www.wikidata.uk-ua.nina.az
Epigenetichne pereprogramuvannya stirannya ta remodelyuvannya epigenetichnih poznachok v molekulah DNK takih yak sajti metilyuvannya DNK pid chas prirodnogo rozvitku organizmu abo v kulturi klitin zadlya peretvorennya odnogo tipu klitin na inshij 1 Takij kontrol takozh chasto pov yazanij z modifikaciyami gistoniv sho zagalom zminyuye aktivnist pevnih geniv na rivni epigenomu en div Epigenomika Epigenom en skladayetsya z himichnih spoluk i bilkiv gistoniv yaki mozhut priyednuvatisya do DNK i keruvati takimi diyami yak uvimknennya abo vimknennya geniv sho kontrolyuye virobnictvo pevnih bilkiv u konkretnih klitinah Fenomen klitinnogo pereprogramuvannya zdatnist peretvoryuvati odin tip klitin v inshij viklikav zminu paradigm v galuzi molekulyarnoyi biologiyi sho maye dalekosyazhni naslidki dlya regenerativnoyi medicini modelyuvannya zahvoryuvan i rozuminnya biologiyi rozvitku ta klitinnoyi identichnosti vidiv Grupi lyudskih klitin rozpodileni za kilkistyu klitin i za sukupnoyu klitinnoyu masoyu 2 Tilo lyudini mistit za deyakimi ocinkami 400 osnovnih tipiv klitin en u 60 pidtipah tkanin 2 ale kozhen tip klitin maye odnakovu genomnu poslidovnist DNK yih vidriznyayut same zmini v epigenomi Zmist 1 Istoriya 2 Osnovni ponyattya 2 1 Tipi klitin i pohodzhennya 2 2 Epigenetika ta epigenomika 2 3 Epigenetichna spadkovist 3 Epigenetichne pereprogramuvannya v prirodi 3 1 Embrionalnij rozvitok 3 2 Navchannya i pam yat 4 Molekulyarni stadiyi 4 1 Fermenti TET 4 2 Rekruting TET do DNK 4 3 OGG1 4 4 EGR1 5 Fazi pereprogramuvannya 5 1 Iniciaciya 5 1 1 Perenesennya yadra somatichnoyi klitini 5 1 2 Zlittya klitin 5 1 3 Faktori pereprogramuvannya 5 2 Dozrivannya 5 3 Stabilizaciya 6 Epigenetichne pereprogramuvannya v kulturah klitin 6 1 Metodi pereprogramuvannya 6 1 1 Perenesennya yader somatichnih klitin SCNT 6 1 2 Indukovani plyuripotentni stovburovi klitini iPSC 6 1 3 Pryame pereprogramuvannya 6 2 Faktori transkripciyi 6 2 1 OSKM 6 2 2 Inshi faktori pereprogramuvannya 6 3 Signalni shlyahi 6 3 1 Signalni shlyahi Wnt BMP i FGF 6 3 2 Signalnij shlyah TGF b 6 4 Epigenetichne remodelyuvannya 6 4 1 Globalne demetilyuvannya DNK 6 4 2 Modifikaciyi gistoniv pid chas pereprogramuvannya 7 Epigenetichne pereprogramuvannya v regenerativniij medicini 7 1 Terapiya stovburovimi klitinami 7 2 Modelyuvannya zahvoryuvannya ta skrining likiv 7 3 Novi pidhodi do regeneraciyi tkanin 7 3 1 Pereprogramuvannya in vivo 7 3 2 Mali molekuli ta epigenetichni modifikatori 8 Div takozh 9 Dodatkova literatura 9 1 Knigi 9 2 Zhurnali 9 3 Statti 10 PrimitkiIstoriya RedaguvatiPershoyu lyudinoyu yaka uspishno prodemonstruvala pereprogramuvannya buv Dzhon Gerdon yakij u 1962 roci prodemonstruvav sho diferencijovani somatichni klitini mozhut buti pereprogramovani nazad u embrionalnij stan koli jomu vdalosya otrimati plavayuchih pugolovkiv pislya perenesennya diferencijovanih kishkovih epitelialnih klitin u bez yaderni zhab yachi yajcya 3 Za ce dosyagnennya vin otrimav Nobelivsku premiyu z medicini 2012 roku razom iz Sin ya Yamanakoyu 4 Yamanaka buv pershim hto prodemonstruvav u 2006 roci sho cej proces perenesennya yadra somatichnoyi klitini abo proces pereprogramuvannya oocitiv div nizhche yakij viyaviv Gerdon mozhna povtoriti na mishah za dopomogoyu pevnih faktoriv Oct4 Sox2 Klf4 ta c Myc dlya stvorennya indukovanih plyuripotentnih stovburovih klitin iPSC 5 Takozh z tiyeyu zh metoyu vikoristovuvalisya inshi kombinaciyi geniv vklyuchayuchi LIN25 6 i bilok Homeobox NANOG 6 7 ta kombinaciyi himichnih rechovin 8 Osnovni ponyattya RedaguvatiTipi klitin i pohodzhennya Redaguvati nbsp Stovburova klitina yak poperednik diferencijovanih klitinRozuminnya klitinnoyi identichnosti pochinayetsya z klasifikaciyi riznih tipiv klitin i linij yih rozvitku Klitini v organizmi ye visokospecializovanimi voni vikonuyut rizni funkciyi zhittyevo vazhlivi dlya zagalnoyi fiziologiyi Tilo lyudini mistit za deyakimi ocinkami 400 osnovnih tipiv klitin en u 60 pidtipah tkanin 2 ale kozhen tip klitin maye odnakovu genomnu poslidovnist DNK yih vidriznyayut same zmini v epigenomi Klitinna identichnist gliboko perepletena z koncepciyeyu klitinnoyi diferenciaciyi koli stovburovi klitini stayut specializovanimi dlya vikonannya pevnih funkcij v organizmi Proces diferenciaciyi organizovanij tochnimi genetichnimi ta epigenetichnimi regulyatornimi mehanizmami yaki garantuyut sho kozhen tip klitin zberigaye svoyi unikalni harakteristiki Cya koncepciya ye narizhnim kamenem biologiyi rozvitku Epigenetika ta epigenomika Redaguvati Osnova klitinnoyi identichnosti vihodit za mezhi genetichnoyi informaciyi zakodovanoyi v poslidovnosti DNK Epigenetika ta epigenomika ye klyuchovimi aspektami yaki keruyut klitinnoyu diferenciaciyeyu Epigenetichni modifikaciyi taki yak metilyuvannya DNK modifikaciyi gistoniv i rol nekoduyuchih RNK vidigrayut klyuchovu rol u viznachenni modelej ekspresiyi geniv Epigenetichna spadkovist Redaguvati Rozuminnya koncepciyi epigenetichnoyi spadkovosti en ye zhittyevo vazhlivim dlya ocinki roli epigenetichnih modifikacij u pidtrimci klitinnoyi identichnosti cherez pokolinnya Epigenetichni zmini mozhut peredavatisya vid odnogo pokolinnya do nastupnogo i na nih mozhut vplivati faktori navkolishnogo seredovisha ta sposobu zhittya potencijno vplivayuchi na zdorov ya majbutnih pokolin Epigenetichne pereprogramuvannya v prirodi RedaguvatiMasshtabni vid 10 do 100 epigenetichnih poznachok i shvidki vid godin do kilkoh dniv pereprogramuvannya vidbuvayutsya na troh etapah zhittya ssavciv Majzhe 100 epigenetichnih oznak pereprogramuyutsya protyagom dvoh korotkih periodiv na pochatku rozvitku pislya zaplidnennya yajceklitini spermatozoyidom 9 10 11 12 Okrim cih troh etapiv zmini do majzhe 10 metilyuvannya DNK v nejronah gipokampu mozhut vidbuvatis pid chas dosvidu sho viklikaye formuvannya v pam yati silnoyi engrami emocijno zabarvlenoyi strahom 13 Pislya zaplidnennya u ssavciv modeli metilyuvannya DNK znachnoyu miroyu stirayutsya a potim vidnovlyuyutsya pid chas rannogo embrionalnogo rozvitku Majzhe vsi metilyuvannya vid batkiv stirayutsya spochatku pid chas rannogo embriogenezu a potim znovu v gametogenezi de kozhnogo razu vidbuvayutsya demetilyuvannya ta remetilyuvannya Demetilyuvannya pid chas rannogo embriogenezu vidbuvayetsya v peredimplantacijnij period Pislya zaplidnennya spermatozoyidom yajceklitini z utvorennyam zigoti vidbuvayetsya shvidke demetilyuvannya batkivskoyi DNK i povilnishe demetilyuvannya materinskoyi DNK do utvorennya moruli yaka majzhe ne maye metilyuvannya Pislya utvorennya blastocisti mozhe pochatisya metilyuvannya a z utvorennyam epiblasta vidbuvayetsya hvilya metilyuvannya do stadiyi implantaciyi embriona en Inshij period shvidkogo i majzhe povnogo demetilyuvannya vidbuvayetsya pid chas gametogenezu v primordialnih zarodkovih statevih klitinah Za vinyatkom cih statevih klitin na postimplantacijnij stadiyi modeli metilyuvannya v somatichnih klitinah ye stadijno tkaninospecifichnimi zi zminami yaki imovirno viznachayut kozhen okremij tip klitini en ta zberigayutsya stabilno protyagom trivalogo chasu 14 Embrionalnij rozvitok Redaguvati nbsp Hronologiya metilyuvannya DNK u genomi mishi Chervonij zhinocha zarodkova liniya en sinij cholovicha zarodkova liniya sirij liniya somatichnih klitin PGCs primordialni statevi klitini ICM vnutrishnya klitinna masa Genom spermi mishi na 80 90 metilovanij u CpG sajtah u DNK sho stanovit blizko 20 miljoniv metilovanih sajtiv 15 16 Pislya zaplidnennya batkivska hromosoma majzhe povnistyu demetilyuyetsya en za shist godin aktivnim procesom pered replikaciyeyu DNK sinya liniya na malyunku U zrilomu oociti blizko 40 jogo sajtiv CpG metilovani Demetilyuvannya materinskoyi hromosomi v osnovnomu vidbuvayetsya shlyahom blokuvannya diyi metilyuyuchih fermentiv na DNK materinskogo pohodzhennya ta rozvedennya metilovanoyi materinskoyi DNK pid chas replikaciyi chervona liniya na malyunku Morula na stadiyi 16 klitin maye lishe neveliku kilkist metilyuvannya DNK chorna liniya na malyunku Metilyuvannya pochinaye zbilshuvatisya cherez 3 5 dnya pislya zaplidnennya v blastocisti a potim velika hvilya metilyuvannya vidbuvayetsya na 4 5 5 5 den v epiblasti perehodyachi vid 12 do 62 metilyuvannya ta dosyagayuchi maksimalnogo rivnya pislya implantaciyi v matci 17 Na somij den pislya zaplidnennya novoutvoreni primordialni zarodkovi statevi klitini PGC v implantovanomu embrioni vidokremlyuyutsya vid reshti somatichnih klitin U cej moment PGC mayut priblizno takij zhe riven metilyuvannya yak i somatichni klitini Novoutvoreni primordialni zarodkovi klitini PGC v implantovanomu embrioni pohodyat vid somatichnih klitin U cej moment PGCs mayut visokij riven metilyuvannya Ci klitini migruyut vid epiblasta do gonadnogo grebenya en Na comu etapi klitini shvidko rozmnozhuyutsya i pochinayut demetilyuvannya dvoma hvilyami U pershij hvili demetilyuvannya vidbuvayetsya shlyahom replikativnogo rozvedennya ale v drugij hvili demetilyuvannya vidbuvayetsya v rezultati aktivnogo procesu Druga hvilya prizvodit do demetilyuvannya specifichnih lokusiv Na comu etapi genomi PGC demonstruyut najnizhchij riven metilyuvannya DNK sered bud yakih klitin za ves zhittyevij cikl na 13 5 den embriona E13 5 div drugij malyunok u comu rozdili 18 nbsp Dinamika metilyuvannya DNK pid chas embrionalnogo rozvitku mishiPislya zaplidnennya deyaki klitini novoutvorenogo embriona migruyut do gonadnogo grebanya i zgodom stayut statevimi klitinami spermatozoyidami i yajceklitinami nastupnogo pokolinnya Zavdyaki fenomenu genomnogo imprintingu materinskij i batkivskij genomi poznachayutsya po riznomu i povinni buti nalezhnim chinom pereprogramovani kozhnogo razu koli voni prohodyat cherez zarodkovu liniyu Takim chinom pid chas procesu gametogenezu pervinni zarodkovi klitini mayut sterti ta vidnoviti originalni shemi metilyuvannya dvobatkivskoyi DNK na osnovi stati batka peredavacha Pislya zaplidnennya batkivskij i materinskij genomi demetilyuyutsya shob sterti yihni epigenetichni pidpisi ta nabuti totipotentnosti div Potentnist klitin en U comu misci sposterigayetsya asimetriya cholovichij pronukleus piddayetsya shvidkomu i aktivnomu demetilyuvannyu Tim chasom zhinochij pronukleus pasivno demetilyuyetsya pid chas poslidovnih klitinnih podiliv Proces demetilyuvannya DNK vklyuchaye reparaciyu osnovi ta jmovirno inshi mehanizmi zasnovani na reparaciyi DNK 19 Nezvazhayuchi na globalnij harakter cogo procesu isnuyut pevni poslidovnosti yaki unikayut jogo taki yak diferencialno metilovani oblasti en DMRS pov yazani z imprintovanimi genami retrotranspozoni en ta centromernij geterohromatin Remetilyuvannya znovu neobhidne dlya diferenciaciyi embriona v povnocinnij organizm 20 She v 2003 roci bulo pokazano sho manipulyaciyi z embrionami do implantaciyi in vitro porushuyut shemi metilyuvannya v imprintovanih lokusah 21 i vidigrayut virishalnu rol u klonovanih tvarinah 22 Navchannya i pam yat Redaguvati nbsp Dilyanki golovnogo mozku sho berut uchast u formuvanni pam yatiNavchannya ta pam yat mayut rivni postijnosti sho vidriznyayetsya vid inshih psihichnih procesiv takih yak mislennya mova ta svidomist yaki ye timchasovimi za svoyeyu prirodoyu Navchannya ta zapam yatovuvannya mozhut nakopichuvatisya povilno yak ot vivchennya tablici mnozhennya abo shvidko yak ot dotorknuvshis do garyachoyi pechi ale koli voni dosyagnuti yih mozhna vidnoviti dlya svidomogo vikoristannya protyagom trivalogo chasu div takozh Nejroplastichnist Shuri piddani odnomu vipadku kontekstnogo obumovlennya strahu stvoryuyut osoblivo silnu dovgotrivalu pam yat Cherez 24 godini pislya navchannya 9 17 geniv u genomah nejroniv gipokampu shuriv viyavilisya diferencialno metilovanimi Ce vklyuchalo ponad 2000 diferencialno metilovanih geniv cherez 24 godini pislya trenuvannya pri comu ponad 500 geniv buli demetilovani 23 24 Dilyanka gipokampu mozku ce misce de spochatku zberigayutsya kontekstualni spogadi pro strah ale ce zberigannya ye timchasovim i ne zalishayetsya v gipokampi U shuriv kontekstne obumovlennya strahu skasovuyetsya koli gipokamp piddayetsya vidalennyu lishe cherez 1 den pislya kondicionuvannya ale shuri zberigayut znachnu kilkist kontekstualnogo strahu koli vstanovlyuyetsya velika zatrimka 28 dniv mizh chasom kondicionuvannya ta chasom gipokampektomiyi vidalennya gipokampu 25 Molekulyarni stadiyi RedaguvatiDlya pereprogramuvannya metiloma DNK potribni tri molekulyarni stadiyi Etap 1 Rekruting Fermenti neobhidni dlya pereprogramuvannya zaluchayutsya do dilyanok genomu yaki vimagayut demetilyuvannya abo metilyuvannya Etap 2 Realizaciya Vidbuvayutsya pochatkovi fermentativni reakciyi U vipadku metilyuvannya ce korotkij etap yakij prizvodit do metilyuvannya citozinu do 5 metilcitozinu Etap 3 Reparaciya DNK shlyahom visichennya osnovi Promizhni produkti demetilyuvannya katalizuyutsya specifichnimi fermentami osnovnogo shlyahu reparaciyi DNK shlyahom eksciziyi yaki ostatochno vidnovlyuyut citozin u poslidovnosti DNK nbsp Demetilyuvannya 5 metilcitozinu Demetilyuvannya 5 metilcitozinu 5mC v DNK nejroniv Zgidno z oglyadom 2018 roku 26 v nejronah golovnogo mozku 5mC okislyuyetsya TET dioksigenazoyu z utvorennyam 5 gidroksimetilcitozinu en 5hmC Na poslidovnih etapah ferment TET dodatkovo gidroksilyuye 5hmC dlya generaciyi 5 formilcitozinu en 5fC i 5 karboksilcitozinu 5caC Timin DNK glikozilaza TDG rozpiznaye promizhni osnovi 5fC i 5caC i rozrivaye glikozidnij zv yazok u rezultati chogo utvoryuyetsya apirimidinovij sajt AR sajt V alternativnomu shlyahu okisnogo dezaminuvannya 5hmC mozhe buti okislyuvalno dezaminovanij kompleksom redaguvannya mRNK citidindezaminazi apolipoproteyinu B AID APOBEC indukovanim aktivnistyu z utvorennyam 5 gidroksimetiluracilu 5hmU 5mC takozh mozhna peretvoriti na timin Thy 5hmU mozhe buti rozsheplenij TDG odnolancyugovoyu selektivnoyu monofunkcionalnoyu uracil DNK glikozilazoyu 1 SMUG1 Nei podibnoyu DNK glikozilazoyu 1 NEIL1 abo metil CpG zv yazuyuchim bilkom 4 MBD4 AP sajti ta nevidpovidnosti T G potim vipravlyayutsya fermentami ekscizijnoyi reparaciyi osnov BER shob otrimati citozin Cyt Fermenti TET Redaguvati Izoformi fermentiv TET en vklyuchayut shonajmenshe dvi izoformi TET1 odnu iz TET2 i tri izoformi TET3 27 28 Povnorozmirna kanonichna izoforma TET1 zdayetsya praktichno obmezhena rannimi embrionami embrionalnimi stovburovimi klitinami ta pervinnimi zarodkovimi klitinami PGC Dominuyucha izoforma TET1 u bilshosti somatichnih tkanin prinajmni u mishi vinikaye vnaslidok vikoristannya alternativnogo promotoru yakij prizvodit do korotkogo transkriptu ta usichenogo bilka poznachenogo yak TET1 Izoformami TET3 ye povnorozmirna forma TET3FL korotka forma splajsingu TET3s i forma yaka zustrichayetsya v oocitah i nejronah poznachena yak TET3o TET3o stvoryuyetsya alternativnim vikoristannyam promotora ta mistit dodatkovij pershij N kincevij ekzon sho koduye 11 aminokislot TET3o zustrichayetsya lishe v oocitah i nejronah i ne ekspresuyetsya v embrionalnih stovburovih klitinah abo v bud yakomu inshomu tipi klitin abo doslidzhuvanih tkaninah doroslih mishej U toj chas yak ekspresiyu TET1 ledve mozhna viyaviti v oocitah i zigotah a TET2 ekspresuyetsya lishe pomirno variant TET3 TET3o demonstruye nadzvichajno visoki rivni ekspresiyi v oocitah i zigotah ale majzhe vidsutnij na 2 klitinnij stadiyi Mozhlivo sho TET3o z visokim vmistom v nejronah oocitah i zigotah na odnoklitinnij stadiyi ye osnovnim fermentom TET yakij vikoristovuyetsya koli v cih klitinah vidbuvayetsya duzhe masshtabne shvidke demetilyuvannya Rekruting TET do DNK Redaguvati Fermenti TET ne zv yazuyutsya specifichno z 5 metilcitozinom za vinyatkom vipadkiv rekrutuvannya Bez rekrutuvannya chi nacilyuvannya TET1 perevazhno zv yazuyetsya z promotorami visokogo rivnya CG i ostrivcyami CpG CGI u vsomu genomi za dopomogoyu svogo domenu CXXC yakij mozhe rozpiznavati nemetilovani CGI 29 TET2 ne maye sporidnenosti do 5 metilcitozinu v DNK 30 Domen CXXC povnorozmirnogo TET3 yakij ye perevazhnoyu formoyu sho ekspresuyetsya v nejronah najsilnishe zv yazuyetsya z CpG de C bulo peretvoreno na 5 karboksicitozin 5caC Odnak vin takozh zv yazuyetsya z nemetilovanimi CpG 28 nbsp Iniciaciya demetilyuvannya DNK na sajti CpG U doroslih somatichnih klitinah metilyuvannya DNK zazvichaj vidbuvayetsya v konteksti dinukleotidiv CpG sajti CpG utvoryuyuchi 5 metilcitozin pG 5mCpG Aktivni formi kisnyu AFK mozhut atakuvati guanin u dinukleotidnomu misci utvoryuyuchi 8 gidroksi 2 dezoksiguanozin 8 OHdG sho prizvodit do dinukleotidnogo sajtu 5mCp 8 OHdG Bazovij ferment vidnovlennya eksciziyi OGG1 nacilenij na 8 OHdG i zv yazuyetsya z vognishem bez negajnogo vidalennya OGG1 prisutnij na dilyanci 5mCp 8 OHdG rekrutuye TET1 a TET1 okislyuye 5mC poruch iz 8 OHdG Ce iniciyuye demetilyuvannya 5mC 31 yak pokazano na poperednomu malyunku Shob ferment TET iniciyuvav demetilyuvannya vin povinen spochatku buti zaluchenij do metilovanogo sajtu CpG v DNK Dva bilki yaki yak pokazano zaluchayut ferment TET do metilovanogo citozinu v DNK ce OGG1 div malyunok Iniciaciya detilyuvannya DNK 31 i EGR1 32 OGG1 Redaguvati Oksoguaninglikozilaza OGG1 katalizuye pershij krok u vidnovlenni osnovi 8 OHdG poshkodzhenoyi okislyuvalno OGG1 znahodit 8 OHdG kovzayuchi vzdovzh linijnoyi DNK na 1000 par osnov DNK za 0 1 sekundi 33 OGG1 duzhe shvidko znahodit 8 OHdG Bilki OGG1 zv yazuyutsya z okislyuvalno poshkodzhenoyu DNK z polovinnim maksimalnim chasom priblizno 6 sekund 34 Koli OGG1 znahodit 8 OHdG vin zminyuye konformaciyu ta utvoryuye kompleks z 8 OHdG u kisheni zv yazuvannya OGG1 35 OGG1 ne diye negajno shob vidaliti 8 OHdG Polovina maksimalnogo vidalennya 8 OHdG zajmaye priblizno 30 hvilin u klitinah HeLa in vitro 36 abo priblizno 11 hvilin u pechinci oprominenih mishej 37 Okislennya DNK aktivnimi formami kisnyu perevazhno vidbuvayetsya na guanini v metilovanomu misci CpG cherez znizhenij potencial ionizaciyi guaninovih osnov sho znahodyatsya poruch iz 5 metilcitozinom 38 TET1 zv yazuye rekrutuyetsya OGG1 zv yazanij z 8 OHdG div malyunok 31 Jmovirno ce dozvolyaye TET1 demetilyuvati susidnij metilovanij citozin Koli epitelialni klitini molochnoyi zalozi lyudini MCF 10A buli obrobleni H 2 O 2 8 OHdG zbilshivsya v DNK u 3 5 razi sho sprichinilo velikomasshtabne demetilyuvannya 5 metilcitozinu priblizno do 20 vid pochatkovogo rivnya v DNK 31 EGR1 Redaguvati Gen rannogo bilka reakciyi rostu 1 early growth response protein 1 EGR1 ye genom negajnoyi rannoyi reakciyi en IEG Viznachalnoyu harakteristikoyu IEG ye shvidka ta timchasova aktivaciya protyagom hvilin rivnya yih mRNK nezalezhno vid sintezu bilka 39 EGR1 mozhe buti shvidko indukovanij aktivnistyu nejroniv 40 U zrilomu vici EGR1 shiroko ekspresuyetsya v usomu mozku zberigayuchi bazovi rivni ekspresiyi v kilkoh klyuchovih oblastyah mozku vklyuchayuchi medialnu prefrontalnu koru smugaste tilo gipokamp i migdalepodibne tilo 39 Ce virazhennya pov yazane z kontrolem piznannya emocijnoyu reakciyeyu socialnoyu povedinkoyu ta chutlivistyu do vinagorodi 39 EGR1 zv yazuyetsya z DNK u miscyah z motivami en 5 GCGTGGGCG 3 i 5 GCGGGGGCGG 3 i ci motivi vinikayut perevazhno v promotornih oblastyah geniv 40 Korotka izoforma TET1s ekspresuyetsya v mozku EGR1 i TET1 utvoryuyut kompleks oposeredkovanij S kincevimi dilyankami oboh bilkiv nezalezhno vid asociaciyi z DNK 40 EGR1 zaluchaye TET1 do genomnih oblastej sho otochuyut sajti zv yazuvannya EGR1 40 U prisutnosti EGR1 TET1s zdatnij do lokus specifichnogo demetilyuvannya ta aktivaciyi ekspresiyi nastupnih geniv yaki regulyuyutsya EGR1 40 Fazi pereprogramuvannya RedaguvatiPereprogramuvannya viznachayetsya u tri fazi iniciaciya dozrivannya ta stabilizaciya 41 Iniciaciya Redaguvati Faza iniciaciyi pov yazana z prignichennyam specifichnih geniv klitinnogo tipu ta posilennyam plyuripotentnih geniv 41 U miru togo yak klitini ruhayutsya do plyuripotentnosti aktivnist telomerazi reaktivuyetsya dlya rozshirennya telomeriv Morfologiya klitini mozhe bezposeredno vplivati na proces pereprogramuvannya oskilki klitina modifikuyetsya shob pidgotuvatisya do ekspresiyi gena plyuripotentnosti 42 Osnovnim pokaznikom zavershennya fazi iniciaciyi ye te sho pershi geni pov yazani z plyuripotentnistyu ekspresuyutsya Ce vklyuchaye v sebe ekspresiyu bilka Oct 4 abo Homeobox NANOG pid chas prohodzhennya mezenhimalno epitelialnogo perehodu MET a takozh vtratu apoptozu ta oznak starinnya 43 Yaksho klitinu bezposeredno pereprogramuvati z odniyeyi somatichnoyi klitini na inshu geni pov yazani z kozhnim tipom klitini pochinayut vidpovidno posilyuvati ta znizhuvati regulyaciyu 41 Ce mozhe vidbutisya abo cherez pryame pereprogramuvannya klitini abo cherez promizhnu stadiyu indukovanih plyuripotentnih stovburovih klitin i podalshogo yih diferenciyuvannya v bazhanij tip klitini 43 Perenesennya yadra zlittya klitin ta faktori pereprogramuvannya mozhut aktivuvati fazu iniciaciyi Perenesennya yadra somatichnoyi klitini Redaguvati Oocit mozhe pereprogramuvati dorosle yadro v embrionalnij stan pislya perenesennya yadra somatichnoyi klitini shob z takoyi klitini mig rozvinutisya novij organizm 44 Pereprogramuvannya vidriznyayetsya vid rozvitku somatichnogo epitipu 7 oskilki somatichni epitipi potencijno mozhut buti zmineni pislya togo yak organizm zalishiv stadiyu rozvitku zhittya 45 Pid chas perenesennya yadra somatichnoyi klitini oocit vimikaye tkaninospecifichni geni v yadri somatichnoyi klitini ta znovu vklyuchaye embrionalni specifichni geni Cej proces bulo pokazano cherez klonuvannya yak ce vidno v doslidzhennyah Dzhona Gerdona z pugolovkami 3 ta v doslidzhennyah vivci Dolli 46 Primitno sho ci podiyi pokazali sho dolya diferenciaciyi klitini ye oborotnim procesom Zlittya klitin Redaguvati Zlittya klitin vikoristovuyetsya dlya stvorennya bagatoyadernoyi klitini yaka nazivayetsya geterokarionom en 43 Zliti klitini dozvolyayut reaktivuvati ta ekspresuvati geni yaki inakshe movchat Koli geni reaktivuyutsya klitini mozhut povtorno diferenciyuvatisya Isnuyut vipadki koli transkripcijni faktori taki yak faktori Yamanaki vse she potribni dlya dopomogi v pereprogramuvanni geterokarionnih klitin 47 Faktori pereprogramuvannya Redaguvati Faktori pereprogramuvannya vklyuchayut mikroRNK faktor transkripciyi epigenetichni markeri ta inshi mali molekuli 43 Vihidni faktori transkripciyi yaki prizvodyat do rozvitku iPSC vidkriti Yamanakoyu vklyuchayut Oct4 Sox2 Klf4 i c Myc faktori OSKM 5 48 Hocha bulo pokazano sho faktori OSKM indukuyut i spriyayut plyuripotentnosti inshi faktori transkripciyi taki yak bilok Homeobox NANOG 49 LIN25 50 TRA 1 60 49 i C EBPa 51 dopomagayut u efektivnist pereprogramuvannya Vikoristannya mikroRNK ta inshih procesiv kerovanih malimi molekulami bulo vikoristano yak zasib pidvishennya efektivnosti diferenciaciyi vid somatichnih klitin do plyuripotentnosti 43 Dozrivannya Redaguvati Faza dozrivannya pochinayetsya v kinci fazi iniciaciyi koli ekspresuyutsya pershi plyuripotentni geni 41 Klitina gotuyetsya buti nezalezhnoyu vid viznachenih faktoriv yaki pochali proces pereprogramuvannya Pershimi genami yaki buli viyavleni v iPSC ye Oct4 proteyin Homeobox NANOG i Esrrb a potim Sox2 43 Na piznishih stadiyah dozrivannya movchannya transgenu oznachaye pochatok nezalezhnosti klitini vid indukovanogo faktora transkripciyi Koli klitina staye nezalezhnoyu zavershuyetsya faza dozrivannya i pochinayetsya faza stabilizaciyi Oskilki dovedeno sho efektivnist pereprogramuvannya ye zminnim i nizkoefektivnim procesom ne vsi klitini zavershuyut fazu dozrivannya ta dosyagayut plyuripotentnosti 51 Deyaki klitini yaki piddayutsya pereprogramuvannyu vse she zalishayutsya v stani apoptozu na pochatku stadiyi dozrivannya cherez okislyuvalnij stres viklikanij stresami zmini ekspresiyi geniv Vikoristannya mikroRNK bilkiv i riznih kombinacij faktoriv OSKM pochalo prizvoditi do pidvishennya efektivnosti pereprogramuvannya Stabilizaciya Redaguvati Faza stabilizaciyi vidnositsya do procesiv u klitini yaki vidbuvayutsya pislya dosyagnennya klitinoyu plyuripotentnosti Odnim iz genetichnih markeriv ye ekspresiya Sox2 i reaktivaciya H hromosomi todi yak epigenetichni zmini vklyuchayut telomerazu yaka rozshiryuye telomeri 52 ta vtratu epigenetichnoyi pam yati klitini 41 Epigenetichna pam yat klitini skidayetsya zminami v metilyuvanni DNK 53 za dopomogoyu indukovanoyi aktivaciyeyu citidindezaminazi AID fermentiv TET TET i DNK metiltransferazi DMNTs pochinayuchi z fazi dozrivannya i do stabilizaciyi 41 Yak tilki epigenetichna pam yat klitini vtrachayetsya dosyagayetsya mozhlivist diferenciyuvannya na tri zarodkovi listki 48 Ce vvazhayetsya povnistyu pereprogramovanoyu klitinoyu 43 Epigenetichne pereprogramuvannya v kulturah klitin Redaguvati nbsp Diagrama sho demonstruye kilka metodiv yaki vikoristovuyutsya dlya pereprogramuvannya doroslih somatichnih klitin do totipotentnosti abo plyuripotentnosti Pereprogramuvannya takozh mozhna indukuvati shtuchno shlyahom vvedennya ekzogennih faktoriv yak pravilo faktoriv transkripciyi U comu konteksti ce chasto vidnositsya do stvorennya indukovanih plyuripotentnih stovburovih klitin iz zrilih klitin takih yak dorosli fibroblasti Ce dozvolyaye viroblyati stovburovi klitini dlya biomedichnih doslidzhen takih yak doslidzhennya likuvannya stovburovimi klitinami bez vikoristannya embrioniv Vin zdijsnyuyetsya shlyahom transfekciyi geniv asocijovanih zi stovburovimi klitinami u zrili klitini za dopomogoyu virusnih vektoriv takih yak retrovirusi div takozh Genoterapiya Metodi pereprogramuvannya Redaguvati Metodi klitinnogo pereprogramuvannya znachno rozvinulisya z momentu poyavi indukovanih plyuripotentnih stovburovih klitin iPSC ta peresadki yader somatichnih klitin SCNT Perenesennya yader somatichnih klitin SCNT Redaguvati Perenesennya yadra somatichnoyi klitini zapochatkovane Gerdonom vklyuchaye perenesennya yadra somatichnoyi klitini v yajceklitinu bez yadra Cej proces povertaye yadro somatichnoyi klitini do embrionalnogo stanu povtoryuyuchi rannij rozvitok Gurdon 1962 Indukovani plyuripotentni stovburovi klitini iPSC Redaguvati iPSC generuyutsya vvedennyam specifichnih faktoriv transkripciyi takih yak Oct4 Sox2 Klf4 i c Myc OSKM u diferencijovani somatichni klitini Cya tehnika dozvolyaye pereprogramuvati dorosli klitini v plyuripotentnij stan bez potrebi v oocitah abo embrionah Pryame pereprogramuvannya Redaguvati Metodi pryamogo pereprogramuvannya obhodyat promizhnij plyuripotentnij stan i bezposeredno peretvoryuyut odin tip klitini v inshij Napriklad peretvorennya fibroblastiv u funkcionalni kardiomiociti cherez primusovu ekspresiyu sercevih transkripcijnih faktoriv ye bagatoobicyayuchoyu strategiyeyu regenerativnoyi medicini 54 55 56 Faktori transkripciyi Redaguvati Odin iz pershih transakcijnih faktoriv yakij proyaviv zdatnist pereprogramovuvati klitinu buv viyavlenij u mioblasti koli komplementarna DNK kDNK sho koduye MyoD bula ekspresovana ta peretvorila fibroblast na mioblast Inshim transakcijnim faktorom yakij bezposeredno transformuvav limfoyidnu klitinu v miyeloyidnu buv C EBPa MyoD i C EBPa ye prikladami nevelikoyi kilkosti okremih faktoriv yaki mozhut transformuvati klitini Chastishe kombinaciya faktoriv transkripciyi pracyuye razom shob pereprogramuvati klitinu OSKM Redaguvati Faktori OSKM Oct4 Sox2 Klf4 i c Myc buli spochatku vidkriti Yamanakoyu v 2006 roci shlyahom indukciyi fibroblastu mishi v indukovani plyuripotentni stovburovi klitini iPSC 5 Protyagom nastupnogo roku ci faktori buli vikoristani dlya indukciyi fibroblastiv lyudini v iPSC 48 Oct4 ye chastinoyu osnovnih regulyatornih geniv neobhidnih dlya plyuripotentnosti yak ce vidno yak v embrionalnih stovburovih klitinah tak i v puhlinah 57 Vikoristannya Oct4 navit pri nevelikih zbilshennyah dozvolyaye rozpochati diferenciaciyu do plyuripotentnosti Oct4 pracyuye v gipotezi z Sox2 dlya ekspresiyi FGF4 sho mozhe dopomogti v diferenciaciyi Sox2 ce gen yakij vikoristovuyetsya dlya pidtrimki plyuripotentnosti stovburovih klitin Oct4 i Sox2 pracyuyut razom shob regulyuvati sotni geniv yaki vikoristovuyutsya v plyuripotentnosti 57 Odnak Sox2 ne ye yedinim mozhlivim chlenom rodini Sox yakij bere uchast u regulyaciyi geniv razom iz Oct4 Sox4 Sox11 i Sox15 takozh berut uchast oskilki bilok Sox ye nadlishkovim u vsomu genomi stovburovih klitin Klf4 ye faktorom transkripciyi yakij vikoristovuyetsya dlya proliferaciyi diferenciyuvannya apoptozu ta reprogramuvannya somatichnih klitin Pri vikoristanni v klitinnomu pereprogramuvanni Klf4 zapobigaye klitinnomu podilu poshkodzhenih klitin vikoristovuyuchi svoyu apoptotichnu zdatnist i spriyaye aktivnosti gistonacetiltransferazi 48 c Myc takozh vidomij yak onkogen i za pevnih umov mozhe stati prichinoyu raku 58 U klitinnomu pereprogramuvanni c Myc vikoristovuyetsya dlya progresuvannya klitinnogo ciklu apoptozu ta klitinnoyi transformaciyi dlya podalshoyi diferenciaciyi Inshi faktori pereprogramuvannya Redaguvati Okrim OSKM inshi faktori transkripciyi z yavilisya yak potuzhni faktori pereprogramuvannya Prikladi vklyuchayut Nanog Lin28 i Esrrb yaki mozhut pidvishiti efektivnist pereprogramuvannya ta spriyati stvorennyu visokoyakisnih iPSC 59 Bilok gomeoboksu NANOG NANOG ye faktorom transkripciyi yakij vikoristovuyetsya dlya pidvishennya efektivnosti generaciyi iPSC shlyahom pidtrimki plyuripotentnosti 60 ta prignichennya faktoriv klitinnoyi determinaciyi 61 NANOG pracyuye spriyayuchi dostupnosti hromatinu cherez represiyu gistonovih markeriv takih yak H3K27me3 en NANOG dopomagaye rekrutuvati Oct4 Sox2 i Esrrb sho vikoristovuyutsya v transkripciyi a takozh rekrutuye pov yazanij z Brahmoyu gen 1 BRG1 dlya dostupnosti hromatinu Signalni shlyahi Redaguvati nbsp Oglyad osnovnih signalnih shlyahiv v klitini deyaki z yakih vplivayut na diferenciaciyu klitin chi na yih pereprogramuvannya Okrim faktoriv transkripciyi rizni signalni shlyahi vidigrayut virishalnu rol u klitinnomu pereprogramuvanni Ci shlyahi modulyuyut ekspresiyu geniv ta epigenetichni zmini keruyuchi perehodom vid diferencijovanogo stanu do plyuripotentnoyi abo alternativnoyi doli klitini Signalni shlyahi Wnt BMP i FGF Redaguvati Signalni shlyahi Wnt en BMP en i FGF en berut uchast u procesah pereprogramuvannya Voni spriyayut aktivaciyi klyuchovih geniv i vstanovlennyu permisivnogo stanu hromatinu 62 63 Signalnij shlyah TGF b Redaguvati Signalnij shlyah TGF b en vidomij svoyimi riznomanitnimi funkciyami v rozvitku ta zahvoryuvannyah mozhe spravlyati yak ingibuyuchij tak i stimulyuyuchij vpliv na pereprogramuvannya zalezhno vid kontekstu Rozuminnya tonkoyi vzayemodiyi mizh TGF b i pereprogramuvannyam maye vazhlive znachennya dlya vikoristannya jogo potencialu 64 65 Epigenetichne remodelyuvannya Redaguvati Pereprogramuvannya tyagne za soboyu gliboku epigenetichnu transformaciyu yaka vklyuchaye globalne demetilyuvannya DNK i remodelyuvannya modifikacij gistoniv Globalne demetilyuvannya DNK Redaguvati Stirannya poznachok metilyuvannya DNK ye oznakoyu pereprogramuvannya Fermenti TET sered inshogo spriyayut aktivnomu procesu demetilyuvannya DNK vidnovlyuyuchi bilsh spriyatlivij epigenetichnij landshaft 66 67 Modifikaciyi gistoniv pid chas pereprogramuvannya Redaguvati Dinamichni zmini v modifikaciyah gistoniv taki yak acetilyuvannya ta metilyuvannya gistoniv vidigrayut virishalnu rol u pereprogramuvanni Ci modifikaciyi regulyuyut ekspresiyu geniv i dostupnist hromatinu pid chas perehodu do plyuripotentnosti 68 69 Epigenetichne pereprogramuvannya v regenerativniij medicini RedaguvatiMetodi klitinnogo pereprogramuvannya zapochatkuvali novu eru regenerativnoyi medicini proponuyuchi bagatoobicyayuchi shlyahi regeneraciyi ta vidnovlennya tkanin Terapiya stovburovimi klitinami Redaguvati Odnim iz klyuchovih zastosuvan klitinnogo pereprogramuvannya ye generaciya individualnih indukovanih plyuripotentnih stovburovih klitin iPSC Ci iPSC mozhna diferenciyuvati na rizni tipi klitin proponuyuchi ponovlyuvane dzherelo klitin dlya transplantaciyi ta regenerativnoyi terapiyi Modelyuvannya zahvoryuvannya ta skrining likiv Redaguvati iPSC otrimani vid paciyentiv iz pevnimi zahvoryuvannyami ye cinnoyu platformoyu dlya modelyuvannya zahvoryuvannya ta skriningu likiv Doslidniki mozhut vivchati mehanizmi zahvoryuvannya ta testuvati potencijni terapevtichni spoluki vikoristovuyuchi ci klitinni modeli otrimani z iPSC Chasto dlya takih cilej vikoristovuyut miniatyurni 3D modeli organiv organoyidi Novi pidhodi do regeneraciyi tkanin Redaguvati Na dodatok do pidhodiv na osnovi iPSC inshi novi strategiyi klitinnogo pereprogramuvannya proponuyut novi mozhlivosti dlya regeneraciyi ta vidnovlennya tkanin zokrema v tkaninnij inzheneriyi 70 71 Pereprogramuvannya in vivo Redaguvati Pereprogramuvannya in vivo vklyuchaye pryame pereprogramuvannya rezidentnih klitin v organizmi dlya regeneraciyi poshkodzhenih tkanin Napriklad sercevi fibroblasti napriklad z infarktnogo rubcya mozhut buti pereprogramovani v novi kardiomiociti proponuyuchi potencijni rishennya dlya regeneraciyi sercya 54 55 56 Grupoyu vchenih u 2020 roci bula provedena genoterapiya dlya omolodzhennya ta vidnovlennya nervovogo volokna sitkivki Starim misham vveli za dopomogoyu adenovirusnoyi genoterapiyi geni yaki sintezuyut faktori Yamanaki yaki epigenetichno pereprogramovuyut ta omolodzhuyut gangliozni klitini sitkivki mishi sho spriyaye regeneraciyi aksoniv pislya poshkodzhennya i usuvaye vtratu zoru na mishachij modeli glaukomi ta u litnih mishej Take omolodzhennya klitin dozvolilo vidnoviti shtuchno poshkodzhenij zorovij nerv nervovi volokna virosli virosli znovu Vcheni dosyagli h2 zbilshennya kilkosti klitin sitkivki i h5 priskorennya rostu optichnogo nerva 72 Mali molekuli ta epigenetichni modifikatori Redaguvati Doslidniki vivchayut vikoristannya malih molekul i epigenetichnih modifikatoriv dlya pidvishennya efektivnosti pereprogramuvannya ta spriyannya tkaninospecifichnij diferenciaciyi 73 71 Div takozh RedaguvatiEpigenomika Indukovani plyuripotentni stovburovi klitini Redaguvannya epigenoma en Redaguvannya genoma Regenerativna medicinaDodatkova literatura RedaguvatiKnigi Redaguvati Ancelin Katia Borensztein Maud red 2021 Epigenetic Reprogramming During Mouse Embryogenesis Methods and Protocols Methods in Molecular Biology angl 2214 New York NY Springer Nature ISBN 978 1 0716 0957 6 Eran Meshorer and Giuseppe Testa 2020 Stem Cell Epigenetics angl Elsevier 2020 ISBN 978 0 12 814085 7 Palacios Daniela red 2019 Epigenetics and regeneration Translational epigenetics series London San Diego Cambridge MA Oxford Academic Press An imprint of Elsevier ISBN 978 0 12 814879 2 Zhurnali Redaguvati Cellular Reprogramming Mary Ann Liebert Statti Redaguvati Buckberry Sam Liu Xiaodong Poppe Daniel de Mendoza Alex ta in 2023 08 Transient naive reprogramming corrects hiPS cells functionally and epigenetically Nature angl 620 7975 s 863 872 doi 10 1038 s41586 023 06424 7 Singh Aditi Rappolee Daniel A Ruden Douglas M 2023 01 Epigenetic Reprogramming in Mice and Humans From Fertilization to Primordial Germ Cell Development Cells angl 12 14 doi 10 3390 cells12141874 Gruhn Wolfram H Tang Walfred W C Dietmann Sabine ta in 20 sichnya 2023 Epigenetic resetting in the human germ line entails histone modification remodeling Science Advances angl 9 3 doi 10 1126 sciadv ade1257 Primitki Redaguvati Reik W Dean W Walter J August 2001 Epigenetic reprogramming in mammalian development Science Review 293 5532 1089 1093 PMID 11498579 doi 10 1126 science 1063443 a b v Hatton Ian A Galbraith Eric D Merleau Nono S C Miettinen Teemu P Smith Benjamin McDonald Shander Jeffery A 26 veresnya 2023 The human cell count and size distribution Proceedings of the National Academy of Sciences angl 120 39 ISSN 0027 8424 PMC PMC10523466 PMID 37722043 doi 10 1073 pnas 2303077120 Procitovano 9 zhovtnya 2023 a b Gurdon JB December 1962 The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles Journal of Embryology and Experimental Morphology 10 622 640 PMID 13951335 The Nobel Prize in Physiology or Medicine 2012 Press Release Nobel Media AB 8 zhovtnya 2012 a b v Takahashi K Yamanaka S August 2006 Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors Cell 126 4 663 676 PMID 16904174 doi 10 1016 j cell 2006 07 024 a b de Magalhaes JP Ocampo A June 2022 Cellular reprogramming and the rise of rejuvenation biotech Trends in Biotechnology English 40 6 639 642 PMID 35190201 doi 10 1016 j tibtech 2022 01 011 a b Saygin D Tabib T Bittar HE Valenzi E Sembrat J Chan SY Rojas M Lafyatis R 6 grudnya 2007 Transcriptional profiling of lung cell populations in idiopathic pulmonary arterial hypertension Pulmonary Circulation 10 1 PMC 7052475 PMID 32166015 doi 10 1038 stemcells 2007 124 Yang Jae Hyun Petty Christopher A Dixon McDougall Thomas Lopez Maria Vina Tyshkovskiy Alexander Maybury Lewis Sun Tian Xiao Ibrahim Nabilah ta in 12 lipnya 2023 Chemically induced reprogramming to reverse cellular aging Aging angl 15 13 s 5966 5989 ISSN 1945 4589 PMC PMC10373966 PMID 37437248 doi 10 18632 aging 204896 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Morgan Hugh D Santos Fatima Green Kelly Dean Wendy Reik Wolf 15 kvitnya 2005 Epigenetic reprogramming in mammals Human Molecular Genetics 14 s R47 R58 ISSN 1460 2083 doi 10 1093 hmg ddi114 Procitovano 9 zhovtnya 2023 Feng Suhua Jacobsen Steven E Reik Wolf 29 zhovtnya 2010 Epigenetic Reprogramming in Plant and Animal Development Science angl 330 6004 s 622 627 ISSN 0036 8075 PMC PMC2989926 PMID 21030646 doi 10 1126 science 1190614 Procitovano 9 zhovtnya 2023 Seisenberger Stefanie Peat Julian R Hore Timothy A Santos Fatima Dean Wendy Reik Wolf 5 sichnya 2013 Reprogramming DNA methylation in the mammalian life cycle building and breaking epigenetic barriers Philosophical Transactions of the Royal Society B Biological Sciences angl 368 1609 s 20110330 ISSN 0962 8436 PMC PMC3539359 PMID 23166394 doi 10 1098 rstb 2011 0330 Procitovano 9 zhovtnya 2023 Singh Aditi Rappolee Daniel A Ruden Douglas M 2023 01 Epigenetic Reprogramming in Mice and Humans From Fertilization to Primordial Germ Cell Development Cells angl 12 14 s 1874 ISSN 2073 4409 PMC PMC10377882 PMID 37508536 doi 10 3390 cells12141874 Procitovano 9 zhovtnya 2023 Bernstein Carol 2022 01 DNA Methylation and Establishing Memory Epigenetics Insights angl 15 s 251686572110724 ISSN 2516 8657 PMC PMC8793415 PMID 35098021 doi 10 1177 25168657211072499 Procitovano 9 zhovtnya 2023 Cedar H Bergman Y July 2012 Programming of DNA methylation patterns Annual Review of Biochemistry 81 97 117 PMID 22404632 doi 10 1146 annurev biochem 052610 091920 Kobayashi Hisato Sakurai Takayuki Imai Misaki Takahashi Nozomi Fukuda Atsushi Yayoi Obata Sato Shun Nakabayashi Kazuhiko ta in 5 sich 2012 r Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte Specific Heritable Marks PLOS Genetics angl 8 1 ISSN 1553 7404 PMC PMC3252278 PMID 22242016 doi 10 1371 journal pgen 1002440 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Cao Mingju Shao Xiaojian Chan Peter Cheung Warren Kwan Tony Pastinen Tomi Robaire Bernard 14 grudnya 2020 High resolution analyses of human sperm dynamic methylome reveal thousands of novel age related epigenetic alterations Clinical Epigenetics 12 1 s 192 ISSN 1868 7083 PMC PMC7735420 PMID 33317634 doi 10 1186 s13148 020 00988 1 Procitovano 9 zhovtnya 2023 Auclair G Guibert S Bender A Weber M 2014 Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse Genome Biology 15 12 545 PMC 4295324 PMID 25476147 doi 10 1186 s13059 014 0545 5 Zeng Y Chen T March 2019 DNA Methylation Reprogramming during Mammalian Development Genes 10 4 257 PMC 6523607 PMID 30934924 doi 10 3390 genes10040257 Ladstatter S Tachibana Konwalski K December 2016 A Surveillance Mechanism Ensures Repair of DNA Lesions during Zygotic Reprogramming Cell 167 7 1774 1787 e13 PMC 5161750 PMID 27916276 doi 10 1016 j cell 2016 11 009 Seisenberger Stefanie Peat Julian R Hore Timothy A Santos Fatima Dean Wendy Reik Wolf 5 sichnya 2013 Reprogramming DNA methylation in the mammalian life cycle building and breaking epigenetic barriers Philosophical Transactions of the Royal Society B Biological Sciences angl 368 1609 s 20110330 ISSN 0962 8436 PMC PMC3539359 PMID 23166394 doi 10 1098 rstb 2011 0330 Procitovano 9 zhovtnya 2023 Mann MR Chung YG Nolen LD Verona RI Latham KE Bartolomei MS September 2003 Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos Biology of Reproduction 69 3 902 914 PMID 12748125 doi 10 1095 biolreprod 103 017293 Wrenzycki C Niemann H December 2003 Epigenetic reprogramming in early embryonic development effects of in vitro production and somatic nuclear transfer Review Reproductive Biomedicine Online 7 6 649 656 PMID 14748963 doi 10 1016 s1472 6483 10 62087 1 Duke CG Kennedy AJ Gavin CF Day JJ Sweatt JD July 2017 Experience dependent epigenomic reorganization in the hippocampus Learning amp Memory 24 7 278 288 PMC 5473107 PMID 28620075 doi 10 1101 lm 045112 117 Bernstein Carol 2022 01 DNA Methylation and Establishing Memory Epigenetics Insights angl 15 s 251686572110724 ISSN 2516 8657 PMC PMC8793415 PMID 35098021 doi 10 1177 25168657211072499 Procitovano 9 zhovtnya 2023 Kim JJ Jung MW 2006 Neural circuits and mechanisms involved in Pavlovian fear conditioning a critical review Neuroscience and Biobehavioral Reviews 30 2 188 202 PMC 4342048 PMID 16120461 doi 10 1016 j neubiorev 2005 06 005 Bayraktar G Kreutz MR 2018 The Role of Activity Dependent DNA Demethylation in the Adult Brain and in Neurological Disorders Frontiers in Molecular Neuroscience 11 169 PMC 5975432 PMID 29875631 doi 10 3389 fnmol 2018 00169 Jin SG Zhang ZM Dunwell TL Harter MR Wu X Johnson J Li Z Liu J Szabo PE Lu Q Xu GL Song J Pfeifer GP January 2016 Tet3 Reads 5 Carboxylcytosine through Its CXXC Domain and Is a Potential Guardian against Neurodegeneration Cell Reports 14 3 493 505 PMC 4731272 PMID 26774490 doi 10 1016 j celrep 2015 12 044 a b Melamed P Yosefzon Y David C Tsukerman A Pnueli L 2018 Tet Enzymes Variants and Differential Effects on Function Frontiers in Cell and Developmental Biology 6 22 PMC 5844914 PMID 29556496 doi 10 3389 fcell 2018 00022 Pomilka cituvannya Nekorektnij teg lt ref gt nazva Melamed viznachena kilka raziv z riznim vmistom Zhang W Xia W Wang Q Towers AJ Chen J Gao R Zhang Y Yen CA Lee AY Li Y Zhou C Liu K Zhang J Gu TP Chen X Chang Z Leung D Gao S Jiang YH Xie W December 2016 Isoform Switch of TET1 Regulates DNA Demethylation and Mouse Development Molecular Cell 64 6 1062 1073 PMID 27916660 doi 10 1016 j molcel 2016 10 030 Deplus R Delatte B Schwinn MK Defrance M Mendez J Murphy N Dawson MA Volkmar M Putmans P Calonne E Shih AH Levine RL Bernard O Mercher T Solary E Urh M Daniels DL Fuks F March 2013 TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1 COMPASS The EMBO Journal 32 5 645 655 PMC 3590984 PMID 23353889 doi 10 1038 emboj 2012 357 a b v g Zhou X Zhuang Z Wang W He L Wu H Cao Y Pan F Zhao J Hu Z Sekhar C Guo Z September 2016 OGG1 is essential in oxidative stress induced DNA demethylation Cellular Signalling 28 9 1163 1171 PMID 27251462 doi 10 1016 j cellsig 2016 05 021 Pomilka cituvannya Nekorektnij teg lt ref gt nazva Zhou viznachena kilka raziv z riznim vmistom Sun Z Xu X He J Murray A Sun MA Wei X Wang X McCoig E Xie E Jiang X Li L Zhu J Chen J Morozov A Pickrell AM Theus MH Xie H August 2019 EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity Nature Communications 10 1 3892 Bibcode 2019NatCo 10 3892S PMC 6715719 PMID 31467272 doi 10 1038 s41467 019 11905 3 Blainey PC van Oijen AM Banerjee A Verdine GL Xie XS April 2006 A base excision DNA repair protein finds intrahelical lesion bases by fast sliding in contact with DNA Proceedings of the National Academy of Sciences 103 15 5752 5757 Bibcode 2006PNAS 103 5752B PMC 1458645 PMID 16585517 doi 10 1073 pnas 0509723103 Abdou I Poirier GG Hendzel MJ Weinfeld M January 2015 DNA ligase III acts as a DNA strand break sensor in the cellular orchestration of DNA strand break repair Nucleic Acids Research 43 2 875 892 PMC 4333375 PMID 25539916 doi 10 1093 nar gku1307 van der Kemp P A Charbonnier J B Audebert M amp Boiteux S 2004 Catalytic and DNA binding properties of the human Ogg1 DNA N glycosylase AP lyase biochemical exploration of H270 Q315 and F319 three amino acids of the 8 oxoguanine binding pocket Nucleic Acids Research 32 2 570 578 PMC 373348 PMID 14752045 doi 10 1093 nar gkh224 Lan L Nakajima S Oohata Y Takao M Okano S Masutani M Wilson SH Yasui A September 2004 In situ analysis of repair processes for oxidative DNA damage in mammalian cells Proceedings of the National Academy of Sciences 101 38 13738 13743 Bibcode 2004PNAS 10113738L PMC 518826 PMID 15365186 doi 10 1073 pnas 0406048101 Hamilton ML Guo Z Fuller CD Van Remmen H Ward WF Austad SN Troyer DA Thompson I Richardson A May 2001 A reliable assessment of 8 oxo 2 deoxyguanosine levels in nuclear and mitochondrial DNA using the sodium iodide method to isolate DNA Nucleic Acids Research 29 10 2117 2126 PMC 55450 PMID 11353081 doi 10 1093 nar 29 10 2117 Ming X Matter B Song M Veliath E Shanley R Jones R Tretyakova N March 2014 Mapping structurally defined guanine oxidation products along DNA duplexes influence of local sequence context and endogenous cytosine methylation Journal of the American Chemical Society 136 11 4223 4235 PMC 3985951 PMID 24571128 doi 10 1021 ja411636j a b v Duclot F Kabbaj M 2017 The Role of Early Growth Response 1 EGR1 in Brain Plasticity and Neuropsychiatric Disorders Frontiers in Behavioral Neuroscience 11 35 PMC 5337695 PMID 28321184 doi 10 3389 fnbeh 2017 00035 a b v g d Sun Z Xu X He J Murray A Sun MA Wei X Wang X McCoig E Xie E Jiang X Li L Zhu J Chen J Morozov A Pickrell AM Theus MH Xie H August 2019 EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity Nature Communications 10 1 3892 Bibcode 2019NatCo 10 3892S PMC 6715719 PMID 31467272 doi 10 1038 s41467 019 11905 3 a b v g d e David L Polo JM May 2014 Phases of reprogramming Stem Cell Research 12 3 754 761 doi 10 1016 j scr 2014 03 007 Downing TL Soto J Morez C Houssin T Fritz A Yuan F Chu J Patel S Schaffer DV Li S December 2013 Biophysical regulation of epigenetic state and cell reprogramming Nature Materials 12 12 1154 1162 Bibcode 2013NatMa 12 1154D PMC 9675045 PMID 24141451 doi 10 1038 nmat3777 a b v g d e zh Pires CF Rosa FF Kurochkin I Pereira CF 11 grudnya 2019 Understanding and Modulating Immunity With Cell Reprogramming Frontiers in Immunology 10 2809 PMC 917620 PMID 31921109 doi 10 3389 fimmu 2019 02809 Hochedlinger K Jaenisch R June 2006 Nuclear reprogramming and pluripotency Nature 441 7097 1061 1067 Bibcode 2006Natur 441 1061H PMID 16810240 doi 10 1038 nature04955 Mathers JC June 2006 Nutritional modulation of ageing genomic and epigenetic approaches Mechanisms of Ageing and Development 127 6 584 589 PMID 16513160 doi 10 1016 j mad 2006 01 018 Wilmut I Schnieke AE McWhir J Kind AJ Campbell KH February 1997 Viable offspring derived from fetal and adult mammalian cells Nature 385 6619 810 813 Bibcode 1997Natur 385 810W PMID 9039911 doi 10 1038 385810a0 Pereira CF Terranova R Ryan NK Santos J Morris KJ Cui W Merkenschlager M Fisher AG September 2008 Heterokaryon based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2 PLOS Genetics 4 9 e1000170 PMC 2527997 PMID 18773085 doi 10 1371 journal pgen 1000170 a b v g Takahashi K Tanabe K Ohnuki M Narita M Ichisaka T Tomoda K Yamanaka S November 2007 Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell English 131 5 861 872 PMID 18035408 doi 10 1016 j cell 2007 11 019 a b Bueno C Sardina JL Di Stefano B Romero Moya D Munoz Lopez A Ariza L Chillon MC Balanzategui A Castano J Herreros A Fraga MF Fernandez A Granada I Quintana Bustamante O Segovia JC Nishimura K Ohtaka M Nakanishi M Graf T Menendez P March 2016 Reprogramming human B cells into induced pluripotent stem cells and its enhancement by C EBPa Leukemia 30 3 674 682 PMID 26500142 doi 10 1038 leu 2015 294 de Magalhaes JP Ocampo A June 2022 Cellular reprogramming and the rise of rejuvenation biotech Trends in Biotechnology English 40 6 639 642 PMID 35190201 doi 10 1016 j tibtech 2022 01 011 a b Srivastava D DeWitt N September 2016 In Vivo Cellular Reprogramming The Next Generation Cell 166 6 1386 1396 PMC 6234007 PMID 27610565 doi 10 1016 j cell 2016 08 055 de Magalhaes JP Ocampo A June 2022 Cellular reprogramming and the rise of rejuvenation biotech Trends in Biotechnology English 40 6 639 642 PMID 35190201 doi 10 1016 j tibtech 2022 01 011 Polo JM Anderssen E Walsh RM Schwarz BA Nefzger CM Lim SM Borkent M Apostolou E Alaei S Cloutier J Bar Nur O Cheloufi S Stadtfeld M Figueroa ME Robinton D Natesan S Melnick A Zhu J Ramaswamy S Hochedlinger K December 2012 A molecular roadmap of reprogramming somatic cells into iPS cells Cell English 151 7 1617 1632 PMC 3608203 PMID 23260147 doi 10 1016 j cell 2012 11 039 a b Cao Nan Huang Yu Zheng Jiashun Spencer C Ian Zhang Yu Fu Ji Dong Nie Baoming Xie Min ta in 3 chervnya 2016 Conversion of human fibroblasts into functional cardiomyocytes by small molecules Science angl 352 6290 s 1216 1220 ISSN 0036 8075 doi 10 1126 science aaf1502 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka a b Chen Yueqiu Yang Ziying Zhao Zhen Ao Shen Zhenya 2017 12 Direct reprogramming of fibroblasts into cardiomyocytes Stem Cell Research amp Therapy angl 8 1 ISSN 1757 6512 PMC PMC5445304 PMID 28545505 doi 10 1186 s13287 017 0569 3 Procitovano 9 zhovtnya 2023 a b Klose Kristin Gossen Manfred Stamm Christof 2019 01 Turning fibroblasts into cardiomyocytes technological review of cardiac transdifferentiation strategies The FASEB Journal angl 33 1 s 49 70 ISSN 0892 6638 doi 10 1096 fj 201800712R Procitovano 9 zhovtnya 2023 a b Rizzino A December 2009 Sox2 and Oct 3 4 a versatile pair of master regulators that orchestrate the self renewal and pluripotency of embryonic stem cells Wiley Interdisciplinary Reviews Systems Biology and Medicine 1 2 228 236 PMC 2794141 PMID 20016762 doi 10 1002 wsbm 12 Dominguez Sola D Ying CY Grandori C Ruggiero L Chen B Li M Galloway DA Gu W Gautier J Dalla Favera R July 2007 Non transcriptional control of DNA replication by c Myc Nature 448 7152 445 451 Bibcode 2007Natur 448 445D PMID 17597761 doi 10 1038 nature05953 Buganim Yosef Faddah Dina A Cheng Albert W Itskovich Elena Markoulaki Styliani Ganz Kibibi Klemm Sandy L van Oudenaarden Alexander ta in 2012 09 Single Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase Cell 150 6 s 1209 1222 ISSN 0092 8674 PMC PMC3457656 PMID 22980981 doi 10 1016 j cell 2012 08 023 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Zaehres H Lensch MW Daheron L Stewart SA Itskovitz Eldor J Daley GQ March 2005 High efficiency RNA interference in human embryonic stem cells Stem Cells 23 3 299 305 PMID 15749924 doi 10 1634 stemcells 2004 0252 Heurtier V Owens N Gonzalez I Mueller F Proux C Mornico D Clerc P Dubois A Navarro P March 2019 The molecular logic of Nanog induced self renewal in mouse embryonic stem cells Nature Communications 10 1 1109 Bibcode 2019NatCo 10 1109H PMC 6406003 PMID 30846691 doi 10 1038 s41467 019 09041 z Sato Noboru Meijer Laurent Skaltsounis Leandros Greengard Paul Brivanlou Ali H 2004 01 Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK 3 specific inhibitor Nature Medicine angl 10 1 s 55 63 ISSN 1546 170X doi 10 1038 nm979 Procitovano 9 zhovtnya 2023 Xu Ren He Sampsell Barron Tori L Gu Feng Root Sierra Peck Ruthann M Pan Guangjin Yu Junying Antosiewicz Bourget Jessica ta in 2008 08 NANOG Is a Direct Target of TGFb Activin Mediated SMAD Signaling in Human ESCs Cell Stem Cell 3 2 s 196 206 ISSN 1934 5909 PMC PMC2758041 PMID 18682241 doi 10 1016 j stem 2008 07 001 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Maherali Nimet Ahfeldt Tim Rigamonti Alessandra Utikal Jochen Cowan Chad Hochedlinger Konrad 2008 09 A High Efficiency System for the Generation and Study of Human Induced Pluripotent Stem Cells Cell Stem Cell 3 3 s 340 345 ISSN 1934 5909 PMC PMC3987901 PMID 18786420 doi 10 1016 j stem 2008 08 003 Procitovano 9 zhovtnya 2023 Ichida Justin K Blanchard Joel Lam Kelvin Son Esther Y Chung Julia E Egli Dieter Loh Kyle M Carter Ava C ta in 2009 11 A Small Molecule Inhibitor of Tgf b Signaling Replaces Sox2 in Reprogramming by Inducing Nanog Cell Stem Cell 5 5 s 491 503 ISSN 1934 5909 PMC PMC3335195 PMID 19818703 doi 10 1016 j stem 2009 09 012 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Tahiliani Mamta Koh Kian Peng Shen Yinghua Pastor William A Bandukwala Hozefa Brudno Yevgeny Agarwal Suneet Iyer Lakshminarayan M ta in 15 travnya 2009 Conversion of 5 Methylcytosine to 5 Hydroxymethylcytosine in Mammalian DNA by MLL Partner TET1 Science angl 324 5929 s 930 935 ISSN 0036 8075 PMC PMC2715015 PMID 19372391 doi 10 1126 science 1170116 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Wu Xiaoji Zhang Yi 2017 09 TET mediated active DNA demethylation mechanism function and beyond Nature Reviews Genetics angl 18 9 s 517 534 ISSN 1471 0064 doi 10 1038 nrg 2017 33 Procitovano 9 zhovtnya 2023 Apostolou Effie Ferrari Francesco Walsh Ryan M Bar Nur Ori Stadtfeld Matthias Cheloufi Sihem Stuart Hannah T Polo Jose M ta in 2013 06 Genome wide Chromatin Interactions of the Nanog Locus in Pluripotency Differentiation and Reprogramming Cell Stem Cell 12 6 s 699 712 ISSN 1934 5909 PMC PMC3725985 PMID 23665121 doi 10 1016 j stem 2013 04 013 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Shao Yue Taniguchi Kenichiro Gurdziel Katherine Townshend Ryan F Xue Xufeng Yong Koh Meng Aw Sang Jianming Spence Jason R ta in 2017 04 Self organized amniogenesis by human pluripotent stem cells in a biomimetic implantation like niche Nature Materials angl 16 4 s 419 425 ISSN 1476 4660 PMC PMC5374007 PMID 27941807 doi 10 1038 nmat4829 Procitovano 9 zhovtnya 2023 rekomenduyetsya displayauthors dovidka Grath Alexander Dai Guohao 2019 12 Direct cell reprogramming for tissue engineering and regenerative medicine Journal of Biological Engineering angl 13 1 ISSN 1754 1611 PMC PMC6373087 PMID 30805026 doi 10 1186 s13036 019 0144 9 Procitovano 9 zhovtnya 2023 a b Basu Amitava Tiwari Vijay K 23 lipnya 2021 Epigenetic reprogramming of cell identity lessons from development for regenerative medicine Clinical Epigenetics 13 1 s 144 ISSN 1868 7083 PMC PMC8305869 PMID 34301318 doi 10 1186 s13148 021 01131 4 Procitovano 9 zhovtnya 2023 Lu Yuancheng Brommer Benedikt Tian Xiao Krishnan Anitha Meer Margarita Wang Chen Vera Daniel L Zeng Qiurui ta in 2020 12 Reprogramming to recover youthful epigenetic information and restore vision Nature angl 588 7836 s 124 129 ISSN 1476 4687 doi 10 1038 s41586 020 2975 4 Procitovano 7 grudnya 2022 rekomenduyetsya displayauthors dovidka Lin Tongxiang Wu Shouhai 1 kvitnya 2015 Reprogramming with Small Molecules instead of Exogenous Transcription Factors Stem Cells International angl 2015 s e794632 ISSN 1687 966X PMC PMC4397468 PMID 25922608 doi 10 1155 2015 794632 Procitovano 9 zhovtnya 2023 Otrimano z https uk wikipedia org w index php title Epigenetichne pereprogramuvannya amp oldid 40638620