www.wikidata.uk-ua.nina.az
Metod Kramera pravilo Kramera sposib rozv yazannya kvadratnih sistem linijnih algebrayichnih rivnyan iz nenulovim viznachnikom osnovnoyi matrici pri comu dlya takih rivnyan isnuye yedinij rozv yazok Pravilo Kramera virazhaye rozv yazok cherez viznachniki kvadratnoyi matrici koeficiyentiv ta matric otrimanih shlyahom zamini odnogo stovpcya matrici koeficiyentiv vektor stovpcem pravoyi chastini rivnyannya Cej metod nazvanij na chest Gabriyelya Kramera 1704 1752 yakij u 1750 r predstaviv jogo dlya dovilnoyi kilkosti nevidomih 1 2 Kolin Makloren takozh publikuvav osoblivi vipadki cogo pravila v 1748 r 3 i mozhlivo znav pro nogo she v 1729 r 4 5 6 Pravilo Kramera realizovane nayivnim shlyahom ye neefektivnim dlya sistem sho skladayutsya bilshe nizh z dvoh abo troh rivnyan 7 U vipadku n displaystyle n rivnyan z n displaystyle n nevidomimi vono potrebuye obchislennya n 1 displaystyle n 1 viznachnikiv todi yak metod Gausa daye rezultat iz takoyu zh obchislyuvalnoyu skladnistyu yak i obchislennya odnogo viznachnika 8 9 Pravilo Kramera takozh mozhe buti chiselno nestijkim navit dlya sistem 2 2 displaystyle 2 times 2 10 Odnak neshodavno jogo bulo realizovano za O n 3 displaystyle O n 3 krokiv 11 sho porivnyano z bilsh poshirenimi metodami rozv yazannya sistem linijnih rivnyan takimi yak metod Gausa vimagayetsya v 2 5 razi bilshe arifmetichnih operacij dlya vsih rozmiriv matric viyavlyaye porivnyannu chislovu stijkist u bilshosti vipadkiv Zmist 1 Zagalnij vipadok 2 Dovedennya 3 Priklad 4 Znahodzhennya obernenoyi matrici 5 Zastosuvannya 5 1 Yavni formuli dlya n 2 ta n 3 5 2 Diferencialna geometriya 5 2 1 Chislennya Richchi 5 2 2 Obchislennya neyavnih pohidnih 5 3 Cilochiselne programuvannya 5 4 Zvichajni diferencialni rivnyannya 6 Geometrichna interpretaciya 7 Inshi dovedennya 7 1 Dovedennya z vikoristannyam linijnoyi algebri 7 2 Korotke dovedennya 8 Nesumisni ta neviznacheni vipadki 9 Div takozh 10 Posilannya 11 Dzherela 12 PosilannyaZagalnij vipadok RedaguvatiRozglyanemo sistemu z n displaystyle n nbsp linijnih rivnyan dlya n displaystyle n nbsp nevidomih zapisanu v matrichnomu viglyadi A x b displaystyle A boldsymbol x boldsymbol b nbsp de A displaystyle A nbsp n n displaystyle n times n nbsp matricya z nenulovim viznachnikom i x x 1 x n T displaystyle boldsymbol x x 1 dots x n rm T nbsp vektor stovpec zminnih Teorema stverdzhuye sho v comu vipadku sistema maye yedinij rozv yazok u yakomu znachennya nevidomih viznachayutsya yak x i det A i det A i 1 n displaystyle x i frac det A i det A qquad i 1 dots n nbsp de A i displaystyle A i nbsp matricya utvorena zaminoyu i displaystyle i nbsp go stovpcya matrici A displaystyle A nbsp na vektor stovpec b displaystyle boldsymbol b nbsp Inshimi slovami dlya sistemi n displaystyle n nbsp linijnih rivnyan z n displaystyle n nbsp nevidomimi nad dovilnim polem a 11 x 1 a 12 x 2 a 1 n x n b 1 a 21 x 1 a 22 x 2 a 2 n x n b 2 a n 1 x 1 a n 2 x 2 a n n x n b n displaystyle begin cases a 11 x 1 a 12 x 2 ldots a 1n x n b 1 a 21 x 1 a 22 x 2 ldots a 2n x n b 2 cdots cdots cdots cdots cdots cdots cdots cdots cdots cdots a n1 x 1 a n2 x 2 ldots a nn x n b n end cases nbsp z viznachnikom matrici sistemi D displaystyle Delta nbsp sho ne rivnij nulyu rozv yazok zapisuyetsya u takomu viglyadi x i 1 D a 11 a 1 i 1 b 1 a 1 i 1 a 1 n a 21 a 2 i 1 b 2 a 2 i 1 a 2 n a n 1 1 a n 1 i 1 b n 1 a n 1 i 1 a n 1 n a n 1 a n i 1 b n a n i 1 a n n displaystyle x i frac 1 Delta begin vmatrix a 11 amp ldots amp a 1 i 1 amp b 1 amp a 1 i 1 amp ldots amp a 1n a 21 amp ldots amp a 2 i 1 amp b 2 amp a 2 i 1 amp ldots amp a 2n ldots amp ldots amp ldots amp ldots amp ldots amp ldots amp ldots a n 1 1 amp ldots amp a n 1 i 1 amp b n 1 amp a n 1 i 1 amp ldots amp a n 1 n a n1 amp ldots amp a n i 1 amp b n amp a n i 1 amp ldots amp a nn end vmatrix nbsp i displaystyle i nbsp j stovpchik matrici sistemi zaminyuyetsya stovpchikom vilnih chleniv Takozh pravilo Kramera formulyuyetsya tak dlya bud yakih koeficiyentiv c 1 c 2 c n displaystyle c 1 c 2 dots c n nbsp vikonuyetsya rivnist c 1 x 1 c 2 x 2 c n x n D a 11 a 12 a 1 n b 1 a 21 a 22 a 2 n b 2 a n 1 a n 2 a n n b n c 1 c 2 c n 0 displaystyle c 1 x 1 c 2 x 2 dots c n x n cdot Delta begin vmatrix a 11 amp a 12 amp ldots amp a 1n amp b 1 a 21 amp a 22 amp ldots amp a 2n amp b 2 ldots amp ldots amp ldots amp ldots amp ldots a n1 amp a n2 amp ldots amp a nn amp b n c 1 amp c 2 amp ldots amp c n amp 0 end vmatrix nbsp U takij formi formula Kramera spravedliva bez pripushennya sho D displaystyle Delta nbsp ne rivne nulyu ne treba navit abi koeficiyenti sistemi buli elementami cilisnogo kilcya viznachnik sistemi navit mozhe buti dilnikom nulya u kilci koeficiyentiv Takozh mozhna vvazhati sho abo nabori b 1 b 2 b n displaystyle b 1 b 2 dots b n nbsp ta x 1 x 2 x n displaystyle x 1 x 2 dots x n nbsp abo nabir c 1 c 2 c n displaystyle c 1 c 2 dots c n nbsp skladayutsya ne z elementiv kilcya koeficiyentiv sistemi a deyakogo modulya nad cim kilcem V takomu viglyadi formula Kramera vikoristovuyetsya napriklad pri dovedenni formuli dlya viznachnika Grama i Lemi Nakayami Bilsh zagalna versiya pravila Kramera 12 rozglyadaye matrichne rivnyannya A X B displaystyle A boldsymbol X boldsymbol B nbsp de A displaystyle A nbsp n n displaystyle n times n nbsp matricya z nenulovim viznachnikom a X displaystyle boldsymbol X nbsp B displaystyle boldsymbol B nbsp n m displaystyle n times m nbsp matrici Rozglyanemo poslidovnosti 1 i 1 lt i 2 lt lt i k n displaystyle 1 leq i 1 lt i 2 lt cdots lt i k leq n nbsp ta 1 j 1 lt j 2 lt lt j k m displaystyle 1 leq j 1 lt j 2 lt cdots lt j k leq m nbsp Nehaj X I J displaystyle X I J nbsp k k displaystyle k times k nbsp pidmatricya X displaystyle X nbsp z ryadkami I i 1 i k displaystyle I i 1 dots i k nbsp ta stovpcyami J j 1 j k displaystyle J j 1 dots j k nbsp A B I J displaystyle A B I J nbsp n n displaystyle n times n nbsp matricya utvorena zaminoyu i s displaystyle i s nbsp stovpcya matrici A displaystyle A nbsp na j s displaystyle j s nbsp stovpec matrici B displaystyle B nbsp dlya vsih s 1 k displaystyle s 1 dots k nbsp Todi det X I J det A B I J det A displaystyle det X I J frac det A B I J det A nbsp U vipadku k 1 displaystyle k 1 nbsp ce zvoditsya do zvichajnogo pravila Kramera Metod spravedlivij dlya sistem rivnyan z koeficiyentami ta nevidomimi nad bud yakim polem a ne lishe u vipadku dijsnih chisel Dovedennya RedaguvatiDovedennya pravila Kramera vikoristovuye taki vlastivosti viznachnika linijnist vidnosno bud yakogo fiksovanogo stovpcya i toj fakt sho viznachnik dorivnyuye nulyu koli dva stovpci rivni ce viplivaye iz vlastivosti sho znak viznachnika zminyuyetsya na protilezhnij yaksho perestaviti dva stovpci Zafiksuyemo j displaystyle j nbsp j stovpec Linijnist oznachaye nastupne yaksho rozglyadayemo lishe stovpec j displaystyle j nbsp yak zminnu fiksuyuchi inshi dovilno otrimana funkciya R n R displaystyle mathbb R n rightarrow mathbb R nbsp vvazhayemo elementi matrici dijsnimi chislami mozhe buti zadana matriceyu z odnim ryadkom i n displaystyle n nbsp stovpcyami sho diye na j displaystyle j nbsp j stovpec Naspravdi ce same te sho j teorema Laplasa zapisuyuchi det A C 1 a 1 j C n a n j displaystyle det A C 1 a 1 j dots C n a n j nbsp dlya pevnih koeficiyentiv C 1 C n displaystyle C 1 dots C n nbsp yaki zalezhat vid stovpciv matrici A displaystyle A nbsp vidminnih vid stovpcya j displaystyle j nbsp tochnij viglyad dlya cih minoriv tut nevazhlivij Todi znachennya det A displaystyle det A nbsp ye rezultatom zastosuvannya odnoryadkovoyi matrici L j C 1 C 2 C n displaystyle L j C 1 quad C 2 quad cdots quad C n nbsp do stovpcya j displaystyle j nbsp matrici A displaystyle A nbsp Yaksho L j displaystyle L j nbsp zastosovano do bud yakogo inshogo stovpcya k displaystyle k nbsp matrici A displaystyle A nbsp to rezultatom ye viznachnik matrici otrimanoyi z matrici A displaystyle A nbsp zaminoyu stovpcya j displaystyle j nbsp na kopiyu stovpcya k displaystyle k nbsp tomu otrimanij viznachnik dorivnyuye 0 displaystyle 0 nbsp vipadok dvoh rivnih stovpciv Teper rozglyanemo sistemu n displaystyle n nbsp linijnih rivnyan z n displaystyle n nbsp nevidomimi x 1 x n displaystyle x 1 dots x n nbsp matriceyu koeficiyentiv yakoyi ye A displaystyle A nbsp z nenulovim viznachnikom det A displaystyle det A nbsp a 11 x 1 a 12 x 2 a 1 n x n b 1 a 21 x 1 a 22 x 2 a 2 n x n b 2 a n 1 x 1 a n 2 x 2 a n n x n b n displaystyle begin matrix a 11 x 1 a 12 x 2 cdots a 1n x n amp amp b 1 1ex a 21 x 1 a 22 x 2 cdots a 2n x n amp amp b 2 1ex amp vdots amp 1ex a n1 x 1 a n2 x 2 cdots a nn x n amp amp b n end matrix nbsp Yaksho ob yednati ci rivnyannya vzyavshi C 1 displaystyle C 1 nbsp pomnozhene na pershe rivnyannya dodati C 2 displaystyle C 2 nbsp pomnozhene na druge i tak dali poki C n displaystyle C n nbsp domnozhitsya na ostannye rivnyannya to koeficiyent pri x j displaystyle x j nbsp bude dorivnyuvati C 1 a 1 j C n a n j det A displaystyle C 1 a 1 j cdots C n a n j det A nbsp todi yak koeficiyenti pri vsih inshih nevidomih stayut nulyami liva chastina nabuvaye viglyadu det A x j displaystyle det A x j nbsp Prava chastina ce C 1 b 1 C n b n displaystyle C 1 b 1 cdots C n b n nbsp tobto L j displaystyle L j nbsp zastosovanij do vektora stovpcya b displaystyle boldsymbol b nbsp utvorenogo pravimi chastinami b i displaystyle b i nbsp Naspravdi te sho bulo zrobleno tut domnozhennya matrichnogo rivnyannya A x b displaystyle A boldsymbol x boldsymbol b nbsp zliva na L j displaystyle L j nbsp Podilivshi na nenulove chislo det A displaystyle det A nbsp znahodimo nastupne rivnyannya sho zadovolnyaye sistemu x j L j b det A displaystyle x j frac L j cdot boldsymbol b det A nbsp Ale za pobudovoyu chiselnik ye viznachnikom matrici otrimanoyi z matrici A displaystyle A nbsp zaminoyu stovpcya j displaystyle j nbsp na b displaystyle boldsymbol b nbsp tomu otrimuyemo viraz dlya pravila Kramera yak neobhidnu umovu rozv yazku Cyu samu proceduru treba povtoriti dlya reshti j displaystyle j nbsp shob znajti znachennya inshih nevidomih Zalishayetsya dovesti sho ci znachennya dlya nevidomih yedini ta dijsno razom utvoryuyut rozv yazok sistemi Ale yaksho matricya A displaystyle A nbsp nevirodzhena z obernenoyu matriceyu A 1 displaystyle A 1 nbsp to x A 1 b displaystyle boldsymbol x A 1 boldsymbol b nbsp bude rozv yazkom sho j dovodit jogo isnuvannya Pokazhemo sho matricya A displaystyle A nbsp maye obernenu yaksho det A displaystyle det A nbsp nenulovij Rozglyanemo n n displaystyle n times n nbsp matricyu M displaystyle M nbsp otrimanu shlyahom skladannya odna nad odnoyu odnoryadkovih matric L j displaystyle L j nbsp pri j 1 n displaystyle j 1 dots n nbsp ce daye priyednanu matricyu dlya matrici A displaystyle A nbsp Bulo pokazano sho L j A 0 0 det A 0 0 displaystyle L j A 0 quad dots quad 0 quad det A quad 0 quad dots quad 0 nbsp de det A displaystyle det A nbsp z yavlyayetsya na poziciyi j displaystyle j nbsp z cogo viplivaye sho M A det A I n displaystyle MA det A I n nbsp Otzhe 1 det A M A 1 displaystyle frac 1 det A M A 1 nbsp sho i zavershuye dovedennyaInshi dovedennya div nizhche Priklad RedaguvatiSistema linijnih rivnyan a 11 x 1 a 12 x 2 a 13 x 3 b 1 a 21 x 1 a 22 x 2 a 23 x 3 b 2 a 31 x 1 a 32 x 2 a 33 x 3 b 3 displaystyle begin cases a 11 x 1 a 12 x 2 a 13 x 3 b 1 a 21 x 1 a 22 x 2 a 23 x 3 b 2 a 31 x 1 a 32 x 2 a 33 x 3 b 3 end cases nbsp Viznachniki D a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 D 1 b 1 a 12 a 13 b 2 a 22 a 23 b 3 a 32 a 33 D 2 a 11 b 1 a 13 a 21 b 2 a 23 a 31 b 3 a 33 D 3 a 11 a 12 b 1 a 21 a 22 b 2 a 31 a 32 b 3 displaystyle Delta begin vmatrix a 11 amp a 12 amp a 13 a 21 amp a 22 amp a 23 a 31 amp a 32 amp a 33 end vmatrix Delta 1 begin vmatrix b 1 amp a 12 amp a 13 b 2 amp a 22 amp a 23 b 3 amp a 32 amp a 33 end vmatrix Delta 2 begin vmatrix a 11 amp b 1 amp a 13 a 21 amp b 2 amp a 23 a 31 amp b 3 amp a 33 end vmatrix Delta 3 begin vmatrix a 11 amp a 12 amp b 1 a 21 amp a 22 amp b 2 a 31 amp a 32 amp b 3 end vmatrix nbsp Rozv yazok x 1 D 1 D x 2 D 2 D x 3 D 3 D displaystyle x 1 frac Delta 1 Delta x 2 frac Delta 2 Delta x 3 frac Delta 3 Delta nbsp Priklad 2 x 1 5 x 2 4 x 3 30 x 1 3 x 2 2 x 3 150 2 x 1 10 x 2 9 x 3 110 displaystyle begin cases 2x 1 5x 2 4x 3 30 x 1 3x 2 2x 3 150 2x 1 10x 2 9x 3 110 end cases nbsp Viznachniki D 2 5 4 1 3 2 2 10 9 5 D 1 30 5 4 150 3 2 110 10 9 760 D 2 2 30 4 1 150 2 2 110 9 1350 D 3 2 5 30 1 3 150 2 10 110 1270 displaystyle Delta begin vmatrix 2 amp 5 amp 4 1 amp 3 amp 2 2 amp 10 amp 9 end vmatrix 5 Delta 1 begin vmatrix 30 amp 5 amp 4 150 amp 3 amp 2 110 amp 10 amp 9 end vmatrix 760 Delta 2 begin vmatrix 2 amp 30 amp 4 1 amp 150 amp 2 2 amp 110 amp 9 end vmatrix 1350 Delta 3 begin vmatrix 2 amp 5 amp 30 1 amp 3 amp 150 2 amp 10 amp 110 end vmatrix 1270 nbsp Nemozhlivo rozibrati viraz SVG MathML mozhna vvimknuti cherez plagin brauzera Nedijsna vidpovid Math extension cannot connect to Restbase vid servera http localhost 6011 uk wikipedia org v1 displaystyle x 1 frac 760 5 152 x 2 frac 1350 5 270 x 3 frac 1270 5 254 Znahodzhennya obernenoyi matrici RedaguvatiDokladnishe Nevirodzhena matricya Metodi obernennya matriciNehaj A displaystyle A nbsp n n displaystyle n times n nbsp matricya z elementami v poli F displaystyle mathbb F nbsp Todi A adj A adj A A det A I displaystyle A operatorname adj A operatorname adj A A det A I nbsp de adj A displaystyle operatorname adj A nbsp priyednana matricya det A displaystyle det A nbsp viznachnik matrici A displaystyle A nbsp a I displaystyle I nbsp odinichna matricya Yaksho viznachnik det A displaystyle det A nbsp nenulovij to obernenoyu do A displaystyle A nbsp ye matricya A 1 1 det A adj A displaystyle A 1 frac 1 det A operatorname adj A nbsp Ce daye formulu dlya obernenoyi do A displaystyle A nbsp matrici za umovi sho det A 0 displaystyle det A neq 0 nbsp Naspravdi cya formula pracyuye koli F displaystyle mathbb F nbsp ye komutativnim kilcem za umovi sho det A displaystyle det A nbsp ye odiniceyu kilcya Yaksho det A displaystyle det A nbsp ne ye odiniceyu to A displaystyle A nbsp ne maye obernenoyi nad kilcem vona mozhe mati obernenu nad bilshim kilcem v yakomu deyaki ne odinichni elementi polya F displaystyle mathbb F nbsp mozhut mati oberneni Zastosuvannya RedaguvatiYavni formuli dlya n 2 ta n 3 Redaguvati Rozglyanemo linijnu sistemu a 1 x b 1 y c 1 a 2 x b 2 y c 2 displaystyle begin cases a 1 x b 1 y color red c 1 a 2 x b 2 y color red c 2 end cases nbsp yaka u matrichnij formi maye viglyad a 1 b 1 a 2 b 2 x y c 1 c 2 displaystyle begin bmatrix a 1 amp b 1 a 2 amp b 2 end bmatrix begin bmatrix x y end bmatrix begin bmatrix color red c 1 color red c 2 end bmatrix nbsp Nehaj znachennya a 1 b 2 b 1 a 2 displaystyle a 1 b 2 b 1 a 2 nbsp nenulove Todi za dopomogoyu viznachnikiv x displaystyle x nbsp i y displaystyle y nbsp mozhut buti znajdeni za pravilom Kramera yak x c 1 b 1 c 2 b 2 a 1 b 1 a 2 b 2 c 1 b 2 b 1 c 2 a 1 b 2 b 1 a 2 y a 1 c 1 a 2 c 2 a 1 b 1 a 2 b 2 a 1 c 2 c 1 a 2 a 1 b 2 b 1 a 2 displaystyle begin aligned x amp frac begin vmatrix color red c 1 amp b 1 color red c 2 amp b 2 end vmatrix begin vmatrix a 1 amp b 1 a 2 amp b 2 end vmatrix frac color red c 1 b 2 b 1 color red c 2 a 1 b 2 b 1 a 2 quad y frac begin vmatrix a 1 amp color red c 1 a 2 amp color red c 2 end vmatrix begin vmatrix a 1 amp b 1 a 2 amp b 2 end vmatrix frac a 1 color red c 2 color red c 1 a 2 a 1 b 2 b 1 a 2 end aligned nbsp Pravila dlya matric 3 3 displaystyle 3 times 3 nbsp analogichni Rozglyanemo sistemu a 1 x b 1 y c 1 z d 1 a 2 x b 2 y c 2 z d 2 a 3 x b 3 y c 3 z d 3 displaystyle begin cases begin matrix a 1 x b 1 y c 1 z amp color red d 1 a 2 x b 2 y c 2 z amp color red d 2 a 3 x b 3 y c 3 z amp color red d 3 end matrix end cases nbsp yaka u matrichnij formi maye viglyad a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 x y z d 1 d 2 d 3 displaystyle begin bmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end bmatrix begin bmatrix x y z end bmatrix begin bmatrix color red d 1 color red d 2 color red d 3 end bmatrix nbsp Todi znachennya x displaystyle x nbsp y displaystyle y nbsp ta z displaystyle z nbsp mozhna znajti nastupnim chinom x d 1 b 1 c 1 d 2 b 2 c 2 d 3 b 3 c 3 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 y a 1 d 1 c 1 a 2 d 2 c 2 a 3 d 3 c 3 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 displaystyle x frac begin vmatrix color red d 1 amp b 1 amp c 1 color red d 2 amp b 2 amp c 2 color red d 3 amp b 3 amp c 3 end vmatrix begin vmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end vmatrix quad y frac begin vmatrix a 1 amp color red d 1 amp c 1 a 2 amp color red d 2 amp c 2 a 3 amp color red d 3 amp c 3 end vmatrix begin vmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end vmatrix quad nbsp ta z a 1 b 1 d 1 a 2 b 2 d 2 a 3 b 3 d 3 a 1 b 1 c 1 a 2 b 2 c 2 a 3 b 3 c 3 displaystyle quad z frac begin vmatrix a 1 amp b 1 amp color red d 1 a 2 amp b 2 amp color red d 2 a 3 amp b 3 amp color red d 3 end vmatrix begin vmatrix a 1 amp b 1 amp c 1 a 2 amp b 2 amp c 2 a 3 amp b 3 amp c 3 end vmatrix nbsp Diferencialna geometriya Redaguvati Chislennya Richchi Redaguvati Pravilo Kramera vikoristovuyetsya v chislenni Richchi en pri riznih rozrahunkah iz zaluchennyam simvoliv Kristofelya pershogo ta drugogo rodu 13 Zokrema za pravilom Kramera mozhna dovesti sho operator divergenciyi na mnogovidi Rimana ye invariantnim vidnosno zamini koordinat Navodimo pryame dovedennya opuskayuchi rol simvoliv Kristofelya Nehaj M g displaystyle M g nbsp mnogovid Rimana z lokalnimi koordinatami en x 1 x 2 x n displaystyle x 1 x 2 dots x n nbsp Nehaj A A i x i displaystyle A A i frac partial partial x i nbsp vektorne pole Vikoristovuyemo notaciyu Ejnshtejna dlya pidsumovuvannya Teorema Divergenciya vektornogo polya A displaystyle A nbsp div A 1 det g x i A i det g displaystyle operatorname div A frac 1 sqrt det g frac partial partial x i left A i sqrt det g right nbsp dd ye invariantnoyu pri zamini koordinat DovedennyaNehaj x 1 x 2 x n x 1 x n displaystyle x 1 x 2 dots x n mapsto bar x 1 dots bar x n nbsp ye koordinatnim peretvorennyam z nevirodzhenoyu matriceyu Yakobi Todi vidpovidno do klasichnih zakoniv peretvorennya en mayemo sho A A k x k displaystyle A bar A k frac partial partial bar x k nbsp de A k x k x j A j displaystyle bar A k frac partial bar x k partial x j A j nbsp Analogichno yaksho g g m k d x m d x k g i j d x i d x j displaystyle g g mk rm d x m otimes rm d x k bar g ij rm d bar x i otimes rm d bar x j nbsp to g i j x m x i x k x j g m k displaystyle bar g ij frac partial x m partial bar x i frac partial x k partial bar x j g mk nbsp Zapis cogo peretvorennya za dopomogoyu matric maye viglyad g x x T g x x displaystyle bar g left frac partial x partial bar x right text T g left frac partial x partial bar x right nbsp zvidki viplivaye sho det g det x x 2 det g displaystyle det bar g left det left frac partial x partial bar x right right 2 det g nbsp Teper obchislyuyemo div A 1 det g x i A i det g det x x 1 det g x k x i x k x i x ℓ A ℓ det x x 1 det g displaystyle begin aligned operatorname div A amp frac 1 sqrt det g frac partial partial x i left A i sqrt det g right 1ex amp det left frac partial x partial bar x right frac 1 sqrt det bar g frac partial bar x k partial x i frac partial partial bar x k left frac partial x i partial bar x ell bar A ell det left frac partial x partial bar x right 1 sqrt det bar g right end aligned nbsp Shob prodemonstruvati sho ce dorivnyuye 1 det g x k A k det g displaystyle frac 1 sqrt det bar g frac partial partial bar x k left bar A k sqrt det bar g right nbsp neobhidno i dostatno pokazati sho x k x i x k x i x ℓ det x x 1 0 displaystyle frac partial bar x k partial x i frac partial partial bar x k left frac partial x i partial bar x ell det left frac partial x partial bar x right 1 right 0 qquad nbsp dlya vsih ℓ displaystyle ell nbsp sho ekvivalentno x ℓ det x x det x x x k x i 2 x i x k x ℓ displaystyle frac partial partial bar x ell det left frac partial x partial bar x right det left frac partial x partial bar x right frac partial bar x k partial x i frac partial 2 x i partial bar x k partial bar x ell nbsp Prodiferenciyuvavshi livu chastinu otrimuyemo x ℓ det x x 1 i j 2 x i x ℓ x j det M i j 2 x i x ℓ x j det x x 1 i j det x x det M i j displaystyle begin aligned frac partial partial bar x ell det left frac partial x partial bar x right amp 1 i j frac partial 2 x i partial bar x ell partial bar x j det M i j 1ex amp frac partial 2 x i partial bar x ell partial bar x j det left frac partial x partial bar x right frac 1 i j det left frac partial x partial bar x right det M i j ast end aligned nbsp de M i j displaystyle M i j nbsp poznachaye matricyu otrimanu z x x displaystyle left dfrac partial x partial bar x right nbsp pislya vidalennya i displaystyle i nbsp go ryadka i j displaystyle j nbsp go stovpcya Ale za pravilom Kramera 1 i j det x x det M i j displaystyle frac 1 i j det left frac partial x partial bar x right det M i j nbsp ye j i displaystyle j i nbsp m elementom matrici x x displaystyle left frac partial bar x partial x right nbsp Takim chinom det x x 2 x i x ℓ x j x j x i displaystyle begin aligned ast det left frac partial x partial bar x right frac partial 2 x i partial bar x ell partial bar x j frac partial bar x j partial x i end aligned nbsp sho i zavershuye dovedennya Obchislennya neyavnih pohidnih Redaguvati Rozglyanemo dva rivnyannya F x y u v 0 displaystyle F x y u v 0 nbsp ta G x y u v 0 displaystyle G x y u v 0 nbsp Yaksho u displaystyle u nbsp i v displaystyle v nbsp ye nezalezhnimi zminnimi to mozhemo viznachiti x X u v displaystyle x X u v nbsp ta y Y u v displaystyle y Y u v nbsp Viraz dlya x u displaystyle dfrac partial x partial u nbsp mozhna znajti zastosuvavshi pravilo Kramera Obchislennya x u displaystyle dfrac partial x partial u nbsp Spochatku obchislimo pershi pohidni vid F displaystyle F nbsp G displaystyle G nbsp x displaystyle x nbsp ta y displaystyle y nbsp d F F x d x F y d y F u d u F v d v 0 d G G x d x G y d y G u d u G v d v 0 d x X u d u X v d v d y Y u d u Y v d v displaystyle begin aligned rm d F amp frac partial F partial x rm d x frac partial F partial y rm d y frac partial F partial u rm d u frac partial F partial v rm d v 0 rm d G amp frac partial G partial x rm d x frac partial G partial y rm d y frac partial G partial u rm d u frac partial G partial v rm d v 0 rm d x amp frac partial X partial u rm d u frac partial X partial v rm d v rm d y amp frac partial Y partial u rm d u frac partial Y partial v rm d v end aligned nbsp Pidstavivshi d x displaystyle rm d x nbsp d y displaystyle rm d y nbsp v d F displaystyle rm d F nbsp i d G displaystyle rm d G nbsp otrimayemo d F F x x u F y y u F u d u F x x v F y y v F v d v 0 d G G x x u G y y u G u d u G x x v G y y v G v d v 0 displaystyle begin aligned rm d F amp left frac partial F partial x frac partial x partial u frac partial F partial y frac partial y partial u frac partial F partial u right rm d u left frac partial F partial x frac partial x partial v frac partial F partial y frac partial y partial v frac partial F partial v right rm d v 0 rm d G amp left frac partial G partial x frac partial x partial u frac partial G partial y frac partial y partial u frac partial G partial u right rm d u left frac partial G partial x frac partial x partial v frac partial G partial y frac partial y partial v frac partial G partial v right rm d v 0 end aligned nbsp Oskilki u displaystyle u nbsp v displaystyle v nbsp nezalezhni zminni to koeficiyenti pri d u displaystyle rm d u nbsp ta d v displaystyle rm d v nbsp povinni buti nulovimi Otzhe mozhemo zapisati rivnyannya dlya koeficiyentiv F x x u F y y u F u G x x u G y y u G u F x x v F y y v F v G x x v G y y v G v displaystyle begin aligned frac partial F partial x frac partial x partial u frac partial F partial y frac partial y partial u amp frac partial F partial u frac partial G partial x frac partial x partial u frac partial G partial y frac partial y partial u amp frac partial G partial u frac partial F partial x frac partial x partial v frac partial F partial y frac partial y partial v amp frac partial F partial v frac partial G partial x frac partial x partial v frac partial G partial y frac partial y partial v amp frac partial G partial v end aligned nbsp Teper za pravilom Kramera bachimo sho x u F u F y G u G y F x F y G x G y displaystyle frac partial x partial u frac begin vmatrix frac partial F partial u amp frac partial F partial y 1ex frac partial G partial u amp frac partial G partial y end vmatrix begin vmatrix frac partial F partial x amp frac partial F partial y 1ex frac partial G partial x amp frac partial G partial y end vmatrix nbsp Tobto ce formula u terminah dvoh Yakobianiv x u F G u y F G x y displaystyle frac partial x partial u frac left frac partial F G partial u y right left frac partial F G partial x y right nbsp Analogichni formuli mozhna otrimati dlya x v displaystyle frac partial x partial v nbsp y u displaystyle frac partial y partial u nbsp y v displaystyle frac partial y partial v nbsp Cilochiselne programuvannya Redaguvati Pravilo Kramera mozhe buti vikoristane dlya dovedennya sho zadacha cilochiselnogo programuvannya matricya obmezhen yakoyi ye unimodulyarnoyu matriceyu a pravoyu chastinoyu ye cile chislo maye cilochiselni bazisni rozv yazki Ce znachno sproshuye rozv yazannya cilochiselnoyi programi Zvichajni diferencialni rivnyannya Redaguvati Pravilo Kramera vikoristovuyetsya dlya vivedennya zagalnogo rozv yazku neodnoridnogo linijnogo diferencialnogo rivnyannya metodom variaciyi parametriv metod variaciyi dovilnih stalih Geometrichna interpretaciya Redaguvati nbsp Geometrichna interpretaciya pravila Kramera Ploshi drugogo ta tretogo zashtrihovanih paralelogramiv odnakovi a plosha drugogo dorivnyuye ploshi pershogo domnozhenij na x 1 displaystyle x 1 nbsp Z ciyeyi rivnosti viplivaye pravilo Kramera Pravilo Kramera maye geometrichnu interpretaciyu yaku takozh mozhna rozglyadati yak dovedennya abo dlya rozuminnya jogo geometrichnogo zmistu Ci geometrichni argumenti pracyuyut zagalom a ne lishe u vipadku dvoh rivnyan iz dvoma nevidomimi sho predstavlenij tut Zadanu sistemu rivnyan a 11 x 1 a 12 x 2 b 1 a 21 x 1 a 22 x 2 b 2 displaystyle begin cases begin matrix a 11 x 1 a 12 x 2 amp b 1 a 21 x 1 a 22 x 2 amp b 2 end matrix end cases nbsp mozhna rozglyadati yak rivnyannya mizh vektorami x 1 a 11 a 21 x 2 a 12 a 22 b 1 b 2 displaystyle x 1 left begin matrix a 11 a 21 end matrix right x 2 left begin matrix a 12 a 22 end matrix right left begin matrix b 1 b 2 end matrix right nbsp Plosha paralelograma viznachenogo vektorami a 11 a 21 displaystyle left begin matrix a 11 a 21 end matrix right nbsp i a 12 a 22 displaystyle left begin matrix a 12 a 22 end matrix right nbsp zadayetsya viznachnikom sistemi rivnyan a 11 a 12 a 21 a 22 displaystyle begin vmatrix a 11 amp a 12 1ex a 21 amp a 22 end vmatrix nbsp U zagalnomu vipadku koli ye bilshe zminnih ta rivnyan viznachnik z n displaystyle n nbsp vektoriv dovzhini n displaystyle n nbsp ce ob yem paralelepipeda sho pobudovanij na cih vektorah v n displaystyle n nbsp vimirnomu evklidovomu prostori Otzhe plosha paralelograma viznachenogo x 1 a 11 a 21 displaystyle x 1 left begin matrix a 11 a 21 end matrix right nbsp i a 12 a 22 displaystyle left begin matrix a 12 a 22 end matrix right nbsp dorivnyuye x 1 displaystyle x 1 nbsp pomnozheno na ploshu pershogo oskilki odnu zi storin pomnozhili na cej koeficiyent Teper ostannij paralelogram za principom Kavalyeri maye tu zh ploshu sho i paralelogram viznachenij cherez b 1 b 2 x 1 a 11 a 21 x 2 a 12 a 22 displaystyle left begin matrix b 1 b 2 end matrix right x 1 left begin matrix a 11 a 21 end matrix right x 2 left begin matrix a 12 a 22 end matrix right quad nbsp ta a 12 a 22 displaystyle quad left begin matrix a 12 a 22 end matrix right nbsp Pririvnyuvannya plosh ostannogo ta drugogo paralelograma daye rivnyannya b 1 a 12 b 2 a 22 a 11 x 1 a 12 a 21 x 1 a 22 x 1 a 11 a 12 a 21 a 22 displaystyle begin vmatrix b 1 amp a 12 1ex b 2 amp a 22 end vmatrix begin vmatrix a 11 x 1 amp a 12 1ex a 21 x 1 amp a 22 end vmatrix x 1 begin vmatrix a 11 amp a 12 1ex a 21 amp a 22 end vmatrix nbsp z yakogo viplivaye pravilo Kramera Inshi dovedennya RedaguvatiDovedennya z vikoristannyam linijnoyi algebri Redaguvati Ce peredovedennya navedenogo vishe tverdzhennya abstraktnoyu movoyu Rozglyanemo vidobrazhennya x x 1 x n 1 det A det A 1 det A n displaystyle boldsymbol x x 1 dots x n mapsto frac 1 det A left det A 1 dots det A n right nbsp de A i displaystyle A i nbsp matricya A displaystyle A nbsp u yakij i displaystyle i nbsp j stovpchik zamineno na vektor x displaystyle boldsymbol x nbsp yak i u pravili Kramera Vnaslidok linijnosti viznachnika u kozhnomu stovpci ce vidobrazhennya ye linijnim Pidkreslimo sho vono vidobrazhaye i displaystyle i nbsp j stovpec matrici A displaystyle A nbsp v i displaystyle i nbsp j bazisnij vektor e i 0 1 0 displaystyle boldsymbol e i 0 dots 1 dots 0 nbsp z 1 displaystyle 1 nbsp na i displaystyle i nbsp mu misci oskilki viznachnik matrici z odnakovimi stovpcyami dorivnyuye 0 displaystyle 0 nbsp Otzhe mayemo linijne vidobrazhennya yake uzgodzhuyetsya z obernennyam matrici A displaystyle A nbsp u prostori stovpciv zvidsi vono uzgodzhuyetsya z matriceyu A 1 displaystyle A 1 nbsp na linijnij obolonci prostoru stovpciv Oskilki matricya A displaystyle A nbsp nevirodzhena linijna obolonka vektoriv stovpciv ves prostir R n displaystyle mathbb R n nbsp tomu vidobrazhennya dijsno ye obernenim do matrici A displaystyle A nbsp Sho i dovodit pravilo Kramera Korotke dovedennya Redaguvati Korotke dovedennya pravila Kramera 14 mozhna navesti pomitivshi sho x 1 displaystyle x 1 img