 1 1 1 y gamma 2 1 B gamma 1 gamma 2 qquad 0 lt y lt 1 gamma 1 gamma 2 gt 0 nbsp de B Beta funkciya Yaksho W m s Y 1 1 g s gt 0 g gt 0 displaystyle W mu sigma Y 1 1 gamma qquad sigma gt 0 gamma gt 0 nbsp todi W maye rozpodil Fellera Pareto FP m s g g1 g2 1 Yaksho U 1 G d 1 1 displaystyle U 1 sim Gamma delta 1 1 nbsp i U 2 G d 2 1 displaystyle U 2 sim Gamma delta 2 1 nbsp ye nezalezhnimi Gamma rozpodilenimi velichinami inshim sposobom pobuduvati vipadkovo velichinu iz rozpodilom Fellera Pareto FP mozhna yak 7 W m s U 1 U 2 g displaystyle W mu sigma left frac U 1 U 2 right gamma nbsp i mi zapishemo W FP m s g d1 d2 Osoblivimi vipadkami rozpodilu Fellera Pareto ye F P s s 1 1 a P I s a displaystyle FP sigma sigma 1 1 alpha P I sigma alpha nbsp F P m s 1 1 a P I I m s a displaystyle FP mu sigma 1 1 alpha P II mu sigma alpha nbsp F P m s g 1 1 P I I I m s g displaystyle FP mu sigma gamma 1 1 P III mu sigma gamma nbsp F P m s g 1 a P I V m s g a displaystyle FP mu sigma gamma 1 alpha P IV mu sigma gamma alpha nbsp Zastosuvannya RedaguvatiPareto spochatku zastosuvav cej rozpodil dlya modelyuvannya rozpodilu bagatstva en mizh lyudmi oskilki zdavalosya vin dosit dobre pokazuye te sho bilsha chastina bagatstva bud yakogo suspilstva yak pravilo zoseredzhena u vlasnosti nevelikogo procentu osib iz danogo suspilstva Vin takozh vikoristovuvav yiyi dlya opisannya rozpodilu pributku 8 Cyu ideyu yak pravilo opisuyut v bilsh prostij formi yak princip Pareto abo pravilo 80 20 yake stverdzhuye sho 20 naselennya kontrolyuyut 80 vsih bagatstv 9 Odnak pravilo 80 20 vidpovidaye chastkovomu znachennyu a i na spravdi dani Pareto pro podatki na pributok v Britaniyi v jogo roboti Cours d economie politique vkazuyut sho blizko 30 naselennya mali blizko 70 pributku Grafik funkciyi gustini imovirnosti na pochatku ciyeyi statti pokazu sho imovirnist abo chastka naselennya yaka volodiye nevelikoyu kilkistyu bagatstva na lyudinu ye dosit velikoyu i zmenshuyetsya zi zrostannyam kilkosti bagatstva Slid zauvazhiti sho rozpodil Pareto ne ye realistichnim dlya vipadku iz nevelikoyu velichinoyu bagatstva Naspravdi chisti aktivi mozhut buti navit vid yemnimi Cej rozpodil ne obmezhuyetsya vikoristannyam dlya opisannya bagatstva abo pributku naselennya a i vikoristovuyetsya dlya bagatoh situacij v yakih znahoditsya rivnovaga u rozpodilenni vid malogo do velikogo Nastupni prikladi inodi rozglyadayut yak taki sho priblizno mayut rozpodil Pareto Rozmir naselenih punktiv nebagato mist bagato selish sil 10 Rozpodil rozmiriv fajliv v Internet trafiku v yakomu vikoristovuyetsya protokol TCP bagato menshih fajliv ridshe veliki 10 Chastota pomilok zapisu na zhorstkomu disku 11 Klasteri kondensaciyi Boze Ejnshtejna blizko absolyutnogo nulya 12 nbsp Pidibranij za dopomogoyu CumFreq kumulyativnij rozpodil Pareto Lomaks do maksimalnih dobovih opadiv Velichina zapasiv nafti v naftovih rodovishah ne bagato velikih rodovish en i bagato malih rodovish 10 Obsyag zadach yaki vinosilisya dlya virishennya na superkomp yuterah dekilka velikih bagato malih 13 Normalizovana dohidnist cin na okremi akciyi 10 Rozmiri chastinok pisku 10 Rozmir meteoritiv Velichina znachnih vtrat unaslidok katastrof dlya pevnogo rodu biznesu generalni zobov yazannya komercijni avto i kompensaciya robitnikam 14 15 V Gidrologiyi rozpodil Pareto zastosovuyetsya dlya modelyuvannya nadzvichajnih podij takih yak shorichni maksimalni opadi na dobu i pavodok rik 16 Zobrazhennya iz sinim fonom pokazuye priklad pidboru rozpodilu Pareto dlya vporyadkovanogo pokazniku shorichnogo maksimumu opadiv na dobu pokazuye takozh 90 dovirchij interval osnovanij na binomialnomu rozpodili Dani vipadinnya opadiv pokazani za dopomogoyu tochkovih pozicij sho zreshtoyu pokazuye proces kumulyativnij chastotnij analiz Zv yazok iz inshimi rozpodilami RedaguvatiZv yazok iz eksponencijnim rozpodilom Redaguvati Rozpodil Pareto pov yazanij iz eksponencijnim rozpodilom nastupnim chinom Yaksho vipadkova velichina X maye rozpodil Pareto iz minimumom xm i indeksom a todi Y log X x m displaystyle Y log left frac X x mathrm m right nbsp ye eksponencijno rozpodilenoyu velichinoyu iz parametrom a Analogichno yaksho Y eksponencijno rozpodilena vipadkova velichina iz parametrom a todi x m e Y displaystyle x mathrm m e Y nbsp maye rozpodil Pareto iz minimumom xm ta indeksom a Ce mozhna vikoristovuvati u standartnij proceduri zamini zminnoyi Pr Y lt y Pr log X x m lt y Pr X lt x m e y 1 x m x m e y a 1 e a y displaystyle begin aligned Pr Y lt y amp Pr left log left frac X x mathrm m right lt y right amp Pr X lt x mathrm m e y 1 left frac x mathrm m x mathrm m e y right alpha 1 e alpha y end aligned nbsp Krajnij viraz zadaye kumulyativnu funkciyu rozpodilu dlya eksponencijnogo rozpodilu iz parametrom a Zv yazok iz uzagalnenim rozpodilom Pareto Redaguvati Rozpodil Pareto ye osoblivim vipadkom uzagalnenogo rozpodilu Pareto yakij ye simejstvom rozpodiliv podibnoyi formi ale mistit dodatkovij parametr sho dozvolyaye obmezhiti rozpodil znizu v dovilnij tochci abo buti obmezhenim zverhu i znizu de obidvi mezhi ye zminnimi i mistit rozpodil Lomaksa yak osoblivij vipadok Do cogo simejstva vidnosyatsya takozh obidva zmishenij i ne zmishenij eksponencijni rozpodili Rozpodil Pareto iz masshtabom x m displaystyle x m nbsp i formoyu a displaystyle alpha nbsp ekvivalentnij uzagalnenomu rozpodilu Pareto iz zsuvom m x m displaystyle mu x m nbsp masshtabom s x m a displaystyle sigma x m alpha nbsp i formoyu 3 1 a displaystyle xi 1 alpha nbsp I navpaki mozhna otrimati rozpodil Pareto iz uzagalnenogo rozpodilu Pareto prijnyavshi sho x m s 3 displaystyle x m sigma xi nbsp i a 1 3 displaystyle alpha 1 xi nbsp Zv yazok iz zakonom Cipfa Redaguvati Rozpodil Pareto ye neperervnim rozpodilom jmovirnostej Zakon Cipfa yakij inodi nazivayut dzeta rozpodilom ce diskretnij rozpodil yakij rozdilyaye velichini na proste ranzhuvannya Obidva ye prostim stepenevim zakonom iz vid yemnim pokaznikom masshtabovani tak sho yihnya kumulyativna funkciya rozpodilu dorivnyuye 1 Rozpodil Cipfa mozhna otrimati iz rozpodilu Pareto yaksho znachennya x displaystyle x nbsp pributki rangovani na N displaystyle N nbsp klasiv tak sho kilkist lyudej v kozhnomu klasi viznachayetsya vidpovidno do vidnoshennya 1 rang Rozpodil normalizuyut shlyahom viznachennya takogo x m displaystyle x m nbsp sho a x m a 1 H N a 1 displaystyle alpha x mathrm m alpha frac 1 H N alpha 1 nbsp de H N a 1 displaystyle H N alpha 1 nbsp ye uzagalnenim garmonichnim chislom Ce dozvolyaye otrimati funkciyu gustini imovirnostej dlya rozpodilu Cipfa iz rozpodilu Pareto f x a x m a x a 1 1 x s H N s displaystyle f x frac alpha x mathrm m alpha x alpha 1 frac 1 x s H N s nbsp de s a 1 displaystyle s alpha 1 nbsp i x displaystyle x nbsp ye cilim chislom sho zadaye rang vid 1 do N de N ye najvishim dohodom Takim chinom dovilno obrana osoba abo slovo posilannya na vebsajt abo misto iz populyaciyi abo movi internetu chi krayini maye f x displaystyle f x nbsp jmovirnist ranzhuvannya x displaystyle x nbsp Zv yazok iz Principom Pareto Redaguvati Pravilo 80 20 vidpovidno do yakogo 20 vsih lyudej otrimuyut 80 vsogo pributku i 20 z najbilsh zabezpechenih 20 otrimuyut 80 iz tih 80 i tak dali tochno dotrimuyetsya yaksho indeks Pareto stanovit a log4 5 log 5 log 4 priblizno 1 161 Cej rezultat mozhna otrimati iz formuli dlya rozpodilu Lorenca navedenoyi nizhche Krim togo bulo pokazano sho nastupni tverdzhennya 17 ye matematichno ekvivalentnimi Pributok rozpodilyayetsya vidpovidno do rozpodilu Pareto z indeksom a gt 1 Isnuye deyake chislo 0 p 1 2 take sho 100p z usih lyudej otrimuyut 100 1 p vsogo pributku i analogichno dlya kozhnogo dijsnogo chisla ne obov yazkovo cilogo n gt 0 100pn z usih lyudej otrimuyut 100 1 p n procentiv vsogo dohodu a i p pov yazani mizh soboyu nastupnim chinom1 1 a ln 1 p n ln 1 1 p n displaystyle 1 frac 1 alpha frac ln 1 p n ln 1 1 p n nbsp Ce vidnositsya ne tilki do pributku a i do bagatstva abo bud chogo sho mozhe modelyuvati cej rozpodil Ce vklyuchaye takozh rozpodili Pareto sho mayut 0 lt a 1 yaki yak bulo vkazano vishe mayut neskinchenne matematichne spodivannya i takim chinom ne mozhut dostovirno modelyuvati rozpodil pributku Rozpodil Lorenca i koeficiyent Dzhini Redaguvati nbsp Krivi Lorenca dlya dekilkoh rozpodiliv Pareto Vipadok iz a vidpovidaye idealno rivnomirnomu rozpodilu G 0 a pryama a 1 vidpovidaye povnistyu nerivnomu rozpodilu G 1 Rozpodil Lorenca chasto vikoristovuyut dlya harakteristiki rozpodilu dohodiv i bagatstva Dlya bud yakogo rozpodilu rozpodil Lorenca L F mozhna zapisati cherez funkciyu shilnosti f abo funkciyu rozpodilu F yak L F x m x F x f x d x x m x f x d x 0 F x F d F 0 1 x F d F displaystyle L F frac int x mathrm m x F xf x dx int x mathrm m infty xf x dx frac int 0 F x F dF int 0 1 x F dF nbsp de x F ye obernenoyu dlya funkciyi rozpodilu CDF Dlya rozpodilu Pareto x F x m 1 F 1 a displaystyle x F frac x mathrm m 1 F frac 1 alpha nbsp a kriva Lorenca rozrahovuyetsya yak L F 1 1 F 1 1 a displaystyle L F 1 1 F 1 frac 1 alpha nbsp Dlya 0 lt a 1 displaystyle 0 lt alpha leq 1 nbsp znamennik bude neskinchennim sho privodit do L 0 Prikladi krivoyi Lorenca dlya dekilkoh rozpodiliv Pareto pokazani na malyunku pravoruch Vidpovidno do Oksfam 2016 najbagatshi 62 lyudini mayut stilki zh statku yak najbidnisha polovina svitovoyi populyaciyi 18 Mi mozhemo rozrahuvati indeks Pareto yakij vidpovidatime cij situaciyi Prijnyavshi sho e dorivnyuye 62 7 10 9 displaystyle 62 7 times 10 9 nbsp mayemo L 1 2 1 L 1 ϵ displaystyle L 1 2 1 L 1 epsilon nbsp abo 1 1 2 1 1 a ϵ 1 1 a displaystyle 1 1 2 1 frac 1 alpha epsilon 1 frac 1 alpha nbsp V rezultati a dorivnyuye blizko 1 15 i blizko 9 z usih statkiv nalezhat kozhnij z cih grup Ale naspravdi najbidnishi 69 iz doroslih lyudej vsogo svitu volodiyut lishe blizko 3 statkiv 19 Koeficiyent Dzhini ye miroyu vidhilennya krivoyi Lorenca vid rivnorozpodilenoyi pryamoyi sho ye pryamoyu yaka spoluchaye tochki 0 0 i 1 1 yaka na grafiku pravoruch pokazana chornim kolorom a Konkretno koeficiyent Dzhini ye podvoyenoyu plosheyu mizh krivoyu Lorenca i rivnorozpodilenoyu pryamoyu Koeficiyent Dzhini dlya rozpodilu Pareto rozrahovuyetsya dlya a 1 displaystyle alpha geq 1 nbsp yak G 1 2 0 1 L F d F 1 2 a 1 displaystyle G 1 2 left int 0 1 L F dF right frac 1 2 alpha 1 nbsp Ocinka parametriv RedaguvatiFunkciya pravdopodibnosti dlya parametriv a i xm rozpodilu Pareto dlya nezalezhnoyi vibirki x x1 x2 xn zadayetsya yak L a x m i 1 n a x m a x i a 1 a n x m n a i 1 n 1 x i a 1 displaystyle L alpha x mathrm m prod i 1 n alpha frac x mathrm m alpha x i alpha 1 alpha n x mathrm m n alpha prod i 1 n frac 1 x i alpha 1 nbsp Takim chinom logarifmichna funkciya pravdopodibnosti dorivnyuye ℓ a x m n ln a n a ln x m a 1 i 1 n ln x i displaystyle ell alpha x mathrm m n ln alpha n alpha ln x mathrm m alpha 1 sum i 1 n ln x i nbsp Mozhna pobachiti sho ℓ a x m displaystyle ell alpha x mathrm m nbsp monotonno zrostaye iz zrostannyam xm takim chinom chim bilshim ye znachennya xm tim bilshim bude znachennya funkciyi pravdopodibnosti Takim chinom oskilki x xm mi mozhemo zrobiti visnovok sho x m min i x i displaystyle widehat x mathrm m min i x i nbsp Dlya togo shob znajti statistichnu ocinku dlya a mi rozrahovuyemo vidpovidnu chastkovu pohidnu i znahodimo de vona dorivnyuye nulyu ℓ a n a n ln x m i 1 n ln x i 0 displaystyle frac partial ell partial alpha frac n alpha n ln x mathrm m sum i 1 n ln x i 0 nbsp Takim chinom ocinkoyu maksimalnoyi pravdopodibnosti dlya a bude a n i ln x i x m displaystyle widehat alpha frac n sum i ln x i widehat x mathrm m nbsp Ochikuvana statistichna ocinka dorivnyuye 20 s a n displaystyle sigma frac widehat alpha sqrt n nbsp Malik 1970 21 privodit rezultat iz tochnim spilnim rozpodilom velichin x m a displaystyle hat x mathrm m hat alpha nbsp Zokrema x m displaystyle hat x mathrm m nbsp i a displaystyle hat alpha nbsp ye nezalezhnimi a x m displaystyle hat x mathrm m nbsp maye rozpodil Pareto iz parametrom masshtabu xm i parametrom formi na todi yak a displaystyle hat alpha nbsp maye Obernenij gamma rozpodil iz parametrami formi i masshtabu n 1 ta na vidpovidno Grafichne predstavlennya RedaguvatiHarakterna kriva rozpodilu iz dovgim hvostom pri zobrazhenni na linijnij shkali prihovuye v sobi vnutrishnyu prostotu funkciyi pri zobrazhenni yiyi u logarifmichnij sistemi koordinat de vona prijmaye formu pryamoyi liniyi iz vid yemnim gradiyentom Iz formuli dlya funkciyi gustini imovirnostej viplivaye sho dlya x xm log f X x log a x m a x a 1 log a x m a a 1 log x displaystyle log f X x log left alpha frac x mathrm m alpha x alpha 1 right log alpha x mathrm m alpha alpha 1 log x nbsp Oskilki a ye dodatnim gradiyent a 1 ye vid yemnim Generuvannya vipadkovoyi vibirki RedaguvatiGeneruvannya vipadkovoyi vibirki mozhna vikonati za dopomogoyu zvorotnogo peretvorennya en Dano vipadkovu velichinu U yaka otrimana iz neperervnogo rivnomirnogo rozpodilu u odinichnomu intervali 0 1 zminna T zadana virazom T x m U 1 a displaystyle T frac x mathrm m U 1 alpha nbsp mazh rozpodil Pareto 22 Yaksho U neperervno rivnomirno rozpodilena u intervali 0 1 yiyi mozhlivo zaminiti na 1 U Varianti RedaguvatiObmezhenij rozpodil Pareto Redaguvati Obmezhenij rozpodil ParetoParametri L gt 0 displaystyle L gt 0 nbsp zsuv dijsne chislo H gt L displaystyle H gt L nbsp zsuv dijsne chislo a gt 0 displaystyle alpha gt 0 nbsp forma dijsne chislo Nosij funkciyi L x H displaystyle L leqslant x leqslant H nbsp Rozpodil imovirnostej a L a x a 1 1 L H a displaystyle frac alpha L alpha x alpha 1 1 left frac L H right alpha nbsp Funkciya rozpodilu jmovirnostej cdf 1 L a x a 1 L H a displaystyle frac 1 L alpha x alpha 1 left frac L H right alpha nbsp Serednye L a 1 L H a a a 1 1 L a 1 1 H a 1 a 1 displaystyle frac L alpha 1 left frac L H right alpha cdot left frac alpha alpha 1 right cdot left frac 1 L alpha 1 frac 1 H alpha 1 right alpha neq 1 nbsp Mediana L 1 1 2 1 L H a 1 a displaystyle L left 1 frac 1 2 left 1 left frac L H right alpha right right frac 1 alpha nbsp Dispersiya L a 1 L H a a a 2 1 L a 2 1 H a 2 a 2 displaystyle frac L alpha 1 left frac L H right alpha cdot left frac alpha alpha 2 right cdot left frac 1 L alpha 2 frac 1 H alpha 2 right alpha neq 2 nbsp ce moment drugogo poryadku ne dispersiya Koeficiyent asimetriyi L a 1 L H a a L k a H k a a k a j displaystyle frac L alpha 1 left frac L H right alpha cdot frac alpha L k alpha H k alpha alpha k alpha neq j nbsp ce moment k go poryadku ne skoshenist Obmezhenij abo obrizanij rozpodil Pareto maye tri parametri a L i H Yak i v standartnomu rozpodili Pareto parametr a viznachaye formu L oznachaye minimalne znachennya a H poznachaye maksimalne znachennya Funkciya gustini imovirnostej ye nastupnoyu a L a x a 1 1 L H a displaystyle frac alpha L alpha x alpha 1 1 left frac L H right alpha nbsp de L x H i a gt 0 Generuvannya vipadkovih velichin obmezhenogo rozpodilu Pareto Redaguvati Yaksho U is rivnomirno rozpodilena v intervali 0 1 todi zastosuvavshi metod zvorotnogo peretvorennya otrimayemo 23 U 1 L a x a 1 L H a displaystyle U frac 1 L alpha x alpha 1 frac L H alpha nbsp x U H a U L a H a H a L a 1 a displaystyle x left frac UH alpha UL alpha H alpha H alpha L alpha right frac 1 alpha nbsp ye vidpovidaye obmezhenomu rozpodilu Pareto Simetrichnij rozpodil Pareto Redaguvati Simetrichnij rozpodil Pareto mozhna viznachiti za dopomogoyu nastupnoyi funkciyi gustini imovirnostej 24 f x a x m 1 2 a x m a x a 1 x gt x m 0 v inshih vipadkah displaystyle f x alpha x mathrm m begin cases tfrac 1 2 alpha x mathrm m alpha x alpha 1 amp x gt x mathrm m 0 amp text v inshih vipadkah end cases nbsp Vin maye formu podibnu do rozpodilu Pareto pri x gt xm ye simetrichnim vidobrazhennyam en vidnosno vertikalnoyi osi Div takozh Redaguvati nbsp Portal Matematika Princip Pareto Rozpodil Pareto dlya vtrat v strahuvanni Rovnomirnij rozpodil vtrat v strahuvanniDzherela RedaguvatiKartashov M V Imovirnist procesi statistika Kiyiv VPC Kiyivskij universitet 2007 504 s Gnedenko B V Kurs teorii veroyatnostej 6 e izd Moskva Nauka 1988 446 s ros Gihman I I Skorohod A V Yadrenko M V Teoriya veroyatnostej i matematicheskaya statistika Kiyiv Visha shkola 1988 436 s ros Hazewinkel Michiel red 2001 Pareto distribution Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Weisstein Eric W Pareto distribution angl na sajti Wolfram MathWorld Aaberge Rolf May 2005 Gini s Nuclear Family International Conference to Honor Two Eminent Social Scientists Arhiv originalu za 20 kvitnya 2020 Procitovano 5 bereznya 2019 Crovella Mark E Bestavros Azer December 1997 Self Similarity in World Wide Web Traffic Evidence and Possible Causes IEEE ACM Transactions on Networking 5 6 s 835 846 Arhiv originalu za 4 bereznya 2016 Procitovano 5 bereznya 2019 syntraf1 c Arhivovano 10 lyutogo 2019 u Wayback Machine programa na movi programuvannya C dlya generuvannya shtuchnogo trafiku paketiv iz obmezhenim rozmirom paketiv i chasom mizh paketami vidpovidno do rozpodilu Pareto Primitki Redaguvati a b v g Barry C Arnold 1983 Pareto Distributions International Co operative Publishing House ISBN 978 0 89974 012 6 a b Johnson NL Kotz S Balakrishnan N 1994 Continuous univariate distributions Vol 1 Wiley Series in Probability and Statistics a b v g Johnson Kotz and Balakrishnan 1994 20 4 Christian Kleiber amp Samuel Kotz 2003 Statistical Size Distributions in Economics and Actuarial Sciences Wiley ISBN 978 0 471 15064 0 Arhiv originalu za 20 kvitnya 2020 Procitovano 6 bereznya 2019 a b Feller W 1971 An Introduction to Probability Theory and its Applications II vid 2nd New York Wiley s 50 The densities 4 3 are sometimes called after the economist Pareto It was thought rather naively from a modern statistical standpoint that income distributions should have a tail with a density Ax a as x Lomax K S 1954 Business failures Another example of the analysis of failure data Journal of the American Statistical Association 49 268 847 52 doi 10 1080 01621459 1954 10501239 Chotikapanich Duangkamon Chapter 7 Pareto and Generalized Pareto Distributions Modeling Income Distributions and Lorenz Curves s 121 22 Arhiv originalu archiveurl vimagaye url dovidka za 20 kvitnya 2020 Procitovano 6 bereznya 2019 Pareto Vilfredo Cours d Economie Politique Nouvelle edition par G H Bousquet et G Busino Librairie Droz Geneva 1964 pp 299 345 For a two quantile population where approximately 18 of the population owns 82 of the wealth the Theil index takes the value 1 a b v g d Reed William J 2004 The Double Pareto Lognormal Distribution A New Parametric Model for Size Distributions Communications in Statistics Theory and Methods 33 8 1733 53 doi 10 1081 sta 120037438 Proignorovano nevidomij parametr citeseerx dovidka Schroeder Bianca Damouras Sotirios Gill Phillipa 24 lyutogo 2010 Understanding latent sector error and how to protect against them 8th Usenix Conference on File and Storage Technologies FAST 2010 Arhiv originalu za 11 sichnya 2011 Procitovano 10 veresnya 2010 We experimented with 5 different distributions Geometric Weibull Rayleigh Pareto and Lognormal that are commonly used in the context of system reliability and evaluated their fit through the total squared differences between the actual and hypothesized frequencies x2 statistic We found consistently across all models that the geometric distribution is a poor fit while the Pareto distribution provides the best fit Yuji Ijiri Simon Herbert A May 1975 Some Distributions Associated with Bose Einstein Statistics Proc Natl Acad Sci USA 72 5 1654 57 Bibcode 1975PNAS 72 1654I PMC 432601 PMID 16578724 doi 10 1073 pnas 72 5 1654 Harchol Balter Mor Downey Allen August 1997 Exploiting Process Lifetime Distributions for Dynamic Load Balancing ACM Transactions on Computer Systems 15 3 253 258 doi 10 1145 263326 263344 Arhiv originalu za 20 kvitnya 2020 Procitovano 6 bereznya 2019 Kleiber and Kotz 2003 p 94 Seal H 1980 Survival probabilities based on Pareto claim distributions ASTIN Bulletin 11 61 71 doi 10 1017 S0515036100006620 CumFreq software for cumulative frequency analysis and probability distribution fitting 1 Arhivovano 21 lyutogo 2018 u Wayback Machine Hardy Michael 2010 Pareto s Law Mathematical Intelligencer 32 3 38 43 doi 10 1007 s00283 010 9159 2 62 people own the same as half the world reveals Oxfam Davos report Oxfam Jan 2016 Arhiv originalu za 20 zhovtnya 2019 Procitovano 7 bereznya 2019 Global Wealth Report 2013 Credit Suisse Oct 2013 s 22 Arhiv originalu za 14 lyutogo 2015 Procitovano 7 bereznya 2019 M E J Newman 2005 Power laws Pareto distributions and Zipf s law Contemporary Physics 46 5 323 51 Bibcode 2005ConPh 46 323N arXiv cond mat 0412004 doi 10 1080 00107510500052444 H J Malik 1970 Estimation of the Parameters of the Pareto Distribution Metrika 15 126 132 doi 10 1007 BF02613565 Tanizaki Hisashi 2004 Computational Methods in Statistics and Econometrics CRC Press s 133 ISBN 9780824750886 Arhiv originalu za 20 kvitnya 2020 Procitovano 6 bereznya 2019 Arhivovana kopiya Arhiv originalu za 17 sichnya 2012 Procitovano 6 bereznya 2019 Grabchak M amp Samorodnitsky D Do Financial Returns Have Finite or Infinite Variance A Paradox and an Explanation s 7 8 Arhiv originalu za 11 lipnya 2012 Procitovano 7 bereznya 2019 Otrimano z https uk wikipedia org w index php title Rozpodil Pareto amp oldid 40567330