www.wikidata.uk-ua.nina.az
U kompleksnomu analizi teorema Lumana Menshova stverdzhuye sho neperervna kompleksnoznachna funkciya zadana na vidkritij pidmnozhini kompleksnoyi ploshini ye golomorfnoyu yaksho i tilki yaksho vona zadovolnyaye umovi Koshi Rimana Teorema ye uzagalnennyam teoremi Eduarda Gursa yaka vimagala vid funkciyi f diferencijovnosti za Freshe yak funkciyi iz R2 u R2 Povne tverdzhennya teoremi nehaj D vidkrita pidmnozhina u C i f D C ye neperervnoyu funkciyeyu Pripustimo sho chastkovi pohidni f x displaystyle partial f partial x i f y displaystyle partial f partial y isnuyut vsyudi okrim mozhlivo ne bilsh nizh zlichennoyi pidmnozhini D Todi f ye golomorfnoyu yaksho i tilki yaksho vona vsyudi zadovolnyaye umovi Koshi Rimana f z 1 2 f x i f y 0 displaystyle frac partial f partial bar z frac 1 2 left frac partial f partial x i frac partial f partial y right 0 Zmist 1 Istoriya 2 Prikladi 3 Dovedennya 3 1 Lema 3 1 1 Dovedennya 3 2 Lema 2 3 2 1 Dovedennya 3 3 Dovedennya teoremi 4 LiteraturaIstoriya red Golomorfna funkciya f x i y u i v displaystyle f x iy u iv nbsp viznachena na oblasti u kompleksnij ploshini zadovolnyaye na cij oblasti umovi Koshi Rimana u x v y displaystyle partial u over partial x partial v over partial y nbsp u y v x displaystyle partial u over partial y partial v over partial x nbsp Shodo obernenogo tverdzhennya to yaksho f displaystyle f nbsp yak funkciya dijsnih zminnih ye diferencijovnoyu vsyudi v oblasti abo yaksho chastkovi pohidni f displaystyle f nbsp ye neperervnimi vsyudi to pri vikonanni umov Koshi Rimana funkciya f displaystyle f nbsp ye golomorfnoyu funkciyeyu v oblasti Tverdzhennya dlya diferencijovnih funkcij bulo dovedeno Eduardom Gursa u 1900 roci i nazivayetsya teoremoyu Gursa Pislya cogo zdijsnyuvalisya doslidzhennya shodo poslablennya umov u tverdzhenni ciyeyi teoremi U 1905 roci Dimitre Pompeju zaznachiv sho dodatkovi umovi teorema Gursa mozhna poslabiti do diferencijovnosti funkcij majzhe vsyudi v oblasti Luman zauvazhiv sho lishe isnuvannya chastkovih pohidnih vsyudi v oblasti i vikonannya umov Koshi Rimana ne ye dostatnim dlya golomorfnosti chi navit neperervnosti funkciyi v oblasti prikladom mozhe buti taka funkciya yaka ne ye neperervnoyu u tochci z 0 f z exp z 4 z 0 0 z 0 displaystyle f z left begin aligned exp z 4 amp amp z neq 0 0 amp amp z 0 end aligned right nbsp U 1923 Luman podav dovedennya tverdzhennya sho neperervnist funkciyi v oblasti razom iz isnuvannyam chastkovih pohidnih i vikonannyam umov Koshi Rimana ye dostatnim dlya yiyi golomorfnosti u cij oblasti Prote dovedennya Lumana mistilo deyaki netochnosti Opublikovane Menshovim u 1931 roci dovedennya bulo povnistyu korektnim Dovedennya Menshov vikoristovuvalo integral Lebega i teoremu Bera U 1933 roci matematik Stanislav Saks vikoristav dlya tverdzhennya nazvu teorema Lumana Menshova Prikladi red Funkciya zadana yak f z exp z 4 dlya z 0 f 0 0 zadovolnyaye umovi Koshi Rimana vsyudi ale ne ye golomorfnoyu chi navit neperervnoyu v tochci z 0 Cej priklad pokazuye sho funkciya f maye buti neperervnoyu v tverdzhenni teoremi Funkciya zadana yak f z z5 z 4 dlya z 0 f 0 0 ye neperervnoyu vsyudi i zadovolnyaye umovi Koshi Rimana v tochci z 0 ale ne ye golomorfnoyu v cij tochci chi bud yakij inshij Ce pokazuye sho uzagalnennya teoremi Lumana Menshova na yedinu tochku ye nevirnim Yaksho f ye neperervnoyu v okoli tochki z i f x displaystyle partial f partial x nbsp i f y displaystyle partial f partial y nbsp isnuyut u tochci z to f ye golomorfnoyu v tochci z yaksho i tilki yaksho vona u cij tochci zadovolnyaye umovi Koshi Rimana Dovedennya red Lema red Nehaj I a b R displaystyle I a b subset mathbb R nbsp i f kompleksnoznachna funkciya na I dlya yakoyi v kozhnij tochci intervalu isnuye pohidna Nehaj E zamknuta pidmnozhina v I i M gt 0 chislo dlya yakih f x f y M x y x E y I displaystyle f x f y leqslant M x y quad x in E y in I nbsp Todi f b f a E f x d x M m 1 I E displaystyle left f b f a int E f x dx right leqslant Mm 1 I setminus E nbsp de m 1 displaystyle m 1 nbsp poznachaye miru Lebega na R displaystyle mathbb R nbsp Dovedennya red Nehaj J a b I displaystyle J alpha beta subset I nbsp i vvedemo funkciyu f J R C displaystyle f J mathbb R to mathbb C nbsp yak f J x l x m displaystyle f J x lambda x mu nbsp de l f b f a b a displaystyle lambda frac f beta f alpha beta alpha nbsp i m b f a a f b b a displaystyle mu frac beta f alpha alpha f beta beta alpha nbsp Dlya ciyeyi funkciyi vikonuyetsya nerivnist f J x f J y f b f a b a x y x y R displaystyle f J x f J y leqslant frac f beta f alpha beta alpha x y quad forall x y in mathbb R nbsp Poznachimo E 0 E a b displaystyle E 0 E cup a cup b nbsp i vvedemo funkciyu g na I yak g E 0 f E 0 displaystyle g E 0 f E 0 nbsp Yaksho J ye zamikannyam komponenti zv yaznosti mnozhini I E 0 displaystyle I setminus E 0 nbsp to g J f J J displaystyle g J f J J nbsp Zauvazhimo sho obidva kinci takogo intervalu J nalezhat E 0 displaystyle E 0 nbsp i hocha b odin kinec nalezhit E displaystyle E nbsp Pri takih umovah g x g y M x y x y I displaystyle g x g y leqslant M x y quad forall x y in I nbsp Dlya dovedennya cogo mozhna pripustiti x lt y i rozglyanuti dva vipadki Vipadok 1 x i y nalezhat yedinomu intervalu J a b displaystyle J alpha beta nbsp sho dopovnyuye I E 0 displaystyle I setminus E 0 nbsp U comu vipadku g x g y f b f a b a x y displaystyle g x g y leqslant frac f beta f alpha beta alpha x y nbsp i hocha b odne z chisel a b displaystyle alpha beta nbsp nalezhit E Zgidno pripushennya f b f a b a displaystyle f beta f alpha leqslant beta alpha nbsp sho zavershuye dovedennya u comu vipadku Vipadok 2 x i y ne nalezhat yedinomu intervalu J a b displaystyle J alpha beta nbsp sho dopovnyuye I E 0 displaystyle I setminus E 0 nbsp Todi isnuye chislo x lt 3 lt y displaystyle x lt xi lt y nbsp take sho 3 E displaystyle xi in E nbsp v inshomu vipadku x i y nalezhali b yedinomu intervalu Yaksho x E 0 displaystyle x in E 0 nbsp to z togo sho 3 E displaystyle xi in E nbsp viplivaye g x g 3 f x f 3 M 3 x displaystyle g x g xi f x f xi leqslant M xi x nbsp Yaksho x E 0 displaystyle x not in E 0 nbsp to nehaj J bude intervalom sho dopovnyuye E 0 displaystyle E 0 nbsp sho mistit x i x poznachaye krajnyu pravu tochku cogo intervalu Todi g x g 3 g x g x g x g 3 displaystyle g x g xi g x g x g x g xi nbsp Yak i vishe g x g 3 M 3 x displaystyle g x g xi leqslant M xi x nbsp i zgidno vipadku 1 takozh g x g x M x x displaystyle g x g x leqslant M x x nbsp Dodavshi ci dvi nerivnosti otrimuyemo g x g 3 M 3 x displaystyle g x g xi leqslant M xi x nbsp Analogichno g 3 g y M y 3 displaystyle g xi g y leqslant M y xi nbsp i dodavshi ci dvi nerivnosti ostatochno otrimuyemo neobhidnij rezultat Zvidsi viplivaye sho g ye absolyutno neperervnoyu i zgidno teoremi Lebega g b g a E g x d x I E g x d x displaystyle g b g a int E g x dx int I setminus E g x dx nbsp Dali g a f a g b f b displaystyle g a f a g b f b nbsp i g f displaystyle g f nbsp u vsih neizolovanih tochkah mnozhini E Takih izolovanih tochok mozhe buti ne bilsh nizh zlichenna kilkist i tomu g f displaystyle g f nbsp majzhe vsyudi na E Takozh g M displaystyle g leqslant M nbsp majzhe vsyudi na I Iz vrahuvannyam vsogo otrimuyemo f b f a E f x d x I E g x d x M m 1 I E displaystyle left f b f a int E f x dx right left int I setminus E g x dx right leqslant Mm 1 I setminus E nbsp Lema 2 red Nehaj D displaystyle D nbsp vidkrita mnozhina na kompleksnij ploshini C R 2 displaystyle mathbb C mathbb R 2 nbsp i nehaj f displaystyle f nbsp bude neperervnoyu funkciyeyu z D displaystyle D nbsp u C displaystyle mathbb C nbsp dlya yakoyi na D displaystyle D nbsp isnuyut chastkovi pohidni Poznachimo R a b c d displaystyle R a b times c d nbsp pryamokutnik u D displaystyle D nbsp Viberemo A gt 0 tak shob A 1 d c b a A displaystyle A 1 leqslant d c b a leqslant A nbsp Pripustimo sho isnuye nepusta zamknuta mnozhina E displaystyle E nbsp u D displaystyle D nbsp i dodatne chislo M displaystyle M nbsp taki sho x y E w y D x v D f x y f x v M y v f x y f w y M x w displaystyle forall x y in E w y in D x v in D left f x y f x v right leqslant M left y v right left f x y f w y right leqslant M left x w right nbsp Nehaj R 0 R displaystyle R 0 subset R nbsp ye peretinom usih pryamokutnikiv sho mistyat E R displaystyle E cap R nbsp Yaksho E R displaystyle E cap R neq emptyset nbsp to R 0 displaystyle R 0 nbsp ye zamknutim pryamokutnikom mozhlivo virodzhenim tobto vertikalnim chi gorizontalnim vidrizkom abo tochkoyu Todi R 0 f d z 2 i R E f z d x d y 8 A M m 2 R R E displaystyle left int partial R 0 fdz 2i int int R cap E frac partial f partial bar z dxdy right leqslant 8AMm 2 R setminus R cap E nbsp de m 2 displaystyle m 2 nbsp poznachaye miru Lebega Dovedennya red Nehaj R 0 a 0 b 0 c 0 d 0 I J displaystyle R 0 a 0 b 0 times c 0 d 0 I times J nbsp Dlya x I displaystyle x in I nbsp poznachimo E x y J x y E displaystyle E x y in J x y in E nbsp Zgidno gipotezi f x y f x v M y v y E x v J displaystyle left f x y f x v right leqslant M left y v right quad forall y in E x v in J nbsp Tomu yaksho E x displaystyle E x neq emptyset nbsp to zgidno poperednoyi lemi f x c 0 f x d 0 E x f y d y M m 1 J E x 4 A M m 1 J E x displaystyle left f x c 0 f x d 0 int E x partial f over partial y dy right leqslant Mm 1 J setminus E x leqslant 4AMm 1 J setminus E x nbsp Natomist yaksho E x displaystyle E x neq emptyset nbsp to mozhna znajti 3 3 I displaystyle xi xi in I nbsp dlya yakih 3 c 0 E R 3 d 0 E R displaystyle xi c 0 in E cap R xi d 0 in E cap R nbsp Todi f x c 0 f x d 0 f x d 0 f 3 d 0 f 3 d 0 f 3 c 0 f 3 c 0 f 3 c 0 f 3 c 0 f 3 d 0 M x 3 d 0 c 0 3 3 3 x displaystyle begin aligned left f x c 0 f x d 0 right amp leqslant left f x d 0 f xi d 0 right left f xi d 0 f xi c 0 right left f xi c 0 f xi c 0 right left f xi c 0 f xi d 0 right leqslant amp leqslant M left x xi d 0 c 0 xi xi xi x right end aligned nbsp Takozh d 0 c 0 d c displaystyle d 0 c 0 leqslant d c nbsp i x 3 3 3 3 x 3 b 0 a 0 3 b a 3 A d c displaystyle x xi xi xi xi x leqslant 3 b 0 a 0 leqslant 3 b a leqslant 3A d c nbsp Ostatochno u comu vipadku f x c 0 f x d 0 4 A M d c displaystyle left f x c 0 f x d 0 right leqslant 4AM d c nbsp Takim chinom mozhna zapisati v oboh vipadkah f x c 0 f x d 0 E x f y d y 4 A M d c m 1 E x displaystyle left f x c 0 f x d 0 int E x partial f over partial y dy right leqslant 4AM d c m 1 E x nbsp Integruyuchi cej viraz po x otrimuyemo a 0 b 0 f x c 0 f x d 0 d x E R f y d x d y 4 A M d c b 0 a 0 m 2 E R 0 4 A M m 2 R E R displaystyle left int a 0 b 0 left f x c 0 f x d 0 right dx int int E cap R partial f over partial y dxdy right leqslant 4AM left d c b 0 a 0 m 2 E cap R 0 right leqslant 4AMm 2 R setminus E cap R nbsp oskilki E R E R 0 displaystyle E cap R E cap R 0 nbsp Analogichno mozhna otrimati drugu nerivnist c 0 c 0 f b 0 y f a 0 y d y E R f x d x d y 4 A M m 2 R E R displaystyle left int c 0 c 0 left f b 0 y f a 0 y right dy int int E cap R partial f over partial x dxdy right leqslant 4AMm 2 R setminus E cap R nbsp Dlya ostatochnogo dovedennya potribno drugu nerivnist domnozhiti na i displaystyle i nbsp dodati do pershoyi i vikoristati rivnosti 2 i f z i f x f y displaystyle 2i frac partial f partial bar z i frac partial f partial x frac partial f partial y nbsp i R 0 f d z i c 0 c 0 f b 0 y f a 0 y d y a 0 b 0 f x c 0 f x d 0 d x displaystyle int partial R 0 fdz i int c 0 c 0 left f b 0 y f a 0 y right dy int a 0 b 0 left f x c 0 f x d 0 right dx nbsp Dovedennya teoremi red Nehaj E displaystyle E nbsp mnozhina tochok z D displaystyle z in D nbsp dlya yakih isnuye okil v yakomu funkciya f displaystyle f nbsp ye golomorfnoyu Poznachimo E D E displaystyle E D setminus E nbsp Cya mnozhina bude najmenshoyu zamknutoyu pidmnozhinoyu D displaystyle D nbsp dlya yakoyi f D E displaystyle f D setminus E nbsp ye golomorfnoyu funkciyeyu Zgidno tverdzhennya teoremi E displaystyle E emptyset nbsp Pripustimo sho ce ne tak Todi pri dovedenni mozhna znajti vidkritu pidmnozhinu K D displaystyle K subset D nbsp i konstantu M gt 0 dlya yakih K E displaystyle K cap E neq emptyset nbsp i takozh dlya z x i y E K displaystyle z x iy in E cap K nbsp i z 1 x i y z 2 x i y K displaystyle z 1 x iy z 2 x iy in K nbsp vikonuyutsya nerivnosti f z 1 f z M x x displaystyle f z 1 f z leqslant M x x nbsp i f z 2 f z M y y displaystyle f z 2 f z leqslant M y y nbsp Pri comu f ye golomorfnoyu na K sho superechit viboru E i umovi K E displaystyle K cap E neq emptyset nbsp Ce protirichchya i zavershit dovedennya teoremi Dlya znahodzhennya mnozhini K vvedemo spershu D n displaystyle D n nbsp yak pidmnozhini D displaystyle D nbsp z takimi vlastivostyami D n z z D f z h f z n h f z i h f z n h h R B z h D h 1 n displaystyle D n z z in D left f z h f z right leqslant n left h right left f z ih f z right leqslant n left h right forall h in mathbb R B z h subset D left h right leqslant 1 n nbsp Iz neperervnosti f displaystyle f nbsp i vlastivosti isnuvannya chastkovih pohidnih vsyudi viplivaye sho D n displaystyle D n nbsp ye zamknutoyu mnozhinoyu i D n 1 D n displaystyle D cup n 1 infty D n nbsp a tomu E n 1 E D n displaystyle E cup n 1 infty E cap D n nbsp Zvidsi zgidno teoremi Bera isnuye hocha b odne D n displaystyle D n nbsp i vidkrita pidmnozhina K displaystyle K nbsp u D displaystyle D nbsp dlya yakih E K E D n displaystyle emptyset neq E cap K subseteq E cap D n nbsp K displaystyle K nbsp mozhna vvazhati vidnosno kompaktnoyu pidmnozhinoyu D displaystyle D nbsp todi zokrema isnuye chislo c gt 0 dlya yakogo f lt c 2 displaystyle f lt c 2 nbsp na K displaystyle K nbsp Todi yaksho z x i y E K E D n displaystyle z x iy in E cap K subseteq E cap D n nbsp i z 1 x i y z 2 x i y K displaystyle z 1 x iy z 2 x iy in K nbsp to vikonuyutsya nerivnosti f z 1 f z n x x x x 1 n c n x x x x gt 1 n displaystyle f z 1 f z leqslant left begin aligned n x x amp amp x x leqslant 1 over n cn x x amp amp x x gt 1 over n end aligned right nbsp i podibni dlya f z 1 f z displaystyle f z 1 f z nbsp Ce dovodit tverdzhennya dlya M max n c n displaystyle M max n cn nbsp Dlya dovedennya golomorfnosti f na K zgidno teoremi Moreri dostatno dovesti sho dlya kozhnogo pryamokutnika R a b c d K displaystyle R a b times c d subset K nbsp vikonuyetsya rivnist R f d z 0 displaystyle int partial R fdz 0 nbsp Viberemo A gt 0 tak shob A 1 d c b a A displaystyle A 1 leqslant d c b a leqslant A nbsp Nehaj e gt 0 displaystyle varepsilon gt 0 nbsp ye dovilnim i vidkrita mnozhina U K displaystyle U supset K nbsp taka sho m 2 U K lt e displaystyle m 2 U setminus K lt varepsilon nbsp taka U displaystyle U nbsp isnuye oskilki E displaystyle E nbsp yak zakrita pidmnozhina vidkritoyi mnozhini ye vimirnoyu i tomu yiyi zovnishnya mira ye rivnoyu miri Nehaj N 1 displaystyle N geqslant 1 nbsp Pryamokutnik R displaystyle R nbsp mozhna podiliti na 4 N displaystyle 4 N nbsp pryamokutniki R n n 1 4 N displaystyle R nu nu 1 ldots 4 N nbsp povtoryuyuchi N raz proceduru podilu otrimanih pryamokutnikiv na 4 za dopomogoyu vidrizkiv sho poyednuyut seredini protilezhnih storin Yaksho R n a b g d displaystyle R nu alpha beta times gamma delta nbsp to d g b a d c b a displaystyle delta gamma beta alpha d c b a nbsp i tomu takozh A 1 d g b a A displaystyle A 1 leqslant delta gamma beta alpha leqslant A nbsp Dlya dostatno velikogo N displaystyle N nbsp yaksho R n E displaystyle R nu cap E neq emptyset nbsp to R n U displaystyle R nu subset U nbsp Todi R f d z n R n f d z R n E R n f d z displaystyle int partial R fdz sum nu int partial R nu fdz sum R nu cap E neq emptyset int partial R nu fdz nbsp oskilki dlya R n K E displaystyle R nu subset K setminus E nbsp zgidno teoremi Koshi Gursa R n f d z 0 displaystyle int partial R nu fdz 0 nbsp Nehaj R n 0 displaystyle R nu 0 nbsp poznachaye peretin vsih zamknutih pryamokutnikiv sho mistyat R n E displaystyle R nu cap E nbsp Todi R n 0 displaystyle R nu 0 nbsp ye zamknutim pryamokutnikom mozhlivo virodzhenim i R n f d z R n 0 f d z displaystyle int partial R nu fdz int partial R nu 0 fdz nbsp Zastosovuyuchi lemu 2 do tih znachen n displaystyle nu nbsp dlya yakih R n E displaystyle R nu cup E neq emptyset nbsp otrimuyemo R n f d z R n 0 f d z R n 0 f d z 2 i R n E f z d x d y 8 A M m 2 R n R n E displaystyle left int partial R nu fdz right left int partial R nu 0 fdz right left int partial R nu 0 fdz 2i int int R nu cup E frac partial f partial bar z dxdy right leqslant 8AMm 2 R nu setminus R nu cap E nbsp Zvidsi R f d z R n E R n f d z 8 A M R n E m 2 R n R n E displaystyle left int partial R fdz right leqslant sum R nu cap E neq emptyset left int partial R nu fdz right leqslant 8AM sum R nu cap E neq emptyset m 2 R nu setminus R nu cap E nbsp Oskilki dlya dostatno velikogo N displaystyle N nbsp yaksho R n E displaystyle R nu cap E neq emptyset nbsp to R n U displaystyle R nu subset U nbsp i dva riznih pryamokutniki R n R n displaystyle R nu R nu nbsp mayut peretin dvovimirna mira Lebega dlya yakogo ye rivnoyu nulyu to R n E m 2 R n R n E m 2 U U E lt e displaystyle sum R nu cap E neq emptyset m 2 R nu setminus R nu cap E leqslant m 2 U setminus U cap E lt varepsilon nbsp Tomu R f d z lt 8 A M e displaystyle left int partial R fdz right lt 8AM varepsilon nbsp i z dovilnosti viboru e displaystyle varepsilon nbsp viplivaye sho R f d z 0 displaystyle int partial R fdz 0 nbsp Tomu funkciya f ye golomorfnoyu na K sho superechit K E displaystyle K cap E neq emptyset nbsp Literatura red Gray J D Morris S A 1978 When is a Function that Satisfies the Cauchy Riemann Equations Analytic The American Mathematical Monthly April 1978 85 4 246 256 JSTOR 2321164 doi 10 2307 2321164 Looman H 1923 Uber die Cauchy Riemannschen Differentialgleichungen Gottinger Nachrichten 97 108 Menchoff D 1936 Les conditions de monogeneite Paris Montel P 1913 Sur les differentielles totales et les fonctions monogenes C R Acad Sci Paris 156 1820 1822 Narasimhan Raghavan 2001 Complex Analysis in One Variable Birkhauser ISBN 0 8176 4164 5 Otrimano z https uk wikipedia org w index php title Teorema Lumana Menshova amp oldid 32877066