www.wikidata.uk-ua.nina.az
Teorema pro rozpodil prostih chisel teorema analitichnoyi teoriyi chisel sho opisuye asimptotiku rozpodilu prostih chisel A same vona stverdzhuye sho kilkist p n displaystyle pi n prostih chisel na vidrizku vid 1 do n zrostaye iz zrostannyam n yak n ln n displaystyle n ln n tobto p n n ln n 1 n displaystyle frac pi n n ln n to 1 quad n to infty Inakshe kazhuchi ce oznachaye sho u vipadkovo vibranogo chisla vid 1 do n dlya dostatno velikih n jmovirnist viyavitisya prostim priblizno rivna 1 ln n displaystyle 1 ln n Takozh cya teorema mozhe buti ekvivalentnim chinom perefrazovana dlya opisu povedinki k displaystyle k go prostogo chisla p k displaystyle p k vona stverdzhuye sho p k k ln k k displaystyle p k sim k ln k quad k to infty tut i dali zapis f g displaystyle f sim g oznachaye f g 1 displaystyle f g to 1 Zmist 1 Istoriya 2 Zagalnij hid dokazu 2 1 Pereformulyuvannya v terminah psi funkciyi Chebisheva 2 2 Klasichni mirkuvannya perehid do dzeta funkciyi Rimana 2 3 Elementarne dovedennya zavershennya Erdesha Selberga 3 Div takozh 4 Primitki 5 Posilannya 6 LiteraturaIstoriya RedaguvatiGruntuyuchis na tablicyah prostih chisel skladenih Felkelem i Vegoyu Lezhandr pripustiv v 1796 roci sho funkciya p x displaystyle pi x nbsp mozhe buti nablizhena virazom x ln x B displaystyle x ln x B nbsp de B 1 08 displaystyle B 1 08 nbsp konstanta blizka do 1 displaystyle 1 nbsp Gaus rozglyadayuchi te zh pitannya i vikoristovuyuchi dostupni jomu rezultati obchislen i deyaki evristichni mirkuvannya rozglyanuv inshu funkciyu integralnij logarifm L i x 2 x 1 ln x d x displaystyle mathrm Li x int 2 x frac 1 ln x dx nbsp prote ne stav publikuvati cogo tverdzhennya Obidva nablizhennya yak Lezhandra tak i Gausa privodyat do odniyeyi i tiyeyi zh asimptotichnoyi ekvivalentnosti funkcij p x displaystyle pi x nbsp i x ln x displaystyle x ln x nbsp vkazanoyi vishe hocha nablizhennya Gausa i viyavlyayetsya istotno krashim yaksho pri ocinci pomilki rozglyadati riznicyu funkcij zamist yih vidnoshennya U dvoh svoyih robotah 1848 i 1850 roki Chebishev doviv 1 sho verhnya M i nizhnya m granici vidnoshennya p x x ln x displaystyle frac pi x x ln x qquad nbsp zadovolnyayut nerivnosti 0 92129 m M 1 10555 displaystyle 0 92129 leqslant m leqslant M leqslant 1 10555 nbsp a takozh sho yaksho granicya vidnoshennya isnuye to vona rivna 1 U 1859 roci z yavilasya robota Rimana v yakij vin rozglyanuv vvedenu Ejlerom yak funkciyu dijsnogo argumenta z displaystyle zeta nbsp funkciyu v kompleksnij oblasti i pov yazav yiyi povedinku z rozpodilom prostih chisel Rozvivayuchi ideyi ciyeyi roboti v 1896 roci Adamar i Valle Pussen odnochasno i nezalezhno doveli teoremu pro rozpodil prostih chisel Nareshti v 1949 roci z yavilosya dovedennya Erdesha Selberga sho ne zastosovuye ponyat kompleksnogo analizu Zagalnij hid dokazu RedaguvatiPereformulyuvannya v terminah psi funkciyi Chebisheva Redaguvati Zagalnim pochatkovim etapom mirkuvan ye pereformulyuvannya tverdzhennya za dopomogoyu psi funkciyi Chebisheva sho viznachayetsya yak ps x p k x log p displaystyle psi x sum p k leqslant x log p qquad qquad nbsp inshimi slovami psi funkciya Chebisheva ce suma funkciyi fon Mangoldta ps x n x L n L n log p n p k k 1 p is a prime 0 otherwise displaystyle psi x sum n leqslant x Lambda n qquad Lambda n begin cases log p amp n p k k geqslant 1 quad p text is a prime 0 amp text otherwise end cases nbsp A same viyavlyayetsya sho asimptotichnij zakon rozpodilu prostih chisel rivnosilnij tomu sho ps x x x displaystyle psi x sim x quad x to infty nbsp Ce tverdzhennya ye virnim tomu sho logarifm majzhe stalij na bilshij chastini vidrizka 1 n displaystyle 1 n nbsp a vnesok kvadrativ kubiv i t d v sumu ye malim tomu praktichno vsi logarifmi ln p displaystyle ln p nbsp priblizno rivni ln x displaystyle ln x nbsp i funkciya ps x displaystyle psi x nbsp asimptotichno rivna p x ln x displaystyle pi x cdot ln x nbsp Klasichni mirkuvannya perehid do dzeta funkciyi Rimana Redaguvati Yak viplivaye z totozhnosti Ejlera z s p 1 1 p s displaystyle zeta s prod p frac 1 1 p s nbsp ryad Dirihle sho vidpovidaye funkciyi fon Mangoldta rivnij minus logarifmichnij pohidnij dzeta funkciyi n L n n s z s z s displaystyle sum n Lambda n n s frac zeta s zeta s nbsp Krim togo integral po vertikalnij pryamij sho znahoditsya pravoruch vid 0 vid funkciyi a s s displaystyle a s s nbsp rivnij 2 p i displaystyle 2 pi i nbsp pri a gt 1 displaystyle a gt 1 nbsp i 0 pri 0 lt a lt 1 displaystyle 0 lt a lt 1 nbsp Tomu mnozhennya pravoyi i livoyi chastini na 1 2 p i x s s displaystyle frac 1 2 pi i x s s nbsp j integruvannya po vertikalnij pryamij po d s displaystyle ds nbsp zalishaye v livij chastini sumu L n displaystyle Lambda n nbsp z n x displaystyle n leqslant x nbsp Z inshogo boku zastosuvannya teoremi pro lishki dozvolyaye zapisati livu chastinu u viglyadi sumi lishkiv kozhnomu nulyu funkciyi dzeti vidpovidaye polyus pershogo poryadku yiyi logarifmichnoyi pohidnoyi iz lishkom rivnim 1 a polyusu pershogo poryadku v tochci s 1 displaystyle s 1 nbsp polyus pershogo poryadku z lishkom rivnim 1 displaystyle 1 nbsp Stroga realizaciya ciyeyi programi dozvolyaye oderzhati 2 yavnu formulu Rimana 3 ps x x r z r 0 0 lt R e r lt 1 x r r log 2 p 1 2 log 1 x 2 displaystyle psi x x sum rho zeta rho 0 atop 0 lt Re rho lt 1 frac x rho rho log 2 pi frac 1 2 log 1 x 2 qquad qquad nbsp de suma obchislyuyetsya po nulyah r displaystyle rho nbsp dzeta funkciyi sho lezhat u smuzi 0 lt R e s lt 1 displaystyle 0 lt Re s lt 1 nbsp dodanok log 2 p z 0 z 0 displaystyle log 2 pi frac zeta 0 zeta 0 nbsp vidpovidaye polyusu x s s displaystyle x s s nbsp u nuli a dodanok log 1 x 2 2 displaystyle log 1 x 2 2 nbsp tak zvanim trivialnim nulyam dzeta funkciyi s 2 4 6 displaystyle s 2 4 6 dots nbsp Vidsutnist netrivialnih nuliv dzeta funkciyi poza kritichnoyu smugoyu i sprichinyaye ekvivalentnist ps x x displaystyle psi x sim x nbsp suma u formuli zrostatime povilnishe nizh x Elementarne dovedennya zavershennya Erdesha Selberga Redaguvati Osnovna teorema arifmetiki sho zapisuyetsya pislya logarifmuvannya yak ln n p k p k n ln p displaystyle ln n sum p k p k n ln p nbsp takim chinom formulyuyetsya v terminah arifmetichnih funkcij i zgortki Dirihle yak ln L 1 displaystyle ln Lambda mathbf 1 nbsp de ln displaystyle ln nbsp i 1 displaystyle mathbf 1 nbsp arifmetichni funkciyi logarifm argumentu i totozhna odinicya vidpovidno Formula obertannya Mebiusa dozvolyaye perenesti 1 displaystyle mathbf 1 nbsp u pravu chastinu L ln m displaystyle Lambda ln mu qquad qquad nbsp de m displaystyle mu nbsp funkciya Mebiusa Suma livoyi chastini shukana funkciya ps displaystyle psi nbsp U pravij chastini zastosuvannya formuli giperboli Dirihle dozvolyaye zvesti sumu zgortki do sumi k L n k m k displaystyle sum k L n k mu k nbsp de L displaystyle L nbsp suma logarifma Zastosuvannya formuli Ejlera Maklorena dozvolyaye zapisati L n displaystyle L n nbsp yak L n n ln n n 1 2 ln n g o 1 displaystyle L n n ln n n frac 1 2 ln n gamma o 1 nbsp de g displaystyle gamma nbsp stala Ejlera Vidilyayuchi z cogo virazu dodanki sho mayut viglyad k F n k displaystyle sum k F n k nbsp dlya vidpovidnim chinom pidibranoyi funkciyi F a same F x x g 1 displaystyle F x x gamma 1 nbsp i poznachayuchi cherez R zalishok mayemo cherez obertannya Mebiusa L F k R n k m k displaystyle Lambda F sum k R n k mu k nbsp Oskilki F x x displaystyle F x sim x nbsp zalishayetsya pereviriti sho drugij dodanok maye viglyad o x displaystyle o x nbsp Zastosuvannya lemi Askera dozvolyaye zvesti cyu zadachu do perevirki tverdzhennya M x o x displaystyle M x o x nbsp de M x n x m n displaystyle M x sum n leqslant x mu n nbsp suma funkciyi Mebiusa Malist sum funkciyi Mebiusa na pidposlidovnosti viplivaye z formuli obertannya zastosovanoyi do funkciyi 1 n displaystyle 1 n nbsp Dali funkciya Mebiusa v algebri arifmetichnih funkcij z multiplikativnoyu operaciyeyu zgortkoyu zadovolnyaye diferencialnomu rivnyannyu pershogo poryadku m m L displaystyle mu mu Lambda nbsp de f n f n ln n displaystyle f n f n cdot ln n nbsp diferenciyuvannya v cij algebri perehid do ryadiv Dirihle peretvoryuye jogo na zvichajne diferenciyuvannya funkciyi Tomu vona zadovolnyaye i rivnyannyu drugogo poryadku m m L L L displaystyle mu mu Lambda Lambda Lambda nbsp Perehid do serednogo u comu rivnyanni dozvolyaye te sho asimptotika sumi funkciyi L 2 L L L displaystyle Lambda 2 Lambda Lambda Lambda nbsp ocinyuyetsya krashe nizh asimptotika sum L displaystyle Lambda nbsp dozvolyaye ocinyuvati vidnoshennya M x x cherez seredni znachennya takogo vidnoshennya Taka ocinka razom z malistyu za poslidovnistyu i dozvolyaye oderzhati shukanu ocinku M x o x displaystyle M x o x nbsp Div takozh RedaguvatiStala prostih chiselPrimitki Redaguvati N I Ahiyezer P L Chebyshev i ego nauchnoe nasledie Arhivovana kopiya Arhiv originalu za 7 lipnya 2010 Procitovano 21 grudnya 2010 Weisstein Eric W Explicit Formula angl na sajti Wolfram MathWorld Posilannya RedaguvatiWeisstein Eric W Prime Number Theorem angl na sajti Wolfram MathWorld Literatura RedaguvatiZagier Don 1997 Newman s short proof of the prime number theorem American Mathematical Monthly 104 8 705 708 JSTOR 2975232 doi 10 2307 2975232 Arhiv originalu za 3 bereznya 2016 Procitovano 21 chervnya 2016 angl Jacques Hadamard Sur la distribution des zeros de la fonction z s displaystyle zeta s nbsp et ses consequences arithmetiques 1 Arhivovano 5 serpnya 2011 u Wayback Machine Bull Soc Math France 24 1896 199 220 Charles de la Vallee Poussin Recherces analytiques sur la theorie des nombres premiers Ann Soc Sci Bruxells 1897 P L Chebyshev Ob opredelenii chisla prostyh chisel menshih dannoj velichiny 1848 P L Chebyshev O prostyh chislah 1850 Erdos P Demonstration elementaire du theoreme sur la distribution des nombres premiers Scriptum 1 Centre Mathematique Amsterdam 1949 Selberg A An Elementary Proof of the Prime Number Theorem Ann Math 50 305 313 1949 A G Postnikov N P Romanov Uproshenie elementarnogo dokazatelstva A Selberga asimptoticheskogo zakona raspredeleniya prostyh chisel UMN 10 4 66 1955 s 75 87 Otrimano z https uk wikipedia org w index php title Teorema pro rozpodil prostih chisel amp oldid 40373134