www.wikidata.uk-ua.nina.az
V komutativnij algebri cilozamknutoyu oblastyu A nazivayetsya oblast cilisnosti yaka ye rivnoyu cilomu zamikannyu yiyi polya chastok Zmist 1 Prikladi 2 Vlastivosti 3 Neterova cilozamknuta oblast 4 Normalni kilcya 5 Cilkom cilozamknuti oblasti 6 Div takozh 7 Primitki 8 LiteraturaPrikladi red Bagato vazhlivih oblastej cilisnosti ye cilozamknutimi Bud yaka oblast golovnih idealiv zokrema bud yaka pole Bud yake faktorialne kilce i yak naslidok bud yake kilce mnogochleniv nad faktorialnim kilcem Nehaj Q pole chastok faktorialnogo kilcya A i element r a b Q a b A displaystyle r a b in Q a b in A nbsp cilij nad A r m c 1 r m 1 c m 0 displaystyle r m c 1 r m 1 ldots c m 0 nbsp de c i A displaystyle c i in A nbsp Pripustimo sho a i b ne mayut spilnih dilnikiv za vinyatkom oborotnih elementiv Ale a m c 1 a m 1 b b m c m 0 displaystyle a m c 1 a m 1 b ldots b m c m 0 nbsp otzhe a m displaystyle a m nbsp dilitsya na b sho mozhlivo lishe yaksho b ye oborotnim Tomu 1 b A displaystyle 1 b in A nbsp i zvidsi r A displaystyle r in A nbsp Bud yaka oblast najbilshih spilnih dilnikiv zokrema kilce Bezu chi kilce normuvannya Bud yake kilce Dedekinda ye cilozamknutoyu oblastyu Dovilna simetrichna algebra nad polem oskilki kozhna simetrichna algebra ye izomorfnoyu kilcyu mnogochleniv vid kilkoh zminnih nad polem Regulyarni lokalni kilcya ye cilozamknutimi Priklad oblasti cilisnosti sho ne ye cilozamknutoyu nehaj k pole i A k t 2 t 3 B k t displaystyle A k t 2 t 3 subset B k t nbsp A ye pidalgebra porodzhena t2 i t3 A i B mayut odnakove pole chastok i B ye cilim zamikannyam kilcya A B ye faktorialnim kilcem i tomu oblast A ne ye cilozamknutoyu Cej priklad pov yazanij z faktom sho ploska kriva Y 2 X 3 displaystyle Y 2 X 3 nbsp maye osoblivu tochku na pochatku koordinat Vlastivosti red Nehaj A cilozamknuta oblast Dlya dovilnoyi multiplikativnoyi sistemi S A displaystyle S subset A nbsp lokalizaciya S 1 A displaystyle S 1 A nbsp ye cilozamknutoyu oblastyu Ototozhnimo S 1 A displaystyle S 1 A nbsp z pidkilcem a s s S displaystyle a s s in S nbsp polya chastok Q displaystyle Q nbsp Pripustimo sho r Q displaystyle r in Q nbsp ye cilim nad S 1 A displaystyle S 1 A nbsp tobto r m c 1 r m 1 c m 0 displaystyle r m c 1 r m 1 ldots c m 0 nbsp de c i a i s displaystyle c i a i s nbsp tut a i A s S displaystyle a i in A s in S nbsp ochevidno dlya vsih c i displaystyle c i nbsp mozhna vibrati spilnij znamennik Todi s r m a 1 s r m 1 s a 2 s r m 2 s m 1 a m 0 displaystyle sr m a 1 sr m 1 sa 2 sr m 2 ldots s m 1 a m 0 nbsp zvidki s r A displaystyle sr in A nbsp i r s r s S 1 A displaystyle r sr s in S 1 A nbsp Dlya oblast cilisnosti A nastupni umovi ye ekvivalentnimi A ye cilozamknutoyu Ap lokalizaciya A za prostim idealom p ye cilozamknutoyu dlya kozhnogo prostogo idealu p Am ye cilozamknutoyu dlya kozhnogo maksimalnogo idealu m Te sho lokalizaciyi za maksimalnimi i prostimi idealami ye oblastyami cilisnosti ye naslidkom poperednoyi vlastivosti Zalishayetsya lishe dovesti sho yaksho vsi lokalizaciyi A za maksimalnimi idealami ye cilozamknutimi to i A ye cilozamknutoyu Nehaj element r Q displaystyle r in Q nbsp ye cilim nad A Todi vin ye cilim nad vsima Am dlya vsih maksimalnih idealiv zvidki r m Maxspec A A m displaystyle r in bigcap m in operatorname Maxspec A A m nbsp Tozh zalishayetsya dovesti sho dlya dovilnoyi oblasti cilisnosti A m Maxspec A A m displaystyle A bigcap m in operatorname Maxspec A A m nbsp Nehaj r m Maxspec A A m displaystyle r in bigcap m in operatorname Maxspec A A m nbsp Poklademo I a A a r A displaystyle I a in A ar in A nbsp Cya mnozhina ye idealom v A i dlya kozhnogo maksimalnogo ideala m v kilci A I m displaystyle I not subset m nbsp oskilki r A m displaystyle r in A m nbsp mozhe buti zapisanim yak r b a displaystyle r b a nbsp de a A m b A displaystyle a in A setminus m b in A nbsp zvidki a I m displaystyle a in I setminus m nbsp Tomu I A displaystyle I A nbsp otzhe 1 I displaystyle 1 in I nbsp i r 1 r A displaystyle r 1r in A nbsp Natomist cilozamknutist mozhe ne zberigatisya pri perehodi do faktorkilcya napriklad kilce Z t t2 4 ne ye cilozamknutim Oblast cilisnosti ye cilozamknutoyu yaksho i tilki yaksho vona rivna peretinu vsih kilec normuvannya sho mistyat yiyi 1 Nehaj A cilozamknuta oblast z polem chastok Q i nehaj L skinchenne rozshirennya polya Q Todi element x L displaystyle x in L nbsp ye cilim nad A yaksho i tilki yaksho jogo minimalnij mnogochlen nad Q maye koeficiyenti u poli A 2 Zvidsi viplivaye zokrema sho cilij element nad cilozamknutoyu oblastyu A maye minimalnij mnogochlen nad A Ce tverdzhennya ye silnishim nizh te sho bud yaka cilij element ye korenem mnogochlena zi starshim koeficiyentom rivnim 1 i mozhe buti nepravilnim bez vimogi cilozamknutosti napriklad dlya kilcya A Z 5 displaystyle A mathbb Z sqrt 5 nbsp Rozglyanemo rozshirennya L L displaystyle L supseteq L nbsp take sho m a x i 1 m x a i displaystyle mu a x prod i 1 m x a i nbsp dlya deyakih a i L displaystyle a i in L nbsp Oskilki m a x displaystyle mu a x nbsp ye nezvidnim Q a i Q a displaystyle Q a i equiv Q a nbsp i cej izomorfizm ye totozhnim na Q displaystyle Q nbsp Otzhe kozhen element a i displaystyle a i nbsp ye takozh cilim nad A Ale koeficiyenti m a x displaystyle mu a x nbsp ye mnogochlenami vid a i displaystyle a i nbsp z cilimi koeficiyentami elementarnimi simetrichnimi mnogochlenami otzhe voni takozh cili nad A Oskilki A ye cilozamknutoyu oblastyu to vsi ci koeficiyenti nalezhat A Dlya cilozamknutoyi oblasti A z polem chastok Q spravedlivoyu ye versiya lemi Gausa nehaj f A x displaystyle f in A x nbsp mnogochlen starshij koeficiyent yakogo rivnij 1 Nehaj takozh f g h displaystyle f gh nbsp de f g Q x displaystyle f g in Q x nbsp i starshij koeficiyent g displaystyle g nbsp rivnij 1 Todi g A x displaystyle g in A x nbsp Dostatno dovesti ce tverdzhennya dlya nezvidnogo g Rozglyanemo bud yakij jogo korin a v deyakomu rozshirenni polya Q Oskilki f a 0 displaystyle f a 0 nbsp to a ye cilim nad A Ale g x m a x displaystyle g x mu a x nbsp oskilki g ye nezvidnim otzhe zgidno poperednoyi vlastivosti g A x displaystyle g in A x nbsp Yaksho A cilozamknuta oblast to kilce mnogochleniv A x displaystyle A x nbsp tezh bude cilozamknutoyu oblastyu Nehaj f Q x Frac A x displaystyle f in Q x operatorname Frac A x nbsp ye cilim elementom nad A x displaystyle A x nbsp Todi vin ochevidno ye takozh cilim nad Q x displaystyle Q x nbsp Ale Q x displaystyle Q x nbsp ye kilcem golovnih idealiv i tomu cilozamknutim Tozh f Q x displaystyle f in Q x nbsp Zalishayetsya dovesti sho dlya cilozamknutoyi oblasti A displaystyle A nbsp kilce A x displaystyle A x nbsp ye cilozamknutim u Q x displaystyle Q x nbsp Pripustimo sho f Q x displaystyle f in Q x nbsp ye cilim elementom nad A x displaystyle A x nbsp tobto f n a n 1 x f n 1 a 1 x f a 0 x 0 displaystyle f n a n 1 x f n 1 cdots a 1 x f a 0 x 0 nbsp dlya deyakih a i x A x displaystyle a i x in A x nbsp Nehaj m displaystyle m nbsp cile chislo bilshe nizh stepin f displaystyle f nbsp i vsi stepeni a i displaystyle a i nbsp Poznachimo f 1 x f x x m displaystyle f 1 x f x x m nbsp Yaksho poznachiti q t t n a n 1 x t n 1 a 1 x t a 0 x displaystyle q t t n a n 1 x t n 1 cdots a 1 x t a 0 x nbsp to f 1 displaystyle f 1 nbsp ye korenem mnogochlena q 1 t q t t m displaystyle q 1 t q t t m nbsp Zauvazhimo sho q 1 t t n b n 1 x t n 1 b 1 x t b 0 x displaystyle q 1 t t n b n 1 x t n 1 cdots b 1 x t b 0 x nbsp i b 0 x q x m displaystyle b 0 x q x m nbsp maye starshij koeficiyent rivnij 1 Oskilki f 1 f 1 n 1 b n 1 t f 1 n 2 b 1 x b 0 x displaystyle f 1 f 1 n 1 b n 1 t f 1 n 2 cdots b 1 x b 0 x nbsp i f 1 displaystyle f 1 nbsp i b 0 displaystyle b 0 nbsp mayut starshi koeficiyenti 1 to z lemi Gausa otrimuyemo sho koeficiyenti mnogochlena f 1 displaystyle f 1 nbsp nalezhat A i tezh same ye pravilnim dlya mnogochlena f x f 1 x x m displaystyle f x f 1 x x m nbsp sho zavershuye dovedennya Induktivna granicya cilozamknutih oblastej ye cilozamknutoyu oblastyu Nehaj A cilozamknuta oblast z polem chastok Q i L ye normalnim rozshirennyam polya Q z grupoyu Galua G G L Q Nehaj takozh S ye cilim zamikannyam oblasti A v poli L Todi i G ye grupoyu A avtomorfizmiv kilcya S ii Prosti ideali P and P kilcya S lezhat nad spilnim prostim idealom P kilcya R tobto P A P A P displaystyle P cap A P cap A P nbsp todi i tilki todi koli isnuye s G s P P displaystyle sigma in G sigma P P nbsp dd Teorema pro spusk Nehaj A cilozamknuta oblast i S oblast cilisnosti sho ye cilim rozshirennyam A Nehaj P 1 P 2 P n displaystyle P 1 supset P 2 supset ldots supset P n nbsp spadna poslidovnist prostih idealiv kilcya A i P 1 prostij ideal kilcya S dlya yakogo P 1 A P 1 displaystyle P 1 cap A P 1 nbsp Todi isnuye spadna poslidovnist P 1 P 2 P n displaystyle P 1 supset P 2 supset ldots supset P n nbsp prostih idealiv kilcya S dlya yakih P i A P i displaystyle P i cap A P i nbsp Nehaj A cilozamknuta oblast z polem chastok Q i L skinchenne separabelne rozshirennya polya Q Nehaj S ye cilim zamikannyam oblasti A v poli L Todi isnuye bazis e 1 e 2 e n displaystyle e 1 e 2 e n nbsp polya L nad Q dlya yakogo S i 1 n A e i displaystyle S subset sum i 1 n Ae i nbsp Yaksho A ye kilcem golovnih idealiv to mozhna vibrati takij bazis shob v cij formuli vikonuvalasya rivnist Neterova cilozamknuta oblast red Nehaj A ye neterovoyu oblastyu cilisnosti Todi A ye cilozamknutoyu yaksho i tilki yaksho vikonuyutsya umovi A ye peretinom vsih lokalizacij A p displaystyle A mathfrak p nbsp za prostimi idealami p displaystyle mathfrak p nbsp visoti 1 i lokalizaciyi A p displaystyle A mathfrak p nbsp za prostimi idealami p displaystyle mathfrak p nbsp visoti 1 ye kilcyami diskretnogo normuvannya Dlya neterovoyi lokalnoyi oblasti A rozmirnosti odin todi ekvivalentnimi ye tverdzhennya A ye cilozamknutoyu maksimalnij ideal of A ye golovnim A ye kilce diskretnogo normuvannya ekvivalentno A ye kilcem Dedekinda A ye regulyarnim lokalnim kilcem Neterova oblast cilisnosti ye kilcem Krulya todi i tilki todi koli vona ye cilozamknutoyu Nehaj A neterova cilozamknuta oblast z polem chastok Q i L skinchenne separabelne rozshirennya polya Q Cile zamikannyam oblasti A v poli L ye kilcem Neter Yaksho A neterova cilozamknuta oblast a S neterova oblast sho ye skinchennim rozshirennyam kilcya A to dlya dovilnogo prostogo ideala p displaystyle mathfrak p nbsp kilcya A yaksho B displaystyle mathfrak B nbsp minimalnij prostij ideal kilcya S sho mistit p displaystyle mathfrak p nbsp todi B A p displaystyle mathfrak B cap A mathfrak p nbsp Zokrema dlya cogo vipadku teorema spusku vikonuyetsya bez dodatkovih umov Nehaj A neterova cilozamknuta oblast a S neterova oblast sho ye skinchennim rozshirennyam kilcya A Todi dlya dovilnogo ideala B displaystyle mathfrak B nbsp kilcya S vikonuyetsya rivnist ht B A ht B displaystyle operatorname ht mathfrak B cap A operatorname ht mathfrak B nbsp de ht displaystyle operatorname ht nbsp poznachaye visotu ideala Normalni kilcya red Normalnim kilcem nazivayetsya kilce dlya yakogo vsi lokalizaciyi za prostimi idealami ye cilozamknutimi oblastyami Take kilce ye redukovanim tobto ne mistit nilpotentnih elementiv krim 0 3 Yaksho A ye neterovim kilcem dlya yakogo vsi lokalizaciyi za maksimalnimi idealami ye oblastyami cilisnosti to A ye skinchennim dobutkom oblastej cilisnosti 4 Zokrema yaksho A ye neterovim normalnim kilcem to vono ye skinchennim dobutkom cilozamknutih oblastej 5 Navpaki skinchennij dobutok cilozamknutih oblastej ye normalnim kilcem Nehaj A neterove kilce Kriterij Serra stverdzhuye sho A ye normalnim yaksho i tilki yaksho vono zadovolnyaye taki umovi dlya bud yakogo prostogo ideala p displaystyle mathfrak p nbsp i yaksho p displaystyle mathfrak p nbsp maye visotu 1 displaystyle leq 1 nbsp to A p displaystyle A mathfrak p nbsp ye regulyarnim lokalnim kilcem tobto A p displaystyle A mathfrak p nbsp ye kilce diskretnogo normuvannya ii yaksho p displaystyle mathfrak p nbsp maye visotu 2 displaystyle geq 2 nbsp to A p displaystyle A mathfrak p nbsp maye glibinu 2 displaystyle geq 2 nbsp 6 Cilkom cilozamknuti oblasti red Nehaj A oblast i K yiyi pole chastok Element x K displaystyle x in K nbsp nazivayetsya majzhe cilim nad A yaksho pidkilce A x kilcya K porodzhene A i x ye drobovim idealom kilcya A tobto yaksho isnuye d 0 displaystyle d neq 0 nbsp dlya yakogo d x n A displaystyle dx n in A nbsp dlya vsih n 0 displaystyle n geq 0 nbsp Oblast A nazivayetsya cilkom cilozamknutoyu yaksho vsi majzhe cili elementi polya K nalezhat A Cilkom cilozamknuta oblast ye cilozamknutoyu Navpaki neterova cilozamknuta oblast ye cilkom cilozamknutoyu Pripustimo sho oblast A ye cilkom cilozamknutoyu Todi kilce formalnih stepenevih ryadiv A X displaystyle A X nbsp ye cilkom cilozamknutim Analog cogo tverdzhennya dlya cilozamknutih oblastej ye nevirnim yaksho R ye kilcem normuvannya visoti ne menshe 2 ce kilce ye cilozamknutim to R X displaystyle R X nbsp ne ye cilozamknutim 7 Nehaj L rozshirennya polya K Todi cile zamikannya kilcya A v L ye cilkom cilozamknutim Oblast cilisnosti ye cilkom cilozamknutoyu yaksho i tilki yaksho monoyid divizoriv A ye grupoyu 8 Lokalizaciya cilkom cilozamknutogo kilcya mozhe ne buti cilkom cilozamknutoyu Div takozh red Kilce normuvannya Faktorialne kilcePrimitki red Robert B Ash A Course In Commutative Algebra Ch 3 Valuation Rings Arhivovano 14 listopada 2017 u Wayback Machine st 4 Matsumura teorema 9 2 Yaksho vsi lokalizaciyi za maksimalnimi idealami komutativnogo kilcya R ye redukovanimi napriklad oblastyami cilisnosti to R tezh ye redukovanim Dovedennya Pripustimo x ye nenulovim elementom v R i xn 0 Anigilyator ann x mistitsya v deyakomu maksimalnomu ideali m displaystyle mathfrak m nbsp Obraz elementa x ye nenulovim v lokalizaciyi kilcya R za idealom m displaystyle mathfrak m nbsp oskilki v inshomu vipadku x s 0 displaystyle xs 0 nbsp dlya deyakogo s m displaystyle s not in mathfrak m nbsp i s displaystyle s nbsp nalezhit anigilyatoru x vsuperech oznachennyu m displaystyle mathfrak m nbsp Tomu lokalizaciya R za m displaystyle mathfrak m nbsp ne ye redukovanim kilcem Kaplansky teorema 168 pg 119 Matsumura 1989 p 64 Matsumura Commutative algebra pg 125 Matsumura Exercise 10 4 Bourbaki Ch VII 1 n 2 teorema 1 Literatura red Drozd Yu A 2004 Vstup do algebrichnoyi geometriyi Lviv VNTL Klasika ISBN 9667493539 Arhiv originalu za 22 travnya 2011 Procitovano 14 listopada 2017 ukr Bourbaki 1972 Commutative Algebra Gopalakrishnan N S 1984 Commutative Algebra Oxonian Press s 290 Kaplansky Irving September 1974 Commutative rings Lectures v Mathematics University of Chicago Press ISBN 0 226 42454 5 Matsumura Hideyuki 1989 Commutative ring Theory Cambridge Studies v Advanced Mathematics vid 2nd Cambridge University Press ISBN 0 521 36764 6 Matsumura Hideyuki 1970 Commutative Algebra ISBN 0 8053 7026 9 Otrimano z https uk wikipedia org w index php title Cilozamknuta oblast amp oldid 40599420