www.wikidata.uk-ua.nina.az
Formula Planka viraz dlya spektralnoyi gustini potoku viprominyuvannya spektralnoyi gustini energetichnoyi svitnosti absolyutno chornogo tila vivedenij Maksom Plankom dlya gustini energiyi viprominyuvannya u w T displaystyle u omega T Viprominyuvannya absolyutno chornih til riznoyi temperaturi za zakonom Planka u w T w 2 p 2 c 3 ℏ w e ℏ w k T 1 displaystyle u omega T frac omega 2 pi 2 c 3 frac hbar omega e frac hbar omega kT 1 Formula Planka forma zalezhnosti u displaystyle u vid chastoti ta temperaturi spershu bula vivedena empirichno Formula Planka bula otrimana pislya togo yak stalo zrozumilo sho formula Releya Dzhinsa sho pohodit z klasichnoyi teoriyi elektromagnitnogo polya zadovilno opisuye viprominyuvannya tilki v oblasti dovgih hvil Zi spadannyam dovzhin hvil formula Releya Dzhinsa silno rozhoditsya z empirichnimi danimi Bilsh togo u granichnomu vipadku korotkih hvil vona daye rozbizhnist neskinchenu energiyu viprominyuvannya ultrafioletova katastrofa U zv yazku z cim Plank u 1900 roci zrobiv pripushennya sho superechit klasichnij fizici pro te sho elektromagnitne viprominennya viprominyuyetsya u viglyadi okremih porcij energiyi kvantiv velichina yakih pov yazana z chastotoyu viprominyuvannya virazom e ℏ w displaystyle varepsilon hbar omega Koeficiyent proporcijnosti ℏ displaystyle hbar zgodom nazvali staloyu Planka ℏ displaystyle hbar 1 054 10 27 erg s Ce pripushennya dozvolilo poyasniti sposterezhuvanij spektr viprominyuvannya teoretichno Pravilnist formuli Planka pidtverdzhuyetsya ne tilki empirichnoyu perevirkoyu ale j naslidkami z danoyi formuli zokrema z neyi pohodit zakon Stefana Bolcmana takozh pidtverdzhenij empirichno Krim togo z neyi vivodyatsya takozh priblizni formuli otrimani do formuli Planka formula Vina ta formula Releya Dzhinsa Zmist 1 Formula 1 1 Energetichna yaskravist 1 2 Viprominyuvalna zdatnist 1 3 Spektralna gustina energiyi 2 Zastosuvannya 3 Istriya vidkrittya 3 1 Peredistoriya 3 2 Vidkrittya 4 Vivedennya formuli Planka 4 1 Vivedennya cherez rozpodil Bolcmana 4 2 Vivedennya z rozpodilu Gibbsa 4 3 Vivedennya cherez statistiku Boze Ejnshtejna 4 4 Vivedennya cherez spontanne ta vimushene viprominyuvannya 5 Zv yazok z inshimi formulami 5 1 Zakon Releya Dzhinsa 5 2 Zakon viprominyuvannya Vina 5 3 Zakon Stefana Bolcmana 5 4 Zakon zmishennya Vina 6 Div takozh 7 Primitki 8 Literatura 9 PosilannyaFormula RedaguvatiFormula Planka viraz dlya spektralnogo rozpodilu viprominyuvannya absolyutno chornogo tila pevnoyi temperaturi Zustrichayutsya rizni formi zapisu ciyeyi formuli Mozhna divitis na energetichnu yaskravist viprominyuvalnu zdatnist abo spektralnu gustinu energiyi a spektr mozhna zadavati chastotoyu abo dovzhinoyu hvili Vidpovidno nizhche predstavleni shist riznih variantiv zapisu formuli Planka 1 2 Energetichna yaskravist Redaguvati Formula sho virazhaye spektralnu gustinu energetichnoyi yaskravosti viglyadaye tak 3 B n n T 2 h n 3 c 2 1 e h n k T 1 displaystyle B nu nu T frac 2h nu 3 c 2 frac 1 e frac h nu kT 1 nbsp de n displaystyle nu nbsp chastota viprominyuvannya T displaystyle T nbsp temperatura absolyutno chornogo tila h displaystyle h nbsp stala Planka c displaystyle c nbsp shvidkist svitla k displaystyle k nbsp stala Bolcmana U sistemi SI velichina B n displaystyle B nu nbsp u cij formuli maye rozmirnist Vt m 2 Gc 1 sr 1 Yiyi fizichnij sens energetichna yaskravist u malomu diapazoni chastot n n d n displaystyle nu nu d nu nbsp podilena na d n displaystyle d nu nbsp Mozhna vikoristati analogichnu formulu v yakij energetichna yaskravist bude funkciyeyu dovzhini hvili l displaystyle lambda nbsp a ne chastoti 3 B l l T 2 h c 2 l 5 1 e h c l k T 1 displaystyle B lambda lambda T frac 2hc 2 lambda 5 frac 1 e frac hc lambda kT 1 nbsp V comu vipadku B l displaystyle B lambda nbsp maye rozmirnist Vt m 2 m 1 sr 1 i vidpovidaye energetichnij yaskravosti v malomu diapazoni dovzhin hvil l l d l displaystyle lambda lambda d lambda nbsp podilenoyi na d l displaystyle d lambda nbsp 3 Viprominyuvalna zdatnist Redaguvati Viprominyuvalna zdatnist na chastoti n displaystyle nu nbsp abo dovzhini hvili l displaystyle lambda nbsp ce potuzhnist viprominyuvannya na odinicyu ploshi v intervali chastot n n d n displaystyle nu nu d nu nbsp abo dovzhin hvil l l d l displaystyle lambda lambda d lambda nbsp podilena vidpovidno na d n displaystyle d nu nbsp abo d l displaystyle d lambda nbsp Vona mozhe buti virazhena formulami 4 e n n T 2 p h n 3 c 2 1 e h n k T 1 displaystyle varepsilon nu nu T frac 2 pi h nu 3 c 2 frac 1 e frac h nu kT 1 nbsp e l l T 2 p h c 2 l 5 1 e h c l k T 1 displaystyle varepsilon lambda lambda T frac 2 pi hc 2 lambda 5 frac 1 e frac hc lambda kT 1 nbsp Takim chinom viprominyuvalna zdatnist tila chiselno v p displaystyle pi nbsp raziv bilshe yaskravosti yaksho tilesnij kut vimiryuyetsya v steradianah Velichini e n displaystyle varepsilon nu nbsp i e l displaystyle varepsilon lambda nbsp mayut rozmirnosti vidpovidno Vt m 2 Gc 1 i Vt m 2 m 1 4 Spektralna gustina energiyi Redaguvati She odna forma zapisu viznachaye spektralnu ob yemnu gustinu energiyi viprominyuvannya absolyutno chornogo tila Za analogiyeyu z poperednimi formulami vona dorivnyuye gustini energiyi v malomu diapazoni chastot abo dovzhin hvil podilenoyi na shirinu cogo diapazonu 1 2 u n n T 8 p h n 3 c 3 1 e h n k T 1 displaystyle u nu nu T frac 8 pi h nu 3 c 3 frac 1 e frac h nu kT 1 nbsp u l l T 8 p h c l 5 1 e h c l k T 1 displaystyle u lambda lambda T frac 8 pi hc lambda 5 frac 1 e frac hc lambda kT 1 nbsp U sistemi SI velichini u n displaystyle u nu nbsp i u l displaystyle u lambda nbsp mayut rozmirnosti rivni vidpovidno Dzh m 3 Gc 1 i Dzh m 3 m 1 1 2 Krim togo spektralna shilnist energiyi pov yazana z viprominyuvalnoyu zdatnistyu spivvidnoshennyam e c 4 u textstyle varepsilon frac c 4 u nbsp 5 Zastosuvannya Redaguvati nbsp Spektr Soncya zhovtij kolir ta spektr absolyutno chornogo tila temperaturoyu 5777 K sirij kolir Formula Planka zastosovuyetsya dlya viprominyuvannya yake znahoditsya v teplovij rivnovazi z rechovinoyu za pevnoyi temperaturi 2 Vona zastosovna dlya absolyutno chornih til bud yakoyi formi nezalezhno vid skladu i strukturi za umovi sho rozmiri viprominyuyuchogo tila i detalej jogo poverhni nabagato bilshi za dovzhini hvil na yakih tilo v osnovnomu viprominyuye 3 6 Yaksho tilo ne ye absolyutno chornim to spektr jogo rivnovazhnogo teplovogo viprominyuvannya ne opisuyetsya zakonom Planka ale pov yazanij z nim zakonom viprominyuvannya Kirhgofa Vidpovidno do cogo zakonu vidnoshennya viprominyuvalnoyi ta poglinalnoyi zdatnostej tila odnakovo dlya vsih dovzhin hvil i zalezhit tilki vid temperaturi 7 Tak napriklad pri odnij temperaturi rozpodil energiyi v spektri absolyutno sirogo tila bude takim samim yak i v spektri absolyutno chornogo ale sumarna energetichna yaskravist viprominyuvannya bude menshoyu 8 Formula Planka takozh vikoristovuyetsya dlya opisu realnih til spektr viprominyuvannya yakih vidriznyayetsya vid plankivskogo Dlya cogo vvoditsya ponyattya efektivnoyi temperaturi tila ce ta temperatura za yakoyi absolyutno chorne tilo viprominyuye stilki zh energiyi na odinicyu ploshi skilki j dane tilo Analogichnim chinom viznachayetsya yaskravisna temperatura rivna temperaturi absolyutno chornogo tila sho viprominyuye stilki zh energiyi na odinicyu ploshi na pevnij dovzhini hvili i kolirna temperatura rivna temperaturi absolyutno chornogo tila z takim same rozpodilom energiyi v pevnij dilyanci spektra 2 9 Napriklad dlya Soncya efektivna temperatura stanovit blizko 5780 K yaskravisna temperatura na dovzhini hvili 1500 A dosyagaye svogo minimalnogo znachennya 4200 K a u vidimomu diapazoni na dovzhini hvili 5500 A yaskravisna temperatura stanovit blizko 6400 K u toj chas yak dlya absolyutno chornogo tila vsi viznachennya temperaturi zbigayutsya 10 Istriya vidkrittya RedaguvatiPeredistoriya Redaguvati Viznachennya zakonu teplovogo viprominyuvannya predstavlyalo interes z 1859 roku koli Gustav Kirhgof vidkriv zakon viprominyuvannya Kirhgofa zgidno z yakim vidnoshennya viprominyuvalnoyi ta poglinalnoyi zdatnostej universalne dlya vsih til Otzhe funkciya viprominyuvannya absolyutno chornogo tila poglinalna zdatnist yakogo dorivnyuye odinici dlya vsih dovzhin hvil povinna zbigatisya z funkciyeyu cogo vidnoshennya 11 Do kincya XIX stolittya spektr viprominyuvannya absolyutno chornogo tila vzhe buv vidomij eksperimentalno V 1896 Vilgelm Vin empirichno opisav jogo zakonom viprominyuvannya Vina odnak otrimati jogo teoretichne dovedennya fizikam na toj moment ne vdavalosya Hocha Vin u svoyij roboti navodiv obgruntuvannya zakonu vono bulo nedostatno suvorim shob cya problema vvazhalasya virishenoyu 5 12 13 Maks Plank buv odnim iz tih hto namagavsya teoretichno obgruntuvati zakon viprominyuvannya Vina Vin vihodiv z togo sho viprominyuvachi ye linijnimi garmonichnimi oscilyatorami u yakih vstanovilasya rivnovaga mizh viprominyuvannyam ta poglinannyam viznachivshi zv yazok mizh entropiyeyu ta energiyeyu oscilyatoriv vin zmig pidtverditi zakon viprominyuvannya Vina 14 Odnak podalshi eksperimenti pokazali sho zakon viprominyuvannya Vina netochno opisuye spektr teplovogo viprominyuvannya v dovgohvilovij oblasti U zhovtni 1900 roku Plank predstaviv formulu yaka z tochnistyu do konstant zbigalasya iz suchasnim zakonom Planka Togo zh dnya bulo z yasovano sho formula dobre opisuye eksperimentalni dani ale pri comu vona ne mala pid soboyu teoretichnoyi osnovi Plank viviv yiyi lishe na pidstavi togo sho v granichnomu vipadku dlya korotkih hvil vona povinna perehoditi v zakon Vina ale na vidminu vid nogo uzgodzhuvatisya z eksperimentalnimi danimi dlya dovgih hvil 15 Vidkrittya Redaguvati Mensh yak za dva misyaci pislya povidomlennya pro otrimannya formuli Plank predstaviv yiyi teoretichnij visnovok na zasidanni Nimeckogo fizichnogo tovaristva U nomu vikoristovuvalosya spivvidnoshennya dlya entropiyi vvedene Lyudvigom Bolcmanom v yakomu rozglyadayetsya kilkist mozhlivih mikroskopichnih staniv sistemi Plank shob mati mozhlivist vikoristovuvati metodi kombinatoriki ta ociniti takim chinom entropiyu zrobiv pripushennya sho povna energiya skladayetsya z cilogo chisla skinchennih elementiv energiyi kvantiv 12 16 Nezvazhayuchi na te sho v comu vivodi z yavilisya kvanti i bulo vvedeno i vpershe vikoristano stalu Planku ni sam Plank ni jogo kolegi ne zrozumili vsiyeyi glibini vidkrittya Napriklad Plank vvazhav sho diskretnist energiyi nemaye niyakogo fizichnogo sensu i ye lishe matematichnim prijomom Inshi fiziki takozh ne nadali comu znachennya i ne vvazhali sho ce pripushennya superechit klasichnij fizici Lishe pislya publikaciyi Gendrika Lorenca u 1908 roci naukova spilnota prijshla do dumki sho kvanti spravdi mayut fizichnij zmist Sam Plank zgodom nazivav vvedennya kvantiv aktom rozpachu viklikanim tim sho teoretichne poyasnennya maye buti znajdeno za vsyaku cinu naskilki visokoyu vona ne bula b Nezvazhayuchi na vse ce den koli formula Planka bula obgruntovana 14 grudnya 1900 vvazhayetsya dnem narodzhennya kvantovoyi fiziki 12 17 Koristuyuchis mirkuvannyami klasichnoyi fiziki v 1900 roci lord Relej a v 1905 Dzhejms Dzhins viveli zakon Releya Dzhinsa Do takogo zh rezultatu nezalezhno vid nih prihodiv u svoyih robotah i Plank Vivedennya cogo zakonu malo vidriznyal vid vivedennya zakonu Planka za vinyatkom togo sho serednya energiya viprominyuvannya e displaystyle langle varepsilon rangle nbsp bula prijnyata rivnoyu k T displaystyle kT nbsp zgidno z teoremoyu pro rivnorozpodil energiyi za stupenyami svobodi Z poglyadu klasichnoyi fiziki hid vivodu ne viklikav sumniviv prote zakon Releya Dzhinsa ne lishe serjozno rozhodivsya z eksperimentalnimi danimi usyudi krim dovgohvilovoyi oblasti a j peredbachav neskinchenno veliku potuzhnist viprominyuvannya na korotkih hvilyah Cej paradoks vkazav na te sho v klasichnij fizici vse zh taki ye fundamentalni protirichchya i stav dodatkovim argumentom na korist kvantovoyi gipotezi Paul Erenfest v 1911 roci vpershe nazvav jogo ultrafioletovoyu katastrofoyu 5 12 18 V 1918 Maks Plank stav laureatom Nobelivskoyi premiyi z fiziki i hocha oficijno vin buv nagorodzhenij za vidkrittya kvantiv ce vidkrittya bulo tisno pov yazane z vivedennyam zakonu Planka 19 Vivedennya formuli Planka RedaguvatiVivedennya cherez rozpodil Bolcmana Redaguvati Formula Planka vivoditsya tak 5 Rozglyadayetsya absolyutno chorne tilo z temperaturoyu T displaystyle T nbsp u formi kuba z rebrom l displaystyle l nbsp vnutrishni stinki yakogo idealno vidbivayut viprominyuvannya Rozrahuyemo spektralnu gustinu energiyi u w w T displaystyle u omega omega T nbsp gustinu energiyi na odinichnij interval kutovih chastot poblizu w displaystyle omega nbsp Pri vibori maloyi ploshi D S displaystyle Delta S nbsp na poverhni absolyutno chornogo tila mozhna rozrahuvati skilki energiyi na neyi padaye Shilnist energiyi sho padaye pid kutom 8 displaystyle theta nbsp do normali z tilesnogo kuta d W displaystyle d Omega nbsp dorivnyuye d u u T d W 4 p textstyle d tilde u u T frac d Omega 4 pi nbsp oskilki viprominyuvannya rivnomirno rozpodileno po vsih napryamkah u tilesnomu kuti 4 p displaystyle 4 pi nbsp steradian Svitlo ruhayetsya zi shvidkistyu c displaystyle c nbsp a znachit za chas D t displaystyle Delta t nbsp na poverhnyu padaye energiya d w displaystyle dw nbsp d w c d u D t D S cos 8 c 4 p u T cos 8 sin 8 d 8 d f D S D t displaystyle dw c d tilde u Delta t Delta S cos theta frac c 4 pi u T cos theta sin theta d theta d varphi Delta S Delta t nbsp Sumoyu energij sho nadhodyat z usih napryamkiv bude potik F displaystyle Phi nbsp F c 4 p u T 0 2 p d f 0 p 2 cos 8 sin 8 d 8 c 4 u T displaystyle Phi frac c 4 pi u T int 0 2 pi d varphi int 0 pi 2 cos theta sin theta d theta frac c 4 u T nbsp Taku same kilkist energiyi viprominyuvatime ta sama odinicya ploshi absolyutno chornogo tila a znachit yak dlya vsogo potoku tak i dlya bud yakogo diapazonu chastot abo dovzhin hvil bude spravedlive spivvidnoshennya e c 4 u textstyle varepsilon frac c 4 u nbsp Tak yak vseredini kuba odnochasno prisutni i viprominyuvani i vidbiti hvili pole teplovogo viprominyuvannya povinno buti yih superpoziciyeyu tobto mati viglyad stoyachih elektromagnitnih hvil Dlya viznachennya yih parametriv vvodyatsya dekartova sistema koordinat uzdovzh reber kuba ta vidpovidni orti e x e y e z textstyle vec e x vec e y vec e z nbsp Dlya hvili yaka poshiryuyetsya strogo vzdovzh osi x displaystyle x nbsp maye vikonuvatisya l n x l 2 textstyle l n x frac lambda 2 nbsp de n x displaystyle n x nbsp naturalne chislo tobto napivcile chislo hvil povinno mati sumarnu dovzhinu l textstyle l nbsp Hvilovij vektor takoyi hvili dorivnyuye k k x e x textstyle vec k k x vec e x nbsp de k x 2 p l textstyle k x frac 2 pi lambda nbsp hvilove chislo obmezhennya dlya yakogo nabuvaye viglyadu k x n x p l textstyle k x n x frac pi l nbsp Dlya hvil sho rozpovsyudzhuyutsya vzdovzh osej y displaystyle y nbsp i z displaystyle z nbsp mirkuvannya analogichni Hvilyu yaka poshiryuyetsya v bud yakomu inshomu napryamku mozhna predstavlyati u viglyadi superpoziciyi hvil yaki poshiryuyutsya vzdovzh osej k k x e x k y e y k z e z displaystyle vec k k x vec e x k y vec e y k z vec e z nbsp Otzhe k x n x p l k y n y p l k z n z p l textstyle k x n x frac pi l k y n y frac pi l k z n z frac pi l nbsp de n x n y n z displaystyle n x n y n z nbsp nezalezhni odin vid odnogo naturalni chisla abo nuli Todi hvilove chislo bud yakoyi hvili predstavlyayetsya yak k k x 2 k y 2 k z 2 p l n x 2 n y 2 n z 2 textstyle k sqrt k x 2 k y 2 k z 2 frac pi l sqrt n x 2 n y 2 n z 2 nbsp a chastota yak w p c l n x 2 n y 2 n z 2 textstyle omega frac pi c l sqrt n x 2 n y 2 n z 2 nbsp Kozhnij trijci cih parametriv vidpovidaye odna stoyacha hvilya Za dopomogoyu bezrozmirnoyi velichini R w l p c textstyle R frac omega l pi c nbsp mozhna viznachiti kilkist stoyachih hvil z chastotoyu ne bilshe w displaystyle omega nbsp Ce chislo N displaystyle tilde N nbsp dorivnyuye kilkosti kombinacij n x n y n z displaystyle n x n y n z nbsp dlya yakih R 2 n x 2 n y 2 n z 2 displaystyle R 2 geq n x 2 n y 2 n z 2 nbsp Todi mozhna ociniti N displaystyle tilde N nbsp yak vosmu chastinu ob yemu kuli z radiusom R textstyle R nbsp N 1 8 4 3 p R 3 1 6 w 3 l 3 p 2 c 3 1 6 w 3 p 2 c 3 V displaystyle tilde N frac 1 8 cdot frac 4 3 pi R 3 frac 1 6 cdot frac omega 3 l 3 pi 2 c 3 frac 1 6 cdot frac omega 3 pi 2 c 3 V nbsp de V displaystyle V nbsp ob yem v yakomu mistitsya viprominyuvannya Tak yak elektromagnitni hvili poperechni u kozhnomu napryamku mozhut poshiryuvatisya po dvi hvili polyarizovanih vzayemno perpendikulyarno i realna kilkist hvil N displaystyle N nbsp zbilshuyetsya she vdvichi N 2 N 1 3 w 3 p 2 c 3 V displaystyle N 2 tilde N frac 1 3 cdot frac omega 3 pi 2 c 3 V nbsp Yaksho prodiferenciyuvati cej viraz za chastotoyu vijde kilkist stoyachih hvil iz dovzhinami hvil v intervali w w d w displaystyle omega omega d omega nbsp d N w 2 d w p 2 c 3 V displaystyle dN frac omega 2 d omega pi 2 c 3 V nbsp Mozhna vzyati za e displaystyle langle varepsilon rangle nbsp serednyu energiyu stoyachoyi elektromagnitnoyi hvili z chastotoyu w displaystyle omega nbsp Yaksho pomnozhiti kilkist stoyachih hvil d N displaystyle dN nbsp na e displaystyle langle varepsilon rangle nbsp i rozdiliti otrimane znachennya na V displaystyle V nbsp i na d w displaystyle d omega nbsp vijde spektralna gustina energiyi viprominyuvannya u w w 2 p 2 c 3 e displaystyle u omega frac omega 2 pi 2 c 3 langle varepsilon rangle nbsp Dlya podalshogo vivedennya zakonu Planka neobhidno vrahovuvati efekti kvantovoyi fiziki a same te sho energiya viprominyuyetsya skinchennimi porciyami rivnimi E ℏ w displaystyle E hbar omega nbsp ℏ h 2 p textstyle hbar frac h 2 pi nbsp stala Diraka Vidpovidno mozhlivi znachennya energiyi viprominyuvannya dorivnyuyut e n n ℏ w displaystyle varepsilon n n hbar omega nbsp de n displaystyle n nbsp bud yake naturalne chislo Takim chinom serednya energiya viprominyuvannya e displaystyle langle varepsilon rangle nbsp dorivnyuye e n 0 P n e n displaystyle langle varepsilon rangle sum n 0 infty P n varepsilon n nbsp de P n displaystyle P n nbsp jmovirnist togo sho viprominyuvannya matime energiyu rivnu e n displaystyle varepsilon n nbsp Imovirnist opisuyetsya rozpodilom Bolcmana za energiyami en z deyakoyu konstantoyu A displaystyle A nbsp P n A e e n k T displaystyle P n Ae frac varepsilon n kT nbsp Z urahuvannyam n 0 P n 1 textstyle sum n 0 infty P n 1 nbsp dlya A displaystyle A nbsp virno A n 0 e e n k T 1 displaystyle A left sum n 0 infty e frac varepsilon n kT right 1 nbsp Takim chinom e displaystyle langle varepsilon rangle nbsp virazhayetsya yak e n 0 n ℏ w e n ℏ w k T n 0 e n ℏ w k T ℏ w n 0 n e n 3 n 0 e n 3 displaystyle langle varepsilon rangle frac sum n 0 infty n hbar omega e frac n hbar omega kT sum n 0 infty e frac n hbar omega kT hbar omega frac sum n 0 infty ne n xi sum n 0 infty e n xi nbsp Tut 3 ℏ w k T textstyle xi frac hbar omega kT nbsp Znamennik rozkladayetsya za formuloyu sumi geometrichnoyi progresiyi a chiselnik predstavlyayetsya yak pohidna znamennika za 3 textstyle xi nbsp S n 0 e n 3 1 1 e 3 displaystyle S sum n 0 infty e n xi frac 1 1 e xi nbsp n 0 n e n 3 d S d 3 e 3 1 e 3 2 displaystyle sum n 0 infty ne n xi frac dS d xi frac e xi 1 e xi 2 nbsp Vihodit viraz dlya serednoyi energiyi e ℏ w e ℏ w k T 1 displaystyle langle varepsilon rangle frac hbar omega e frac hbar omega kT 1 nbsp Yaksho pidstaviti e displaystyle langle varepsilon rangle nbsp u formulu dlya spektralnoyi shilnosti energiyi viprominyuvannya vijde odin iz ostatochnih variantiv formuli Planka u w ℏ w 3 p 2 c 3 1 e ℏ w k T 1 displaystyle u omega frac hbar omega 3 pi 2 c 3 frac 1 e frac hbar omega kT 1 nbsp Spivvidnoshennya e c 4 u textstyle varepsilon frac c 4 u nbsp dozvolyaye otrimati formulu dlya viprominyuvalnoyi zdatnosti 5 e w ℏ w 3 4 p 2 c 2 1 e ℏ w k T 1 displaystyle varepsilon omega frac hbar omega 3 4 pi 2 c 2 frac 1 e frac hbar omega kT 1 nbsp Yaksho podiliti na p displaystyle pi nbsp vijde viraz dlya spektralnoyi gustini yaskravosti 20 B w ℏ w 3 4 p 3 c 2 1 e ℏ w k T 1 displaystyle B omega frac hbar omega 3 4 pi 3 c 2 frac 1 e frac hbar omega kT 1 nbsp Ci velichini mozhna viraziti cherez inshi parametri napriklad ciklichnu chastotu n displaystyle nu nbsp abo dovzhinu hvili l displaystyle lambda nbsp Dlya cogo potribno vrahuvati sho za viznachennyam vikonuyutsya spivvidnoshennya B w d w B n d n displaystyle B omega d omega B nu d nu nbsp B n d n B l d l displaystyle B nu d nu B lambda d lambda nbsp minus z yavlyayetsya cherez te sho zi zrostannyam dovzhini hvili zmenshuyetsya chastota ta analogichni formuli dlya viprominyuvalnoyi zdatnosti ta gustini energiyi Tak dlya perehodu do ciklichnih chastot potribno zaminiti w 2 p n displaystyle omega 2 pi nu nbsp pri comu ℏ h 2 p textstyle hbar frac h 2 pi nbsp tak sho h n ℏ w displaystyle h nu hbar omega nbsp i domnozhiti na d w d n 2 p textstyle frac d omega d nu 2 pi nbsp Todi formuli nabudut viglyadu 3 20 u n 8 p h n 3 c 3 1 e h n k T 1 displaystyle u nu frac 8 pi h nu 3 c 3 frac 1 e frac h nu kT 1 nbsp e n 2 p h n 3 c 2 1 e h n k T 1 displaystyle varepsilon nu frac 2 pi h nu 3 c 2 frac 1 e frac h nu kT 1 nbsp B n 2 h n 3 c 2 1 e h n k T 1 displaystyle B nu frac 2h nu 3 c 2 frac 1 e frac h nu kT 1 nbsp Analogichnim chinom otrimuyut formuli dlya dovzhin hvil Pislya zamini n c l textstyle nu frac c lambda nbsp i mnozhennya na d n d l c l 2 textstyle frac d nu d lambda frac c lambda 2 nbsp 3 20 u l 8 p h c l 5 1 e h c l k T 1 displaystyle u lambda frac 8 pi hc lambda 5 frac 1 e frac hc lambda kT 1 nbsp e l 2 p h c 2 l 5 1 e h c l k T 1 displaystyle varepsilon lambda frac 2 pi hc 2 lambda 5 frac 1 e frac hc lambda kT 1 nbsp B l 2 h c 2 l 5 1 e h c l k T 1 displaystyle B lambda frac 2hc 2 lambda 5 frac 1 e frac hc lambda kT 1 nbsp Vivedennya z rozpodilu Gibbsa Redaguvati U naslidok linijnosti rivnyan elektromagnitnogo polya bud yakij yih rozv yazok mozhe buti nadano u viglyadi superpoziciyi monohromatichnih hvil kozhna z pevnoyu chastotoyu w displaystyle omega nbsp Energiya polya mozhe buti predstavlena yak suma energij vidpovidnih polovih oscilyatoriv Yak vidomo iz kvantovoyi mehaniki energiya oscilyatora prijmaye diskretni znachennya zgidno z nastupnoyi formuloyu E n ℏ w n 1 2 displaystyle E n hbar omega n 1 2 nbsp Oskilki rozglyadayetsya rivnovazhne viprominyuvannya to vikoristovuyuchi kanonichnij rozpodil Gibbsa mozhna viznachiti jmovirnist stanu oscilyatora z zadanoyu energiyeyu W n 1 Z e E n k T displaystyle W n 1 Ze E n kT nbsp Statistichna suma Z displaystyle Z nbsp dorivnyuyeZ e ℏ w n 1 2 k T e 1 2 ℏ w k T e ℏ w k T n e 1 2 ℏ w k T 1 e ℏ w k T displaystyle Z sum e hbar omega n 1 2 kT e 1 2 hbar omega kT sum e hbar omega kT n frac e 1 2 hbar omega kT 1 e hbar omega kT nbsp Vilna energiya dorivnyuyePS k T ln Z ℏ w 2 k T ln 1 e ℏ w k T displaystyle Psi kT ln Z frac hbar omega 2 kT ln 1 e hbar omega kT nbsp Dlya serednoyi matematichne ochikuvannya energiyi skoristayemosya rivnyannyam Gibbsa Gelmgolcae W n E n PS k T PS k T k T 2 ln Z k T k T 2 ℏ w 2 k T 2 e ℏ w k T ℏ w k T 2 1 e ℏ w k T displaystyle overline varepsilon sum W n E n Psi kT frac partial Psi partial kT kT 2 frac partial ln Z partial kT kT 2 left frac hbar omega 2 kT 2 frac e hbar omega kT hbar omega kT 2 1 e hbar omega kT right nbsp Takim chinom serednya energiya sho pripadaye na polovij oscilyator dorivnyuye e ℏ w 2 ℏ w e x p ℏ w k T 1 displaystyle overline varepsilon frac hbar omega 2 frac hbar omega mathrm exp hbar omega kT 1 qquad qquad nbsp 1 de ℏ displaystyle hbar nbsp stala Planka k displaystyle k nbsp stala Bolcmana Kilkist zhe stoyachih hvil v odinici ob yemu u trivimirnomu prostori v intervali vid w w d w displaystyle omega omega d omega nbsp dorivnyuye 21 22 d n w w 2 d w p 2 c 3 displaystyle mathrm d n omega frac omega 2 mathrm d omega pi 2 c 3 qquad qquad nbsp 2 Otzhe dlya spektralnoyi shilnosti potuzhnosti elektromagnitnogo viprominyuvannya otrimuyemo u w T e d n w d w ℏ w 3 2 p 2 c 3 ℏ w 3 p 2 c 3 e x p ℏ w k T 1 displaystyle u omega T overline varepsilon frac mathrm d n omega mathrm d omega frac hbar omega 3 2 pi 2 c 3 frac hbar omega 3 pi 2 c 3 mathrm exp hbar omega kT 1 qquad qquad nbsp Pershij dodanok u cij formuli pov yazanij z energiyeyu nulovih kolivan drugij yavlyaye soboyu formulu Planka Formulu Planka takozh mozhna zapisati cherez dovzhinu hvili u p l T 16 p 2 ℏ c l 5 e x p 2 p ℏ c l k T 1 displaystyle u p lambda T frac 16 pi 2 hbar c lambda 5 mathrm exp 2 pi hbar c lambda kT 1 qquad qquad nbsp 5 Vivedennya cherez statistiku Boze Ejnshtejna Redaguvati Yaksho rozglyadati rivnovazhne viprominyuvannya yak fotonnij gaz mozhna zastosuvati statistiku Boze Ejnshtejna Vona viznachaye serednyu kilkist chastinok n i displaystyle langle n i rangle nbsp v i displaystyle i nbsp m kvantovomu stani z energiyeyu E i displaystyle E i nbsp 23 n i 1 e E i m k T 1 displaystyle langle n i rangle frac 1 e frac E i mu kT 1 nbsp U cij formuli m displaystyle mu nbsp himichnij potencial gazu Dlya fotonnogo gazu vin dorivnyuye nulyu tomu formula dlya nogo nabuvaye takogo viglyadu 23 n 1 e ℏ w k T 1 displaystyle langle n rangle frac 1 e frac hbar omega kT 1 nbsp Yaksho pomnozhiti serednyu kilkist fotoniv n displaystyle langle n rangle nbsp na yihnyu energiyu ℏ w displaystyle hbar omega nbsp vijde ta sama serednya energiya e displaystyle langle varepsilon rangle nbsp sho vivedena z rozpodilu Bolcmana Pri pidstanovci yih u formulu dlya spektralnoyi shilnosti energiyi u w w 2 p 2 c 3 e textstyle u omega frac omega 2 pi 2 c 3 langle varepsilon rangle nbsp vijde zakon Planka 23 Vivedennya cherez spontanne ta vimushene viprominyuvannya Redaguvati Formula Planka takozh mozhe buti vivedena z rozglyadu mehanizmiv spontannogo ta vimushenogo viprominyuvan atomiv 24 U comu vivedenni zaproponovanomu Ejnshtejnom u 1916 roci rozglyadayutsya N m displaystyle N m nbsp i N n displaystyle N n nbsp atomiv na rivnyah z energiyeyu E m displaystyle E m nbsp i E n displaystyle E n nbsp vidpovidno Todi kilkist perehodiv iz vishogo rivnya E n displaystyle E n nbsp na nizhchij E m displaystyle E m nbsp za odinicyu chasu proporcijna N n displaystyle N n nbsp i mozhe buti zapisano yak A n m N n displaystyle A n m N n nbsp Pri vimushenomu viprominyuvanni kilkist perehodiv za odinicyu chasu proporcijna N n displaystyle N n nbsp ta spektralnij gustini viprominyuvannya na chastoti perehodu u w m n displaystyle u omega mn nbsp tobto mozhe buti zapisano yak B n m N n u w m n displaystyle B n m N n u omega mn nbsp Kilkist perehodiv v odinicyu chasu cherez poglinannya proporcijno N m displaystyle N m nbsp i u w m n displaystyle u omega mn nbsp i zapisuyetsya yak B m n N m u w m n displaystyle B m n N m u omega mn nbsp 24 Velichini A n m B n m B m n displaystyle A n m B n m B m n nbsp harakteristiki tilki samogo atoma j obranih energetichnih rivniv zvani koeficiyentami Ejnshtejna Yaksho pole viprominyuvannya rivnovazhne i maye temperaturu T displaystyle T nbsp to umova detalnoyi rivnovagi viglyadaye nastupnim chinom 24 A n m N n B n m N n u w m n B m n N m u w m n displaystyle A n m N n B n m N n u omega mn B m n N m u omega mn nbsp U granichnomu vipadku T displaystyle T rightarrow infty nbsp mozhna znehtuvati spontannim viprominyuvannyam porivnyano z vimushenim i todi umova rivnovagi nabude viglyadu B n m N n B m n N m displaystyle B n m N n B m n N m nbsp Oskilki pri T displaystyle T rightarrow infty nbsp bude vikonuvatisya N n N m displaystyle N n N m nbsp a koeficiyenti Ejnshtejna ne zalezhat vid temperaturi to bude virna rivnist B n m B m n displaystyle B n m B m n nbsp sho spravedlivo dlya prostih rivniv dlya kratnih rivniv neobhidno dodatkovo vrahovuvati koeficiyenti kratnosti Nadali mozhna rozglyadati lishe prosti rivni oskilki gustina energiyi viprominyuvannya ne zalezhit vid detalej budovi rechovini 24 Mozhna skoristatisya rozpodilom Bolcmana 24 N n N m e E n E m k T displaystyle frac N n N m e left frac E n E m kT right nbsp Pri zastosuvanni jogo do umovi rivnovagi vihodit 24 u w m n a w m n e ℏ w m n k T 1 displaystyle u omega mn frac alpha omega mn e left frac hbar omega mn kT right 1 nbsp de a w m n A n m B n m textstyle alpha omega mn frac A n m B n m nbsp Cya velichina ne zalezhit vid temperaturi i mozhe buti znajdena z umovi sho dlya visokih temperatur maye buti spravedliva formula Releya Dzhinsa 24 u w m n a w m n k T ℏ w m n displaystyle u omega mn frac alpha omega mn kT hbar omega mn nbsp a w m n ℏ w m n 3 p 2 c 3 displaystyle alpha omega mn frac hbar omega mn 3 pi 2 c 3 nbsp Energetichni rivni mozhut buti vzyati dovilnim chinom tomu indeksi m displaystyle m nbsp i n displaystyle n nbsp mozhna pribrati ta vikoristovuvati formulu dlya dovilnih chastot Pri pidstanovci a w displaystyle alpha omega nbsp u vihidnu formulu dlya u w displaystyle u omega nbsp vihodit formula Planka Takim chinom vazhlivim naslidkom spravedlivosti formuli Planka ye isnuvannya vimushenih perehodiv yaki neobhidni dlya realizaciyi lazernoyi generaciyi 24 Zv yazok z inshimi formulami RedaguvatiZakon Releya Dzhinsa Redaguvati nbsp Sinim i chornim kolorami poznacheni spektri sho vidpovidayut zakonu Planka ta zakonu Releya Dzhinsa za odniyeyi temperaturi Vidno sho u drugomu vipadku sposterigayetsya neobmezhene zrostannya potuzhnosti pri zmenshenni dovzhini hviliZakon Releya Dzhinsa nablizhennya zakonu Planka sho dobre pracyuye dlya h c l k T displaystyle hc ll lambda kT nbsp tobto v diapazoni velikih dovzhin hvil i malih chastot ale silno rozhoditsya z nim dlya h c displaystyle hc nbsp poryadku chi bilshe l k T displaystyle lambda kT nbsp U zakoni Releya Dzhinsa vikoristovuyetsya nablizhennya e h c l k T 1 h c l k T textstyle e frac hc lambda kT approx 1 frac hc lambda kT nbsp spravedlive dlya malih h c l k T textstyle frac hc lambda kT nbsp tomu nablizhennya viglyadaye nastupnim chinom 25 B l 2 h c 2 l 5 l k T h c 2 c k T l 4 displaystyle B lambda frac 2hc 2 lambda 5 frac lambda kT hc frac 2ckT lambda 4 nbsp U ramkah klasichnoyi fiziki v rezultati vivedennya zakonu viprominyuvannya vihodit same zakon Releya Dzhinsa Odnak za malih dovzhin hvil zakon Releya Dzhinsa ne tilki rozhoditsya z eksperimentom a j peredbachaye neobmezhene zrostannya potuzhnosti viprominyuvannya pri nablizhenni dovzhini hvili do nulya Cej paradoks otrimav nazvu ultrafioletovoyi katastrofi 5 26 Zakon viprominyuvannya Vina Redaguvati nbsp Spektri viprominyuvannya za zakonom Planka zelenij v nablizhenni Releya Dzhinsa chervonij i v nablizhenni Vina sinij Osi mayut logarifmichnij masshtab temperatura tila 0 008 KZakon viprominyuvannya Vina nablizhennya zakonu Planka sho dobre pracyuye pri h c l k T displaystyle hc gg lambda kT nbsp v oblasti malih dovzhin hvil i velikih chastot Zakon viprominyuvannya Vina peredbachaye sho dlya h c l k T displaystyle hc gg lambda kT nbsp odiniceyu u znamenniku formuli Planka mozhna znehtuvati ta vvazhati e h c l k T 1 e h c l k T textstyle e frac hc lambda kT 1 approx e frac hc lambda kT nbsp Todi formula nabuvaye viglyadu 25 B l 2 h c 2 l 5 e h c l k T displaystyle B lambda frac 2hc 2 lambda 5 e frac hc lambda kT nbsp Zakon Stefana Bolcmana Redaguvati nbsp Potik energiyi vidpovidaye ploshi pid grafikom funkciyi Za zakonom Stefana Bolcmana vona proporcijna chetvertomu stepenyu temperaturi Zakon Stefana Bolcmana sho opisuye viprominyuvannya absolyutno chornogo tila u vsomu elektromagnitnomu diapazoni Vin vivoditsya iz zakonu Planka integruvannyam za chastotoyu abo zalezhno vid formi zapisu za dovzhinoyu hvili 27 e T 0 e n d n 0 e l d l displaystyle varepsilon T int 0 infty varepsilon nu d nu int 0 infty varepsilon lambda d lambda nbsp e T 2 p h c 2 0 n 3 d n e h n k T 1 displaystyle varepsilon T frac 2 pi h c 2 int 0 infty frac nu 3 d nu e frac h nu kT 1 nbsp Vvedemo zminnu x h n k T textstyle x frac h nu kT nbsp todi d n k T h d x textstyle d nu frac kT h dx nbsp 27 e T 2 p h c 2 k 4 h 4 T 4 0 x 3 d x e x 1 displaystyle varepsilon T frac 2 pi h c 2 frac k 4 h 4 T 4 int 0 infty frac x 3 dx e x 1 nbsp Otrimanij integral zvoditsya do dzeta funkciyi Rimana i maye tochne znachennya p 4 15 displaystyle pi 4 15 nbsp Pidstavivshi jogo otrimayemo vidomij zakon Stefana Bolcmana 27 e T 2 p 5 k 4 15 c 2 h 3 T 4 s T 4 displaystyle varepsilon T frac 2 pi 5 k 4 15c 2 h 3 T 4 sigma T 4 nbsp Pidstanovka chiselnih znachen konstant daye znachennya dlya s 5 66961 10 8 displaystyle sigma 5 66961 cdot 10 8 nbsp Vt m2 displaystyle cdot nbsp K4 sho dobre uzgodzhuyetsya z eksperimentom Zakon zmishennya Vina Redaguvati nbsp Za zakonom zmishennya Vina dovzhina hvili na yakij dosyagayetsya maksimalna viprominyuvalna zdatnist oberneno proporcijna temperaturiZakon zmishennya Vina pov yazuye dovzhinu hvili de viprominyuvalna zdatnist absolyutno chornogo tila maksimalna z jogo temperaturoyu Vin vivoditsya iz zakonu Planka diferenciyuvannyam jogo za chastotoyu chi dovzhinoyu hvili zalezhno vid formi zapisu ta pririvnyuvannyam pohidnoyi do nulya sho dosyagayetsya u maksimumi funkciyi 28 d u p l T d l 4 p 2 ℏ c 2 2 p ℏ c k T l e x p 2 p ℏ c k T l 5 e x p 2 p ℏ c k T l 1 l 6 e x p 2 p ℏ c k T l 1 2 0 displaystyle frac mathrm d u p lambda T mathrm d lambda frac 4 pi 2 hbar c 2 left frac 2 pi hbar c kT lambda mathrm exp left frac 2 pi hbar c kT lambda right 5 left mathrm exp left frac 2 pi hbar c kT lambda right 1 right right lambda 6 left mathrm exp left frac 2 pi hbar c kT lambda right 1 right 2 0 nbsp Znachennya l m displaystyle lambda m nbsp pri yakomu funkciya dosyagaye maksimumu peretvoryuye na nul viraz sho stoyit u figurnih duzhkah Oznachimo 2 p ℏ c k T l m x displaystyle frac 2 pi hbar c kT lambda m x nbsp ta otrimayemo rivnyannya x e x 5 e x 1 0 displaystyle xe x 5 e x 1 0 nbsp Rozv yazok takogo rivnyannya daye x 4 96511 Otzhe 2 p ℏ c k T l m 4 965 displaystyle frac 2 pi hbar c kT lambda m 4 965 nbsp zvidsi vihodit T l m 2 p ℏ c 4 965 k b displaystyle T lambda m frac 2 pi hbar c 4 965k b nbsp Chiselna pidstanovka konstant daye znachennya dlya b 0 0028999 K m sho zbigayetsya z eksperimentalnim a takozh zruchnu nablizhenu formulu l max T 3000 displaystyle lambda max T approx 3000 quad nbsp mkm K Tak sonyachna poverhnya maye maksimum intensivnosti u zelenij oblasti 0 5 mkm sho vidpovidaye temperaturi blizko 6000 K Hocha dlya chastot mozhna vikonati analogichnu proceduru chastotu maksimumu spektralnoyi shilnosti ne mozhna rozrahuvati za formuloyu n m a x c l m a x textstyle nu max frac c lambda max nbsp Tak yak zv yazok mizh chastotoyu i dovzhinoyu hvili nelinijna a viprominyuvalna zdatnist rozrahovuyetsya za viprominyuvannyam na odinichnomu intervali chastot abo dovzhin hvil 28 Div takozh RedaguvatiAbsolyutno chorne tilo Ultrafioletova rozbizhnistPrimitki Redaguvati a b v Planck s radiation law Encyclopedia Britannica angl Arhiv originalu za 13 grudnya 2020 Procitovano 18 grudnya 2020 a b v g d Masalov A V Planka zakon izlucheniya Bolshaya rossijskaya enciklopediya Izdatelstvo BRE 2014 T 26 767 s ISBN 978 5 85270 363 7 a b v g d e Karttunen et al 2007 s 103 a b Kononovich Moroz 2004 s 181 a b v g d e 1 2 Kvantovaya teoriya izlucheniya Kafedra fiziki MGTU im Baumana Arhiv originalu za 28 veresnya 2015 Procitovano 18 grudnya 2020 Juan Carlos Cuevas Thermal radiation from subwavelength objects and the violation of Planck s law Nature Communications Nature Research 2019 Vol 10 iss 1 7 P 3342 ISSN 2041 1723 DOI 10 1038 s41467 019 11287 6 Arhivovano z dzherela 12 bereznya 2022 1 1 Zakony teplovogo izlucheniya Kafedra fiziki MGTU im Baumana Arhiv originalu za 8 serpnya 2020 Procitovano 24 sichnya 2021 Seroe telo Enciklopediya fiziki i tehniki Arhiv originalu za 17 kvitnya 2021 Procitovano 24 sichnya 2021 Kononovich Moroz 2004 s 193 194 Kononovich Moroz 2004 s 239 240 Dzhemmer 1985 s 14 16 a b v g Max Planck the reluctant revolutionary Physics World angl 1 grudnya 2000 Arhiv originalu za 6 lipnya 2022 Procitovano 19 grudnya 2020 Dzhemmer 1985 s 21 Dzhemmer 1985 s 22 27 Dzhemmer 1985 s 27 30 Dzhemmer 1985 s 30 33 Dzhemmer 1985 s 30 34 Sivuhin 2002 s 697 The Nobel Prize in Physics 1918 NobelPrize org angl Nobel Foundation Arhiv originalu za 7 chervnya 2020 Procitovano 19 grudnya 2020 a b v Different Formulations of Planck s Law www physics in a nutshell com Arhiv originalu za 14 grudnya 2020 Procitovano 19 grudnya 2020 Sivuhin D V Moskva 1980 T Tom 4 Optika 117 Formula Releya Dzhinsa formula 117 7 s 692 694 ros Savelev I V M 1967 T III Optika atomnaya fizika elementarnye chasticy 416 s Kurs obshej fiziki Moskva Nauka 1967 T III 416 s 52 Formula Releya Dzhinsa formula 52 7 s 253 258 ros a b v Sivuhin 2002 s 703 704 a b v g d e zh i Sivuhin 2002 s 704 706 a b Kononovich Moroz 2004 s 182 Karttunen et al 2007 s 105 a b v Karttunen et al 2007 s 103 104 a b Karttunen et al 2007 s 104 105 Literatura RedaguvatiPlank M Ob odnom uluchshenii zakona izlucheniya Vina Izbrannye nauchnye trudy Russkij per iz sbornika pod red A P Vinogradova str 249 Plank M K teorii raspredeleniya energii izlucheniya normalnogo spektra Izbrannye nauchnye trudy Russkij per iz sbornika pod red A P Vinogradova str 251Posilannya RedaguvatiSimulyator viprominyuvannya absolyutno chornogo tila Arhivovano 21 listopada 2015 u Wayback Machine Otrimano z https uk wikipedia org w index php title Zakon viprominyuvannya Planka amp oldid 39820744