www.wikidata.uk-ua.nina.az
Chotirikutnik ce chastina ploshini obmezhena prostoyu zamknenoyu lamanoyu yaka mistit chotiri 4 lanki Vona skladayetsya z chotiroh 4 vershin tochok i chotiroh storin vidrizkiv sho poslidovno yih spoluchayut Pri comu zhodni tri z danih tochok ne povinni lezhati na odnij pryamij Vershini chotirikutnika nazivayutsya susidnimi yaksho voni ye kincyami odniyeyi z jogo storin Nesusidni vershini nazivayutsya protilezhnimi Vidrizki sho spoluchayut protilezhni vershini chotirikutnika nazivayutsya diagonalyami Zobrazhennya 1 Priklad chotirikutnika U chotirikutniku na zobrazheni 1 diagonalyami ye vidrizki AC i BD Storoni chotirikutnika sho vihodyat z odniyeyi vershini nazivayutsya susidnimi storonami Storoni yaki ne mayut spilnogo kincya nazivayutsya protilezhnimi storonami U chotirikutniku na danomu malyunku protilezhnimi storonami ye storoni AB i CD BC i AD Chotirikutnik poznachayut zapisuyuchi jogo vershini Napriklad chotirikutnik na zobrazheni 1 poznacheno tak ABCD U poznachenni chotirikutnika vershini sho stoyat poryad povinni buti susidnimi Chotirikutnik ABCD mozhna takozh poznachiti BCDA abo DCBA Ale ne mozhna poznachiti ABDC B i D ne susidni vershini Vnutrishni kuti prostogo chotirikutnika ABCD mayut v sumi 360 gradusiv tobto A B C D 360 displaystyle angle A angle B angle C angle D 360 circ Suma dovzhin usih storin chotirikutnika nazivayetsya perimetrom Zmist 1 Prosti chotirikutniki 1 1 Opukli chotirikutniki 1 2 Uvignuti chotirikutniki 2 Skladni chotirikutniki 3 Povnij chotiribichnik 4 Osoblivi vidrizki 5 Plosha 5 1 Trigonometrichni formuli 5 2 Ne trigonometrichni formuli 5 3 Vektorna forma 6 Teoremi 7 Diagonali 7 1 Dovzhina diagonalej 7 2 Uzagalnennya pravila paralelograma i teoremi Ptolemeya 8 Bimediani 9 Trigonometrichni totozhnosti 10 Nerivnosti 10 1 Plosha 10 2 Diagonali i bimediani 10 3 Storoni 11 Prostorovi chotirikutniki 12 Div takozh 13 Primitki 14 DzherelaProsti chotirikutniki RedaguvatiBud yakij chotirikutnik storoni yakogo ne peretinayutsya ye prostim chotirikutnikom Opukli chotirikutniki Redaguvati V opuklih chotirikutnikiv vsi vnutrishni kuti ye menshimi za 180 a dvi diagonali znahodyatsya v seredini chotirikutnika Nepravilnij chotirikutnik ne maye paralelnih storin Trapeciya odna para protilezhnih storin ye paralelnoyu Rivnobichna trapeciya odna para protilezhnih storin ye paralelnimi a kuti nahilu storin pri osnovi ye rivnimi Alternativnimi viznachennyami ye chotirikutnik sho maye vis simetriyi yaka peretinaye paru protilezhnih storin abo trapeciya iz diagonalyami rivnoyi dovzhini Paralelogram chotirikutnik iz dvoma parami paralelnih storin ekvivalentnoyu umovoyu ye te sho jogo protilezhni storoni mayut odnakovu dovzhinu sho protilezhni kuti rivni abo sho diagonali peretinayutsya i dilyat odna odnu navpil Do paralelogramiv vidnositsya romb pryamokutnik a takozh kvadrat Romb vsi chotiri storoni mayut odnakovu dovzhinu Abo ekvivalentno diagonali perpendikulyarni i peretinom dilyat navpil odna odnu Ne formalno ce ye splyusnutij kvadrat ale strogo matematichno kvadrat tezh ye rombom Romboyid paralelogram v yakogo sumizhni storoni mayut rizni dovzhini a deyaki kuti tupimi ne maye pryamih kutiv Deyaki dzherela nazivayut jogo paralelogramom sho ne ye rombom 1 Pryamokutnik vsi chotiri kuti ye pryamimi kutami Ekvivalentno diagonali mayut odnakovu dovzhinu i pri peretini dilyatsya navpil Do pryamokutnikiv vidnositsya i kvadrat Kvadrat pravilnij pryamokutnik vsi chotiri storoni mayut odnakovu dovzhinu a chotiri kuti ye pryamimi Diagonali peretinayut odna odnu navpil i pid pryamim kutom a takozh mayut odnakovu dovzhinu Chotirikutnik ye kvadratom todi i lishe todi koli vin odnochasno ye rombom i pryamokutnikom chotiri rivni storoni i chotiri odnakovi kuti Deltoyid dvi pari prileglih storin mayut odnakovu dovzhinu Z cogo viplivaye sho odna z diagonalej rozdilyaye deltoyid na kongruentni trikutniki i dva kuti mizh parami nerivnih storin mayut odnakovu velichinu Takozh jogo diagonali ye perpendikulyarnimi Do deltoyidiv vidnositsya romb Opisanij chotirikutnik chotiri storoni ye dotichnimi do vpisanogo kola Opuklij chotirikutnik mozhe opisati kolo todi i lishe todi koli sumi jogo protilezhnih storin rivni Opisana trapeciya en trapeciya chotiri storoni yakoyi ye dotichnimi do vpisanogo kola Vpisanij chotirikutnik chotiri vershini lezhat na opisanomu koli Opuklij chotirikutnik ye vpisanim todi i tilki todi koli sumi protilezhnih kutiv dorivnyuyut 180 Pryamokutnij deltoyid deltoyid dvi protilezhni kuti yakogo ye pryamimi Vin ye odnim iz vidiv vpisanih chotirikutnikiv Bicentrichnij chotirikutnik chotirikutnik yakij odnochasno ye vpisanim u kolo i opisanim kolom Ortodiagonalnij chotirikutnik diagonali peretinayutsya pid pryamim kutom Zovnishno opisanij chotirikutnik en prodovzhennya chotiroh storin ye dotichnimi do zovnishnogo kola Uvignuti chotirikutniki Redaguvati V uvignutih chotirikutnikiv odin iz vnutrishnih kutiv ye bilshim za 180 a odna iz dvoh diagonalej lezhit za mezhami chotirikutnika Skladni chotirikutniki Redaguvati Antiparalelogram Do skladnih chotirikutnikiv vidnosyat ne pravilni chotirikutniki grani yakih peretinayutsya Taki chotirikutniki peretinayut sami sebe i mayut ryad ne formalnih nazv perehreshenij chotirikutnik chotirikutnik metelik abo bantik Suma vnutrishnih kutiv perehreshenogo chotirikutnika bude dorivnyuvati 720 a dva vnutrishni kuti v nomu ye rozgornutimi i znahodyatsya zzovni Tobto perehreshenogo chotirikutnika chotiri vnutrishni kuti znahodyatsya po obidvi storoni peretinu dva gostrih i dva rozgornutih vsi z livoyi storoni abo z pravoyu v zalezhnosti vid togo v yakomu poryadku pererahovuyutsya 2 Perehreshena trapeciya 3 perehreshenij chotirikutnik v yakomu yak u trapeciyi odna para ne sumizhnih storin ye paralelnoyu Antiparalelogram perehreshenij chotirikutnik v yakogo yak v paralelograma kozhna para ne sumizhnih storin mayut odnakovu dovzhinu Perehreshenij pryamokutnik ce antiparalelogram storonami yakogo ye dvi protilezhni storoni i dvi diagonali zvichajnogo pryamokutnika takim chinom vid maye odnu paru protilezhnih storin sho ye paralelnimi Perehreshenij kvadrat osoblivij vipadok perehreshenogo pryamokutnika v yakogo dvi storoni peretinayutsya pid pryamimi kutami Povnij chotiribichnik Redaguvati Povnij chotiribichnik Hocha taka nazva mozhe buti ekvivalentna chotirikutniku v neyi chasto vkladayut dodatkovij sens Chetvirka pryamih niyaki dvi z yakih ne paralelni i niyaki tri ne prohodyat cherez odnu tochku nazivayetsya povnim chotiribichnikom Taka konfiguraciya zustrichayetsya v deyakih tverdzhennyah evklidovoyi geometriyi napriklad teorema Menelaya pryama Nyutona Gausa pryama Obera Teorema Mikelya tosho v yakih chasto vsi pryami ye vzayemozaminnimi Osoblivi vidrizki RedaguvatiDvoma diagonalyami opuklogo chotirikutnika ye vidrizki sho spoluchayut protilezhni vershini Dvoma bimedianami angl bimedians opuklogo chotirikutnika ye vidrizki sho spoluchayut seredini protilezhnih storin 4 Voni peretinayutsya u tochci yaka nazivayetsya centroyidom vershin chotirikutnika Takozh v opuklomu chotirikutniku bivisotoyu angl maltitude budemo nazivati visotu yaka maye osnovu u seredini protilezhnoyi storoni 5 Vsogo u chotirikutniku mozhna provesti chotiri bivisoti Plosha RedaguvatiIsnuye dekilka zagalnih formul rozrahunku ploshi S opuklogo chotirikutnika ABCD iz storonami a AB b BC c CD i d DA Trigonometrichni formuli Redaguvati Plosha chotirikutnika mozhe buti zadana za dopomogoyu trigonometrichnih funkcij nastupnim chinom S 1 2 e f sin 8 displaystyle S tfrac 1 2 ef cdot sin theta de dovzhini kozhnoyi diagonali zadani yak e i f a kut mizh nimi dorivnyuye 8 6 U vipadku koli diagonali perpendikulyarni tobto dlya romba kvadrata i deltoyida cya formula sproshuyetsya do S 1 2 e f displaystyle S tfrac 1 2 ef oskilki 8 dorivnyuye 90 Ploshu mozhna rozrahuvati cherez bimediani nastupnim chinom 7 S m n sin f displaystyle S mn cdot sin varphi De dovzhini median dorivnyuyut m i n a kut mizh nimi dorivnyuye f Formula Bretshnajdera 8 viznachaye ploshu chered dvi storoni i dva protilezhnih kuta S s a s b s c s d 1 2 a b c d 1 cos A C s a s b s c s d a b c d cos 2 A C 2 displaystyle begin aligned S amp sqrt s a s b s c s d tfrac 1 2 abcd 1 cos angle A angle C amp sqrt s a s b s c s d abcd left cos 2 left tfrac angle A angle C 2 right right end aligned de storoni vidpovidno zadani yak a b c d i de s ye pivperimetrom a A i C ye dvoma bud yakimi protilezhnimi kutami Dlya vpisanogo chotirikutnika cej viraz sproshuyetsya do formuli Bramagupti oskilki A C 180 Inshoyu formuloyu dlya rozrahunku ploshi cherez kuti i storoni de kut C znahoditsya mizh storonami b i c a kut A mizh storonami a ta d ye S 1 2 a d sin A 1 2 b c sin C displaystyle S tfrac 1 2 ad cdot sin A tfrac 1 2 bc cdot sin C U vipadku iz vpisanim chotirikutnikom ostannya formula skorochuyetsya do S 1 2 a d b c sin A displaystyle S tfrac 1 2 ad bc sin A Dlya paralelograma de obidvi pari protilezhnih storin i kutiv ye rivnimi cya formula v svoyu chergu sproshuyetsya do virazu S a b sin A displaystyle S ab cdot sin A Alternativnim chinom mozhna viznachiti ploshu chotirikutnika cherez storoni i kut peretinu jogo diagonalej 8 dlya tih vipadkiv doki cej kut ne dorivnyuye 90 9 S t g 8 4 a 2 c 2 b 2 d 2 displaystyle S frac mathrm tg theta 4 cdot left a 2 c 2 b 2 d 2 right U vipadku z paralelogramom ostannya formula bude viglyadati yak S 1 2 t g 8 a 2 b 2 displaystyle S tfrac 1 2 mathrm tg theta cdot left a 2 b 2 right Inshoyu formuloyu sho mistit storoni a b c d ye 7 S 1 4 2 a 2 c 2 4 x 2 2 b 2 d 2 4 x 2 sin f displaystyle S tfrac 1 4 sqrt 2 a 2 c 2 4x 2 2 b 2 d 2 4x 2 sin varphi de x ye vidstannyu mizh serednimi tochkami diagonalej a f ye kutom mizh bimedianami I she odniyeyu trigonometrichnoyu formuloyu sho mistit storoni a b c d i kut a mizh a i b ye S 1 2 a b sin a 1 4 4 c 2 d 2 c 2 d 2 a 2 b 2 2 a b cos a 2 displaystyle S tfrac 1 2 ab cdot sin alpha tfrac 1 4 sqrt 4c 2 d 2 c 2 d 2 a 2 b 2 2ab cdot cos alpha 2 sho mozhe vikoristovuvatisya i yak plosha uvignutogo chotirikutnika sho maye uvignutu chastinu protilezhnu do kuta a zminivshi pershij znak na Ne trigonometrichni formuli Redaguvati Dvi nastupni formuli zadayut ploshu S chotirikutnika cherez storoni a b c d napivperimetr s i diagonali e f S s a s b s c s d 1 4 a c b d e f a c b d e f displaystyle S sqrt s a s b s c s d tfrac 1 4 ac bd ef ac bd ef 10 S 1 4 4 e 2 f 2 a 2 c 2 b 2 d 2 2 displaystyle S tfrac 1 4 sqrt 4e 2 f 2 left a 2 c 2 b 2 d 2 right 2 11 Pershe rivnyannya zvoditsya do formuli Brahmagupti dlya vpisanogo chotirikutnika oskilki v takomu vipadku ef ac bd Ploshu takozh mozhna zadati cherez bimediani m n i diagonali e f S 1 2 m n e m n e m n f m n f displaystyle S tfrac 1 2 sqrt m n e m n e m n f m n f 12 S 1 2 e 2 f 2 m 2 n 2 2 displaystyle S tfrac 1 2 sqrt e 2 f 2 m 2 n 2 2 13 Thm 7Naspravdi bud yake z troh znachen m n e i f ye dostatnim dlya viznachennya ploshi oskilki dlya bud yakogo chotirikutnika ci chotiri znachennya pov yazani rivnyannyam e 2 f 2 2 m 2 n 2 displaystyle e 2 f 2 2 m 2 n 2 14 p 126 Vidpovidnimi sproshenimi virazami budut nastupni rivnyannya dlya rozrahunku ploshi 15 S 1 2 m n 2 e 2 e 2 m n 2 displaystyle S tfrac 1 2 sqrt m n 2 e 2 cdot e 2 m n 2 yaksho dani dovzhini dvoh bimedian i diagonal i 15 S 1 4 e f 2 4 m 2 4 m 2 e f 2 displaystyle S tfrac 1 4 sqrt e f 2 4m 2 cdot 4m 2 e f 2 yaksho vidomi dovzhini dvoh diagonalej i odna bimediana Vektorna forma Redaguvati Ploshu chotirikutnika ABCD mozhna rozrahuvati za dopomogoyu vektoriv Nehaj vektori AC i BD utvoryuyut diagonali vid A do C i vid B do D Plosha chotirikutnika todi dorivnyuvatime S 1 2 A C B D displaystyle S tfrac 1 2 mathbf AC times mathbf BD sho ye polovinoyu velichini vektornogo dobutku vektoriv AC i BD U dvovimirnomu Evklidovomu prostori vektor AC mozhna zadati u viglyadi vektora u Dekartovomu prostori yak x1 y1 i vektor BD yak x2 y2 tomu rivnyannya mozhna perepisati nastupnim chinom S 1 2 x 1 y 2 x 2 y 1 displaystyle S tfrac 1 2 x 1 y 2 x 2 y 1 Teoremi RedaguvatiDobutki plosh trikutnikiv utvorenih chastinami diagonalej vid yih krayiv do yih peretinu i protilezhnimi storonami chotirikutnika rivni Suma kutiv opuklogo chotirikutnika dorivnyuye 360 U bud yakomu vpisanomu chotirikutniku sumi protilezhnih kutiv dorivnyut 180 U bud yakomu opisanomu chotirikutniku sumi protilezhnih storin rivni Diagonali RedaguvatiDovzhina diagonalej Redaguvati Dovzhini diagonalej opuklogo chotirikutnika ABCD iz vidpovidnimi vershinami A B C D i storonami a AB b BC c CD i d DA dovzhini diagonalej p AC i q BD mozhna rozrahuvati za dopomogoyu teoremi kosinusiv dlya kozhnogo trikutnika sho utvoreni diagonalyami i dvoma storonami chotirikutnika Takim chinom p a 2 b 2 2 a b cos B c 2 d 2 2 c d cos D displaystyle p sqrt a 2 b 2 2ab cos B sqrt c 2 d 2 2cd cos D i q a 2 d 2 2 a d cos A b 2 c 2 2 b c cos C displaystyle q sqrt a 2 d 2 2ad cos A sqrt b 2 c 2 2bc cos C Inshi bilsh simetrichni formuli dlya znahodzhennya dovzhin diagonalej 16 p a c b d a d b c 2 a b c d cos B cos D a b c d displaystyle p sqrt frac ac bd ad bc 2abcd cos B cos D ab cd i q a b c d a c b d 2 a b c d cos A cos C a d b c displaystyle q sqrt frac ab cd ac bd 2abcd cos A cos C ad bc Uzagalnennya pravila paralelograma i teoremi Ptolemeya Redaguvati Dlya bud yakogo opuklogo chotirikutnika ABCD suma kvadrativ chotiroh storin dorivnyuye sumi kvadrativ dvoh diagonalej plyus chotiri kvadrati linijnogo segmentu sho spoluchaye seredni tochki diagonalej Tobto a 2 b 2 c 2 d 2 p 2 q 2 4 x 2 displaystyle a 2 b 2 c 2 d 2 p 2 q 2 4x 2 de x ce vidstan mizh serednimi tochkami diagonalej 14 p 126 Ce rivnyannya vidome yak teorema Ejlera pro chotirikutnik i ye uzagalnennyam dlya pravila paralelograma Nimeckij matematik Karl Anton Bretshnejder en v 1842 viviv nastupne uzagalnennya dlya teoremi Ptolemeya stosovno dobutku diagonalej opuklogo chotirikutnika 17 p 2 q 2 a 2 c 2 b 2 d 2 2 a b c d cos A C displaystyle p 2 q 2 a 2 c 2 b 2 d 2 2abcd cos A C Ce rivnyannya mozhna vvazhati analogichnim do teoremi kosinusiv dlya chotirikutnika Dlya vpisanogo chotirikutnika v yakogo A C 180 displaystyle A C 180 circ ce rivnyannya sproshuyetsya do pq ac bd Oskilki cos A C 1 displaystyle cos A C geqslant 1 takim chinom ce takozh dovodit nerivnist Ptolemeya Bimediani RedaguvatiDiv takozh Teorema Varinona geometriya Paralelogram Varinona EFGH Bimedianami chotirikutnika ye taki linijni vidrizki sho spoluchayut seredni tochki jogo protilezhnih storin Peretinom bimedian ye centroyid vershin chotirikutnika 18 Seredni tochki bud yakogo chotirikutnika opuklogo uvignutogo abo perehreshenogo ye vershinami paralelograma sho nazivayetsya paralelogramom Varinona Vin maye nastupni vlastivosti Kozhna para protilezhnih storin paralelograma Varinona ye paralelnimi diagonali pochatkovogo chotirikutnika Storona paralelograma Varinona maye dovzhinu sho dorivnyuye polovini dovzhini diagonali pochatkovogo chotirikutnika do yakoyi cya storona ye paralelnoyu Plosha paralelograma Varinona dorivnyuye polovini ploshi pochatkovogo chotirikutnika Ce ye virnim dlya opuklih uvignutih i perehreshenih chotirikutnikiv de plosha ostannogo zadayetsya yak riznici plosh trikutnikiv z yakih vin skladayetsya 19 Perimetr paralelograma Varinona dorivnyuye sumi dovzhin diagonalej pochatkovogo chotirikutnika Diagonali paralelograma Varinona ye bimedianami pochatkovogo chotirikutnika Dvi bimediani chotirikutnika i linijni vidrizki sho spoluchayut seredni tochki diagonalej v tomu chotirikutniku ye konkurentnimi pryamimi i vsi podilyayutsya navpil tochkoyu yih peretinu 14 p 125Dlya opuklogo chotirikutnika iz storonami a b c i d dovzhina bimediani sho spoluchaye seredni tochki storin a i c dorivnyuvatime m 1 2 a 2 b 2 c 2 d 2 p 2 q 2 displaystyle m tfrac 1 2 sqrt a 2 b 2 c 2 d 2 p 2 q 2 de p i q ye dovzhinami diagonalej 20 Dovzhina bimediani sho spoluchaye seredni tochki storin b i d dorivnyuye n 1 2 a 2 b 2 c 2 d 2 p 2 q 2 displaystyle n tfrac 1 2 sqrt a 2 b 2 c 2 d 2 p 2 q 2 Otzhe 14 p 126 p 2 q 2 2 m 2 n 2 displaystyle displaystyle p 2 q 2 2 m 2 n 2 Ce takozh ye naslidkom zastosuvannya pravila paralelograma do paralelograma Varinona Dovzhinu bimedian takozh mozhna viraziti cherez dvi protilezhni storoni i vidstan x mizh serednimi tochkami diagonalej Ce mozhna otrimati zastosuvavshi teoremu Ejlera dlya chotirikutnikiv shodo vishezgadanih formul Zvidki otrimayemo 13 m 1 2 2 b 2 d 2 4 x 2 displaystyle m tfrac 1 2 sqrt 2 b 2 d 2 4x 2 i n 1 2 2 a 2 c 2 4 x 2 displaystyle n tfrac 1 2 sqrt 2 a 2 c 2 4x 2 Zvernit uvagu sho dvi protilezhni storoni v cih formulah ne ye timi dvoma storonami sho spoluchaye bimediana Dlya opuklogo chotirikutnika ye spravedlivim nastupnij dualnij vzayemozv yazok mizh bimedianami i diagonalyami 21 Dvi bimediani mayut odnakovu dovzhinu todi i lishe todi koli dvi diagonali ye perpendikulyarnimi Dvi bimediani ye perpendikulyarnimi toli i lishe todi koli dvi diagonali mayut odnakovu dovzhinu Trigonometrichni totozhnosti RedaguvatiChotiri kuti prostogo chotirikutnika ABCD zadovolnyayut nastupnim rivnyannyam 22 sin A sin B sin C sin D 4 sin A B 2 sin A C 2 sin A D 2 displaystyle sin A sin B sin C sin D 4 sin frac A B 2 sin frac A C 2 sin frac A D 2 i tan A tan B tan C tan D tan A tan C tan B tan D tan A C tan A B displaystyle frac tan A tan B tan C tan D tan A tan C tan B tan D frac tan A C tan A B Takozh 23 tan A tan B tan C tan D cot A cot B cot C cot D tan A tan B tan C tan D displaystyle frac tan A tan B tan C tan D cot A cot B cot C cot D tan A tan B tan C tan D V dvoh ostannih formulah zhoden z kutiv ne mozhe buti pryamim kutom oskilki tangens 90 ye ne viznachenim Nerivnosti RedaguvatiPlosha Redaguvati Yaksho opuklij chotirikutnik maye storoni a b c d i diagonali p q todi jogo plosha S zadovolnyaye nerivnostyam 24 S 1 4 a c b d displaystyle S leq tfrac 1 4 a c b d sho bude rivnistyu lishe dlya pryamokutnika S 1 4 a 2 b 2 c 2 d 2 displaystyle S leq tfrac 1 4 a 2 b 2 c 2 d 2 sho bude rivnistyu lishe dlya kvadrata S 1 4 p 2 q 2 displaystyle S leq tfrac 1 4 p 2 q 2 sho bude rivnistyu lishe yaksho dvi diagonali ye perpendikulyarnimi i mayut odnakovu dovzhinu S 1 2 a 2 c 2 b 2 d 2 displaystyle S leq tfrac 1 2 sqrt a 2 c 2 b 2 d 2 sho ye rivnistyu lishe dlya pryamokutnika 7 Iz formuli Bretshnajdera pryamo viplivaye sho plosha chotirikutnika zadovolnyatime nerivnosti S s a s b s c s d displaystyle S leq sqrt s a s b s c s d sho bude rivnistyu todi j lishe todi koli chotirikutnik ye vpisanim chotirikutnikom abo virodzhenim tobto takim sho dovzhina odniyeyi zi storin dorivnyuvatime sumi dovzhin inshih troh tobto vin peretvorivsya u vidrizok tomu jogo plosha dorivnyuye nulyu Plosha bud yakogo chotirikutnika takozh zadovolnyatime nerivnosti 25 S 1 2 a b c d a c b d a d b c 3 displaystyle displaystyle S leq tfrac 1 2 sqrt 3 ab cd ac bd ad bc Poznachivshi perimetr chotirikutnika yak L matimemo nastupne 25 p 114 S 1 16 L 2 displaystyle S leq tfrac 1 16 L 2 sho bude rivnistyu lishe dlya vipadku iz kvadratom Plosha opuklogo chotirikutnika takozh zadovolnyaye S 1 2 p q displaystyle S leq tfrac 1 2 pq de dovzhini diagonalej zadani yak p i q sho bude rivnistyu lishe za umovi sho diagonali perpendikulyarni odna odnij Diagonali i bimediani Redaguvati Naslidkom iz teoremi Ejlera pro chotirikutniki ye nastupna nerivnist a 2 b 2 c 2 d 2 p 2 q 2 displaystyle a 2 b 2 c 2 d 2 geq p 2 q 2 de rivnist bude spravedlivoyu todi j tilki todi koli chotirikutnik ye paralelogramom Ejler takozh uzagalniv teoremu Ptolemeya sho ye rivnistyu dlya vpisanogo chotirikutnika u nerivnist dlya opuklogo chotirikutnika Nerivnist zadaye nastupne p q a c b d displaystyle pq leq ac bd sho bude rivnistyu todi j lishe todi koli chotirikutnik ye vpisanim 14 p 128 129 V opuklomu bagatokutniku bimediani m n i diagonali p q pov yazani mizh soboyu nerivnistyu p q m 2 n 2 displaystyle pq leq m 2 n 2 de rivnist bude spravedlivoyu todi i lishe todi koli diagonali ye rivnimi 26 Prop 1 Ce pryamo viplivaye iz rivnosti dlya chotirikutnika m 2 n 2 1 2 p 2 q 2 displaystyle m 2 n 2 tfrac 1 2 p 2 q 2 Storoni Redaguvati Storoni a b c i d bud yakogo chotirikutnika zadovolnyayut nerivnostyam 27 p 228 275 a 2 b 2 c 2 gt d 2 3 displaystyle a 2 b 2 c 2 gt frac d 2 3 i 27 p 234 466 a 4 b 4 c 4 d 4 27 displaystyle a 4 b 4 c 4 geq frac d 4 27 Prostorovi chotirikutniki RedaguvatiDiv takozh Prostorovij bagatokutnik Chervonim poznacheno bokovi rebra chotirikutnogo rivnostoronnogo tetraedra en yakij ye pravilnim zigzagopodibnim kosim chotirikutnikom Chotirikutnik sho ne znahoditsya v ploshini nazivayetsya prostorovim chotirikutnikom abo kosim chotirikutnikom Formuli dlya rozrahunku jogo dvogrannih kutiv pri vidomih dovzhinah reber i kutiv mizh dvoma prileglimi rebrami buli otrimani pri vivcheni vlastivostej molekul takih yak molekuli ciklobutana yaki mistyat zamknute kilce iz chotiroh atomiv 28 29 Kosij chotirikutnik razom iz svoyimi diagonalyami utvoryuye ne obov yazkovo pravilnij tetraedr i navpaki kozhen kosij chotirikutnik utvorenij iz tetraedra v yakogo usunuta para protilezhnih reber Div takozh RedaguvatiVikishovishe maye multimedijni dani za temoyu ChotirikutnikTrapeciya Pryamokutnik Paralelogram Romb Kvadrat Garmonijnij chotirikutnik Vpisanij chotirikutnik Opisanij chotirikutnik Uzagalnenij chotirikutnikPrimitki Redaguvati Archived copy Arhiv originalu za 14 travnya 2014 Procitovano 20 chervnya 2013 Stars A Second Look Arhiv originalu za 3 bereznya 2016 Procitovano 25 lyutogo 2018 Butler David 6 kvitnya 2016 The crossed trapezium Making Your Own Sense Arhiv originalu za 13 veresnya 2017 Procitovano 13 veresnya 2017 E W Weisstein Bimedian MathWorld A Wolfram Web Resource Arhiv originalu za 22 kvitnya 2018 Procitovano 25 lyutogo 2018 E W Weisstein Maltitude MathWorld A Wolfram Web Resource Arhiv originalu za 23 grudnya 2019 Procitovano 17 grudnya 2019 Harries J Area of a quadrilateral Mathematical Gazette 86 July 2002 310 311 a b v Josefsson Martin 2013 Five Proofs of an Area Characterization of Rectangles Forum Geometricorum 13 17 21 Arhiv originalu za 4 bereznya 2016 Procitovano 25 lyutogo 2018 R A Johnson Advanced Euclidean Geometry 2007 Dover Publ p 82 Mitchell Douglas W The area of a quadrilateral Mathematical Gazette 93 July 2009 306 309 J L Coolidge A historically interesting formula for the area of a quadrilateral American Mathematical Monthly 46 1939 345 347 E W Weisstein Bretschneider s formula MathWorld A Wolfram Web Resource Arhiv originalu za 18 bereznya 2020 Procitovano 25 lyutogo 2018 Archibald R C The Area of a Quadrilateral American Mathematical Monthly 29 1922 pp 29 36 a b Josefsson Martin 2011 The Area of a Bicentric Quadrilateral Forum Geometricorum 11 155 164 Arhiv originalu za 5 sichnya 2020 Procitovano 25 lyutogo 2018 a b v g d Altshiller Court Nathan College Geometry Dover Publ 2007 a b Josefsson Martin 2016 100 31 Heron like formulas for quadrilaterals The Mathematical Gazette 100 549 pp 505 508 Rashid M A amp Ajibade A O Two conditions for a quadrilateral to be cyclic expressed in terms of the lengths of its sides Int J Math Educ Sci Technol vol 34 2003 no 5 pp 739 799 Andreescu Titu amp Andrica Dorian Complex Numbers from A to Z Birkhauser 2006 pp 207 209 Weisstein Eric W Quadrilateral From MathWorld A Wolfram Web Resource http mathworld wolfram com Quadrilateral html Arhivovano 26 lyutogo 2018 u Wayback Machine H S M Coxeter and S L Greitzer Geometry Revisited MAA 1967 pp 52 53 Mateescu Constantin Answer to Inequality Of Diagonal Arhiv originalu za 24 zhovtnya 2014 Procitovano 25 lyutogo 2018 Josefsson Martin 2012 Characterizations of Orthodiagonal Quadrilaterals Forum Geometricorum 12 13 25 Arhiv originalu za 5 grudnya 2020 Procitovano 25 lyutogo 2018 C V Durell amp A Robson Advanced Trigonometry Dover 2003 p 267 MathPro Press Original Problems Proposed by Stanley Rabinowitz 1963 2005 p 23 1 Arhivovano 19 serpnya 2018 u Wayback Machine O Bottema Geometric Inequalities Wolters Noordhoff Publishing The Netherlands 1969 pp 129 132 a b Alsina Claudi Nelsen Roger 2009 When Less is More Visualizing Basic Inequalities Mathematical Association of America s 68 Josefsson Martin 2014 Properties of equidiagonal quadrilaterals Forum Geometricorum 14 129 144 Arhiv originalu za 21 kvitnya 2018 Procitovano 25 lyutogo 2018 a b Inequalities proposed in Crux Mathematicorum 2 Arhivovano 30 serpnya 2017 u Wayback Machine Barnett M P Capitani J F 2006 Modular chemical geometry and symbolic calculation International Journal of Quantum Chemistry 106 1 215 227 doi 10 1002 qua 20807 Hamilton William Rowan 1850 On Some Results Obtained by the Quaternion Analysis Respecting the Inscription of Gauche Polygons in Surfaces of the Second Order Proceedings of the Royal Irish Academy 4 380 387 Arhiv originalu za 29 listopada 2017 Procitovano 25 lyutogo 2018 Dzherela RedaguvatiVelikij dovidnik shkolyara 5 11 klasi Harkiv Shkola 2003 ISBN 966 8114 20 5 Otrimano z https uk wikipedia org w index php title Chotirikutnik amp oldid 37200073