www.wikidata.uk-ua.nina.az
Cile rozshirennya kilcya rozshirennya B komutativnogo kilcya R z odiniceyu take sho bud yakij element x B displaystyle x in B ye cilim nad R tobto zadovolnyaye deyakomu rivnyannyu viglyadu x n a n 1 x n 1 a 2 x 2 a 1 x a 0 displaystyle x n a n 1 x n 1 cdots a 2 x 2 a 1 x a 0 de a i R displaystyle a i in R Dane rivnyannya nazivayetsya rivnyannyam ciloyi zalezhnosti Element x ye cilim v R todi i tilki todi koli vikonuyetsya odna z dvoh ekvivalentnih umov R x ye skinchenno porodzhenim R modulem isnuye tochnij R x modul sho ye skinchenno porodzhenim R modulem Prikladi RedaguvatiCilij element ye algebrayichnim nad R Yaksho R pole to virnim ye i zvorotne tverdzhennya Elementi polya kompleksnih chisel C displaystyle mathbb C nbsp cili nad kilcem Z displaystyle mathbb Z nbsp nazivayutsya cilimi algebrayichnimi chislami Yaksho kilce B ye skinchenno porodzhenim modulem nad R to bud yakij element x B displaystyle x in B nbsp ye cilim nad R tobto rozshirennya ye cilim zvorotne mozhe ne buti virnim Vlastivosti RedaguvatiNehaj kilce A R displaystyle A supset R nbsp komutativne x i y elementi A cili nad R Todi x y i xy takozh cili nad R i mnozhina vsih elementiv z A cilih nad R utvoryuye pidkilce sho nazivayetsya cilim zamikannyam R v A Yaksho B ye cilim nad R i R deyaka R algebra to B R displaystyle B bigotimes R nbsp ye cilim nad R Yaksho V cile rozshirennya kilcya R i S deyaka multiplikativna pidmnozhina v R lokalizaciya S 1B ye cilim rozshirennyam lokalizaciyi S 1R Nehaj a s S 1 B displaystyle a s in S 1 B nbsp de a B s S displaystyle a in B s in S nbsp Todi oskilki rozshirennya ye cilim dlya a displaystyle a nbsp vikonuyetsya rivnist a n r 1 a n 1 r n 0 displaystyle a n r 1 a n 1 ldots r n 0 nbsp dlya deyakih n N r i R displaystyle n in mathbb N r i in R nbsp Yak naslidok a s n r 1 s a s n 1 r n s n 0 displaystyle a s n r 1 s a s n 1 ldots r n s n 0 nbsp i oskilki vsi r i s i S 1 R displaystyle r i s i in S 1 R nbsp to dana rivnist ye rivnyannyam ciloyi zalezhnosti elementa a s displaystyle a s nbsp nad kilcem S 1 R displaystyle S 1 R nbsp Oskilki element buv obranij dovilno otrimuyemo neobhidnij rezultat Nehaj B A R displaystyle B supset A supset R nbsp rozshirennya B R displaystyle B supset R nbsp ye cilim todi i lishe todi koli cilimi ye obidva rozshirennya B A displaystyle B supset A nbsp i A R displaystyle A supset R nbsp Yaksho V cile rozshirennya kilcya R J ideal kilcya V i I J R displaystyle I J cap R nbsp Todi faktor kilce B J displaystyle B J nbsp bude cilim rozshirennyam faktor kilcya R I displaystyle R I nbsp Poznachimo a a J B J displaystyle bar a a J in B J nbsp Dlya a displaystyle a nbsp vikonuyetsya rivnist a n r 1 a n 1 r n 0 displaystyle a n r 1 a n 1 ldots r n 0 nbsp dlya deyakih n N r i R displaystyle n in mathbb N r i in R nbsp Perejshovshi do faktor kilcya za idealom J i identifikuyuchi R I displaystyle R I nbsp yak pidkilce B J displaystyle B J nbsp otrimuyemo rivnist a n r 1 a n 1 r n 0 r i R I displaystyle bar a n bar r 1 bar a n 1 ldots bar r n 0 bar r i in R I nbsp yaka i ye neobhidnim rivnyannyam ciloyi zalezhnosti Nehaj A R displaystyle A supset R nbsp cile rozshirennya oblastej cilisnosti Todi A ye polem yaksho i tilki yaksho R ye polem Pripustimo sho R ye polem i 0 a A displaystyle 0 neq a in A nbsp a n r 1 a n 1 r n 0 displaystyle a n r 1 a n 1 ldots r n 0 nbsp dlya deyakih n N r i R displaystyle n in mathbb N r i in R nbsp Stepin mnogochlena n mozhna vibrati minimalnim Todi r n 0 displaystyle r n neq 0 nbsp oskilki A ye oblastyu cilisnosti i dlya nogo isnuye obernenij element adzhe vin nalezhit polyu R Tomu r n 1 a n 1 r 1 a n 2 r n 1 a 1 displaystyle r n 1 a n 1 r 1 a n 2 ldots r n 1 a 1 nbsp tozh dlya a displaystyle a nbsp isnuye obernenij element rivnij r n 1 a n 1 r 1 a n 2 r n 1 displaystyle r n 1 a n 1 r 1 a n 2 ldots r n 1 nbsp sho zavershuye pershu chastinu dovedennya Navpaki pripustimo sho A ye polem i 0 b R displaystyle 0 neq b in R nbsp Todi dlya b displaystyle b nbsp yak elementa polya A v comu poli isnuye obernenij element Poznachimo a b 1 displaystyle a b 1 nbsp Dlya a displaystyle a nbsp isnuye rivnyannya ciloyi zalezhnosti nad R a n r 1 a n 1 r n 0 displaystyle a n r 1 a n 1 ldots r n 0 nbsp dlya deyakih n N r i R displaystyle n in mathbb N r i in R nbsp Pomnozhivshi obidvi storoni rivnyannya na b n displaystyle b n nbsp otrimayemo rivnist 1 r 1 b r n b n 0 displaystyle 1 r 1 b ldots r n b n 0 nbsp Zvidsi bachimo sho element r 1 r n b n 1 displaystyle r 1 ldots r n b n 1 nbsp ye obernenim do b displaystyle b nbsp i nalezhit R Tobto R tezh ye polem Nehaj A R displaystyle A supset R nbsp cile rozshirennya kilec P displaystyle P nbsp prostij ideal kilcya A i P P R displaystyle P P cap R nbsp Todi ideal P displaystyle P nbsp ye maksimalnim todi i tilki todi koli ideal P displaystyle P nbsp ye maksimalnim Zgidno poperednih vlastivostej faktor kilce A P displaystyle A P nbsp ye cilim rozshirennyam faktor kilcya R P displaystyle R P nbsp Oskilki obidva ideali ye prostimi to ci faktor kilcya ye oblastyami cilisnosti Zgidno poperednoyi vlastivosti A P displaystyle A P nbsp ye polem todi i tilki todi koli R P displaystyle R P nbsp ye polem i neobhidnij rezultat viplivaye z togo sho ideal ye maksimalnim todi i tilki todi koli faktor kilce po nomu ye polem Nehaj A R displaystyle A supset R nbsp cile rozshirennya kilec P 1 P 2 displaystyle P 1 subseteq P 2 nbsp prosti ideali kilcya A i P 1 R P 2 R P displaystyle P 1 cap R P 2 cap R P nbsp Todi P 1 P 2 displaystyle P 1 P 2 nbsp Lokalizaciya A P displaystyle A P nbsp po multiplikativnij mnozhini R P displaystyle R setminus P nbsp ye cilim rozshirennyam lokalizaciyi R P displaystyle R P nbsp Takozh P 1 A P P 2 A P displaystyle P 1 A P subseteq P 2 A P nbsp ye prostimi idealami kilcya A P displaystyle A P nbsp Oskilki P 1 A P R P P 2 A P R P P R P displaystyle P 1 A P cap R P P 2 A P cap R P PR P nbsp i ostannij ideal ye maksimalnim v R P displaystyle R P nbsp to za poperednoyu vlastivistyu P 1 A P displaystyle P 1 A P nbsp i P 2 A P displaystyle P 2 A P nbsp tezh ye maksimalnimi idealami u A P displaystyle A P nbsp Tomu P 1 A P P 2 A P displaystyle P 1 A P P 2 A P nbsp zvidki takozh P 1 P 2 displaystyle P 1 P 2 nbsp Oblast cilisnosti R nazivayetsya cilozamknutoyu yaksho cile zamikannya R v svoyemu poli chastok rivne R Faktorialne kilce ye cilozamknutim Kilce R ye cilozamknutim todi i tilki todi dlya bud yakogo maksimalnogo idealu p displaystyle mathfrak p nbsp z R cilozamknutim ye lokalne kilce R p displaystyle R mathfrak p nbsp Nehaj A cile rozshirennya R i P displaystyle P nbsp deyakij prostij ideal kilcya R Todi isnuye prostij ideal P displaystyle P nbsp kilcya A sho lezhit nad P displaystyle P nbsp tobto takij sho P P R displaystyle P P cap R nbsp Gomomorfizm vklyuchennya i R A displaystyle i R to A nbsp odnoznachno zadaye gomomorfizm vklyuchennya lokalizacij i R P A P displaystyle bar i R P to A P nbsp Nehaj M dovilnij maksimalnij ideal kilcya A P displaystyle A P nbsp Z poperednih vlastivostej jogo peretin M R P displaystyle M cap R P nbsp maye buti maksimalnim idealom kilcya R P displaystyle R P nbsp tobto M R P P R P displaystyle M cap R P PR P nbsp Rozglyanemo teper gomomorfizmi p R R P p A A P displaystyle p R to R P bar p A to A P nbsp zadani yak r r 1 a a 1 r R a A displaystyle r to r 1 a to a 1 r in R a in A nbsp Todi p i i p displaystyle p circ bar i i circ bar p nbsp Ideal P p 1 M displaystyle P bar p 1 M nbsp ye prostim idealom kilcya A dlya yakogo P R i 1 P p 1 P R P P displaystyle P cap R i 1 P p 1 PR P P nbsp tobto danij ideal zadovolnyaye vimogi teoremi Teorema pro pidnyattya Nehaj A R displaystyle A supset R nbsp cile rozshirennya kilec P 1 P 2 P n displaystyle P 1 subset P 2 subset ldots subset P n nbsp poslidovnist prostih idealiv kilcya R i P 1 P 2 P m m lt n displaystyle P 1 subset P 2 subset ldots subset P m m lt n nbsp poslidovnist prostih idealiv kilcya A dlya yakih P i P i R i 1 m displaystyle P i P i cap R i in 1 m nbsp Todi isnuyut prosti ideali P m 1 P n displaystyle P m 1 ldots P n nbsp kilcya A taki sho P 1 P 2 P n displaystyle P 1 subset P 2 subset ldots subset P n nbsp iP i P i R i 1 n displaystyle P i P i cap R i in 1 n nbsp Ochevidno teoremu dostatno dovesti dlya n 2 m 1 Zagalnij rezultat todi viplivaye za dopomogoyu matematichnoyi indukciyi Pri tih zhe poznachennyah sho i vishe faktor kilce A P 1 displaystyle A P 1 nbsp ye cilim rozshirennyam faktor kilcya R P 1 displaystyle R P 1 nbsp i P 2 P 1 displaystyle P 2 P 1 nbsp ye prostim idealom kilcya R P 1 displaystyle R P 1 nbsp Tomu isnuye prostij ideal kilcya A P 1 displaystyle A P 1 nbsp sho lezhit nad R P 1 displaystyle R P 1 nbsp Zgidno vlastivostej faktor kilec cej ideal maye viglyad P 2 P 1 displaystyle P 2 P 1 nbsp de P 2 displaystyle P 2 nbsp ye prostim idealom kilcya A dlya yakogo P 1 P 2 displaystyle P 1 subset P 2 nbsp Ochevidno sho P 2 P 2 R displaystyle P 2 P 2 cap R nbsp Nehaj A R displaystyle A supset R nbsp cile rozshirennya kilec Todi dim A dim R displaystyle dim A dim R nbsp i dlya dovilnih idealiv a A displaystyle mathfrak a subset A nbsp i b R displaystyle mathfrak b subset R nbsp dlya yakih a B b displaystyle mathfrak a cap B mathfrak b nbsp vikonuyetsya nerivnist ht a ht b displaystyle operatorname ht mathfrak a leqslant operatorname ht mathfrak b nbsp Yaksho L skinchenne rozshirennya polya chastok kilcya R i V cile zamikannya R v L to isnuye lishe skinchenna kilkist prostih idealiv B displaystyle mathfrak B nbsp kilcya V sho lezhat nad zadanim prostim idealom kilcya R Literatura RedaguvatiYu Drozd Vstup do algebrichnoyi geometriyi VNTL Klasika Lviv 2004 Atya M Makdonald I Vvedenie v kommutativnuyu algebru Moskva Mir 1972 160 s ros Huneke Craig Swanson Irena 2006 Integral closure of ideals rings and modules London Mathematical Society Lecture Note Series 336 Cambridge UK Cambridge University Press ISBN 978 0 521 68860 4 Otrimano z https uk wikipedia org w index php title Cile rozshirennya kilcya amp oldid 37135255