www.wikidata.uk-ua.nina.az
Gipoteza Rimana ye odniyeyu z najvazhlivishih gipotez u matematici Gipoteza ye tverdzhennyam pro nuli dzeta funkciyi Rimana Rizni geometrichni ta arifmetichni ob yekti mozhna opisati tak zvanimi globalnimi L funkciyami yaki formalno shozhi na dzeta funkciyu Rimana Mozhna todi postaviti te zh pitannya pro koreni cih L funkcij sho daye rizni uzagalnennya gipotezi Rimana Bagato matematikiv viryat u istinnist cih uzagalnen gipotezi Rimana Yedinij vipadok koli taku gipotezu dovedeno stosuyetsya algebrichnomu poli funkcij en ne v razi polya chisel Globalni L funkciyi mozhna asociyuvati z eliptichnimi krivimi chislovimi polyami v comu vipadku yih nazivayut dzeta funkciyami Dedekinda parabolichnimi formami Maassa en i harakterami Dirihle v comu vipadku yih nazivayut L funkciyami Dirihle Koli gipoteza Rimana formulyuyetsya dlya dzeta funkcij Dedekinda vona nazivayetsya rozshirenoyu gipotezoyu Rimana RGR a koli vona formulyuyetsya dlya L funkcij Dirihle vona vidoma yak uzagalnena gipoteza Rimana UGR Ci dva tverdzhennya detalnishe obgovoryuyutsya nizhche Bagato matematikiv vikoristovuyut nazvu uzagalnena gipoteza Rimana dlya rozshirennya gipotezi Rimana na vsi globalni L funkciyi ne tilki okremij vipadok L funkcij Dirihle Zmist 1 Uzagalnena gipoteza Rimana UGR 1 1 Naslidki OGR 2 Rozshirena gipoteza Rimana RGR 3 Div takozh 4 Primitki 5 LiteraturaUzagalnena gipoteza Rimana UGR RedaguvatiUzagalnenu gipotezu Rimana dlya L funkcij Dirihle mabut vpershe sformulyuvav Adolf Piltc en 1884 roku 1 Podibno do pochatkovoyi gipotezi Rimana uzagalnena gipoteza maye dalekosyazhni naslidki pro rozpodil prostih chisel Formalne tverdzhennya gipotezi Harakter Dirihle ce povnistyu multiplikativna arifmetichna funkciya x taka sho isnuye naturalne chislo k z x n k x n dlya vsih n i x n 0 yaksho gcd n k gt 1 Yaksho zadano takij harakter mi viznachayemo vidpovidnu L funkciyu Dirihle L x s n 1 x n n s displaystyle L chi s sum n 1 infty frac chi n n s nbsp dlya bud yakogo kompleksnogo chisla s iz dijsnoyu chastinoyu gt 1 Za dopomogoyu analitichnogo prodovzhennya cyu funkciyu mozhna prodovzhiti do meromorfnoyi funkciyi viznachenoyi na vsij kompleksnij ploshini Uzagalnena gipoteza Rimana stverdzhuye sho dlya bud yakogo harakteru Dirihle x i bud yakogo kompleksnogo chisla s z L x s 0 vikonuyetsya yaksho dijsne chislo s lezhit mizh 0 i 1 to vono naspravdi dorivnyuye 1 2 Vipadok x n 1 dlya vsih n daye zvichajnu gipotezu Rimana Naslidki OGR Redaguvati Teorema Dirihle stverdzhuye sho koli a i d vzayemno prosti naturalni chisla to arifmetichna progresiya a a d a 2d a 3d mistit neskinchenno bagato prostih chisel Nehaj p x a d poznachaye chislo prostih chisel u progresiyi yaki menshi abo dorivnyuyut x Yaksho uzagalnena gipoteza Rimana istinna to dlya bud yakih vzayemno prostih a i d i bud yakogo e gt 0 p x a d 1 f d 2 x 1 ln t d t O x 1 2 ϵ displaystyle pi x a d frac 1 varphi d int 2 x frac 1 ln t dt O x 1 2 epsilon nbsp pri x displaystyle x to infty nbsp de f d funkciya Ejlera a O displaystyle O nbsp O velike Ce istotne posilennya teoremi pro rozpodil prostih chisel Yaksho OGR istinna to bud yaka vlasna pidgrupa multiplikativnoyi grupi Z n Z displaystyle mathbb Z n mathbb Z times nbsp ne mistit chisel menshih vid 2 ln n 2 yak i chisla vzayemno prosti z n i menshi 3 ln n 2 2 Inshimi slovami Z n Z displaystyle mathbb Z n mathbb Z times nbsp generuyetsya naborom chisel menshih 2 ln n 2 Cej fakt chasto vikoristovuyetsya v dokazah i z nogo viplivaye bagato naslidkiv napriklad u pripushenni virnosti OGR Test Millera Rabina garantovano pracyuye za polinomialnij chas Test z polinomialnim chasom roboti sho ne vimagaye UGR test Agravala Kayala Saksa opublikovano 2002 roku Algoritm Gelfonda Shenksa ru garantovano pracyuye za polinomialnij chas Determinovanij algoritm Ivanuos Karpinski Sahena 3 dlya rozkladannya mnogochleniv nad skinchennimi polyami z prostim stepenem n i gladkim n 1 pracyuye za polinomialnij chas Yaksho UGR istinna to dlya bud yakogo prostogo p isnuye pervisnij korin za modulem p generator multiplikativnoyi grupi cilih chisel za modulem p menshij vid O ln p 6 displaystyle O ln p 6 nbsp 4 Slabka gipoteza Goldbaha takozh viplivaye z uzagalnenoyi gipotezi Rimana Dovedennya Garalda Gelfgotta ru ciyeyi gipotezi pidtverdzhuye UGR dlya dekilkoh tisyach malih harakteriv yaki dozvolili dovesti gipotezu dlya vsih cilih neparnih chisel bilshih vid 1029 Dlya cilih chisel nizhche vid ciyeyi mezhi gipotezu perevireno pryamim pereborom 5 U pripushenni istinnosti UGR ocinku sumi harakteriv u nerivnosti Poya Vinogradova en mozhna pokrashiti do O q log log q displaystyle O left sqrt q log log q right nbsp de q modul harakteru Rozshirena gipoteza Rimana RGR RedaguvatiNehaj K chislove pole skinchennovimirne rozshirennya polya racionalnih chisel Q z kilcem cilih OK ce kilce ye cilim zamikannyam cilih chisel Z v K Yaksho a ideal kilcya OK vidminnij vid nulovogo idealu mi poznachimo jogo normu cherez Na Dzeta funkciya Dedekinda nad K todi viznachayetsya yak z K s a 1 N a s displaystyle zeta K s sum a frac 1 Na s nbsp dlya bud yakogo kompleksnogo chisla s iz dijsnoyu chastinoyu gt 1 Dzeta funkciya Dedekinda zadovolnyaye funkcionalnomu rivnyannyu i mozhe buti rozshirena analitichnim prodovzhennyam na vsyu kompleksnu ploshinu V rezultuyuchij funkciyi zakodovano vazhlivu informaciyu pro chislove pole K Rozshirena gipoteza Rimana stverdzhuye sho dlya bud yakogo chislovogo polya K i bud yakogo kompleksnogo chisla s dlya yakogo zK s 0 vikonuyetsya yaksho dijsna chastina chisla s lezhit mizh 0 i 1 to vona naspravdi dorivnyuye 1 2 Pochatkova gipoteza Rimana viplivaye z rozshirenoyi gipotezi yaksho vzyati chislove pole Q z kilcem cilih chisel Z Z RGR viplivaye efektivna versiya 6 teoremi Chebotarova pro shilnist en yaksho L K ye skinchennim rozshirennyam Galua z grupoyu Galua G a C ye ob yednannyam klasiv sumizhnosti G chislo nerozgaluzhenih prostih en idealiv K z normoyu nizhche x iz klasom sumizhnosti Frobeniusa v C dorivnyuye C G l i x O x n log x log D displaystyle frac C G Bigl mathrm li x O bigl sqrt x n log x log Delta bigr Bigr nbsp de konstanta v notaciyi O velike absolyutna n ye stepenem L nad Q a D ye jogo diskriminantom Div takozh RedaguvatiGipoteza Artina en L funkciya Dirihle Klas Selberga en Velika gipoteza Rimana en Primitki Redaguvati Davenport 2000 s 124 Bach 1990 s 355 380 Ivanyos Karpinski Saxena 2009 s 191 198 Shoup 1992 s 369 380 Helfgott 2013 Lagarias Odlyzko 1977 s 409 464 Literatura RedaguvatiLagarias J C Odlyzko A M Effective Versions of the Chebotarev Theorem Algebraic Number Fields 1977 20 zhovtnya S 409 464 Eric Bach Explicit bounds for primality testing and related problems Mathematics of Computation 1990 T 55 vip 191 20 zhovtnya S 355 380 DOI 10 2307 2008811 Gabor Ivanyos Marek Karpinski Nitin Saxena Schemes for Deterministic Polynomial Factoring Proc ISAAC 2009 20 zhovtnya S 191 198 ISBN 9781605586090 DOI 10 1145 1576702 1576730 Helfgott H A Major arcs for Goldbach s theorem 2013 20 zhovtnya arXiv 1305 2897v3 Victor Shoup Searching for primitive roots in finite fields Mathematics of Computation 1992 T 58 vip 197 20 zhovtnya S 369 380 DOI 10 2307 2153041 Harold Davenport Multiplicative number theory Third edition Revised and with a preface by Hugh L Montgomery New York Springer Verlag 2000 T 74 S xiv 177 Graduate Texts in Mathematics ISBN 0 387 95097 4 Hazewinkel Michiel red 2001 Riemann hypothesis generalized Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Otrimano z https uk wikipedia org w index php title Uzagalneni gipotezi Rimana amp oldid 35172820