www.wikidata.uk-ua.nina.az
V abstraktnij algebri a takozh algebrayichnij teoriyi chisel i algebrayichnij geometriyi normuvannya ye pevnoyu miroyu multiplikativnosti Ponyattya ye uzagalnennyam zokrema poryadku korenya mnogochlena poryadku nulya chi polyusa v kompleksnomu analizi i poryadku podilnosti na proste chislo v arifmetici Zmist 1 Viznachennya 1 1 Pov yazani viznachennya 2 Prikladi 3 Vlastivosti 4 Topologiya normuvannya polya 5 Prodovzhennya normuvan 6 Div takozh 7 Posilannya 8 DzherelaViznachennya RedaguvatiNormuvannyam komutativnogo kilcya z odiniceyu A displaystyle A times nbsp iz znachennyami v linijno vporyadkovanij abelevij grupi G lt displaystyle G lt nbsp z priyednanim neskinchennim elementom displaystyle infty nbsp nazivayetsya vidobrazhennya v A G displaystyle v A longrightarrow G cup infty nbsp sho zadovolnyaye takim vimogam x A v x x 0 displaystyle forall x in A v x infty Longleftrightarrow x 0 nbsp x y A v x y v x v y displaystyle forall x y in A v xy v x v y nbsp v x y min v x v y displaystyle v x y geqslant min v x v y nbsp Priyednanij neskinchennij element zadovolnyaye umovi a lt displaystyle a lt infty nbsp i a displaystyle a infty infty nbsp dlya vsih a G displaystyle a in G nbsp Yaksho A ye polem to v ye gomomorfizmom grupi A v grupu G i obraz v A ye pidgrupoyu grupi G Obmezhivshi rozglyad lishe ciyeyu pidgrupoyu mozhna vvazhati v syur yekciyeyu Yaksho A ne ye polem to obraz v A ye monoyidom v grupi G Yaksho G Z displaystyle G mathbb Z nbsp to normuvannya nazivayetsya diskretnim Pov yazani viznachennya Redaguvati Normuvannya vi v na kilci A nazivayutsya ekvivalentnimi yaksho isnuye izomorfizm vporyadkovanih monoyidiv l v A v A displaystyle lambda v A to v A nbsp dlya yakogo v l v displaystyle v lambda circ v nbsp Yaksho rozglyadati normuvannya na poli K to mnozhina elementiv R sho viznachena yak R x K v x 0 displaystyle R x in K v x geqslant 0 nbsp ye pidkilcem polya K i nazivayetsya kilcem normuvannya v v poli K Kilce normuvannya zavzhdi ye lokalnim kilcem Pidmnozhina M polya K viznachena yak m x K v x gt 0 displaystyle m x in K v x gt 0 nbsp ye maksimalnim idealom kilcya R Vin nazivayetsya idealom normuvannya v Faktor kilce R m displaystyle R m nbsp sho ye polem nazivayetsya polem lishkiv normuvannya v Nehaj v poli K zadani normuvannya vi v Kilcya cih normuvan sho rozglyadayutsya yak pidkilcya polya K todi i tilki todi zbigayutsya koli ci normuvannya ekvivalentni Takim chinom opis vsih z tochnistyu do ekvivalentnosti normuvan polya K zvoditsya do opisu vsih takih pidkilec yaki mozhut buti dlya cogo polya kilcyami normuvannya Prikladi RedaguvatiNormuvannya kilcya yake viznachayetsya formuloyu v A G x x 0 0 x 0 displaystyle begin array rrcl v amp A amp longrightarrow amp G cup infty amp x amp longmapsto amp begin cases infty amp x 0 0 amp x neq 0 end cases end array nbsp nazivayetsya nevlasnim abo trivialnim normuvannyam Dlya skinchennih poliv ce normuvannya ye yedinim Bud yake kilce z nearhimedovim absolyutnim znachennyam mozhe buti peretvoreno v normovane kilce yaksho v monoyidi znachen perejti vid multiplikativnogo zapisu do aditivnogo i zaminiti vporyadkovanist na inversnu Element 0 pri comu prirodno poznachiti simvolom displaystyle infty nbsp Zvorotnij perehid vid kilcya z normuvannyam do kilcya z nearhimedovim absolyutnim znachennyam takozh mozhlivij Yaksho v kilci bulo zadano nearhimedove absolyutne znachennya iz znachennyami v mnozhini dodatnih dijsnih chisel to normuvannya mozhna viznachiti formuloyu x A v x log x displaystyle forall x in A v x log x nbsp dd Nehaj K ye polem K X kilce mnogochleniv z koeficiyentami z polya K i a element polya K Poryadok korenya mnogochlena v tochci a viznachaye normuvannya v a K X Z P sup k N R K X P X X a k R X displaystyle begin array rrcl v a amp K X amp longrightarrow amp mathbb Z cup infty amp P amp longmapsto amp sup left k in mathbb N exists R in K X P X X a k R X right end array nbsp Podibnim chinom mozhna viznachiti normuvannya i na mnozhini K X racionalnih funkcij z koeficiyentami z polya K v a K X Z P Q v P v Q displaystyle begin array rrcl v a amp K X amp longrightarrow amp mathbb Z cup infty amp P Q amp longmapsto amp v P v Q end array nbsp Dlya prostogo chisla p mozhna viznachiti p adichne normuvannya v p Z N n n 0 max k N q Z p k q n n 0 displaystyle begin array rrcl v p amp mathbb Z amp longrightarrow amp mathbb N cup infty amp n amp longmapsto amp begin cases infty amp n 0 max k in mathbb N exists q in mathbb Z quad p k q n amp n neq 0 end cases end array nbsp Vlastivosti RedaguvatiYaksho A ye komutativnim kilcem z odiniceyu na yakomu viznacheno normuvannya v to v 1 v 1 0 displaystyle v 1 v 1 0 nbsp x y A v x y min v x v y displaystyle forall x y in A v x y geqslant min v x v y nbsp x y A v x v y v x y min v x v y displaystyle forall x y in A v x neq v y Rightarrow v x y min v x v y nbsp A ye oblastyu cilisnosti Normuvannya w v yedinij sposib mozhna prodovzhiti na pole chastok kilcya A p q F r a c A w p q v p v q displaystyle forall p q in mathrm Frac A w p q v p v q nbsp Dlya bud yakoyi linijno vporyadkovanoyi abelevoyi grupi G lt displaystyle G lt nbsp isnuye normuvannya deyakogo polya grupa znachen yakogo izomorfna G displaystyle G nbsp Topologiya normuvannya polya RedaguvatiNehaj v K G displaystyle v K longrightarrow G cup infty nbsp normuvannya polya K i V g x K v x gt g displaystyle V gamma x in K v x gt gamma nbsp de g G displaystyle gamma in G nbsp Sukupnist usih g g G displaystyle gamma gamma in G nbsp utvoryuye fundamentalnu sistemu okoliv nulya topologiyi polya K sho nazivayetsya topologiyeyu viznachenoyu normuvannyam v Cya topologiya ye gausdorfovoyu i nezv yaznoyu Topologiya indukovana na kilci normuvannya R yak pravilo vidriznyayetsya vid topologiyi lokalnogo kilcya Dlya netrivialnogo normuvannya polya K topologiya normuvannya ye lokalno kompaktnoyu todi i tilki todi koli normuvannya v ye diskretnim kilce normuvannya povnim a pole lishkiv normuvannya v ye skinchennim kilce R pri comu bude kompaktnim Popovnennya K polya K shodo topologiyi v ye polem Normuvannya v neperervno prodovzhuyetsya do normuvannya v K G displaystyle bar v K longrightarrow G cup infty nbsp i topologiya popovnennya K zbigayetsya z topologiyeyu cogo normuvannya Kilce normuvannya v displaystyle bar v nbsp ye popovnennyam kilcya normuvannya v displaystyle v nbsp Normuvannya vi v polya K nazivayutsya nezalezhnimi yaksho yih topologiyi normuvannya ye riznimi Ce ekvivalentno tomu sho yih kilcya normuvan spilno porodzhuyut pole K Spravedliva teorema aproksimaciyi dlya normuvannya nehaj v i K G i i 1 n displaystyle v i K longrightarrow G i cup infty i 1 n nbsp nezalezhni normuvannya a 1 a n K displaystyle a 1 a n in K nbsp i g 1 g n G displaystyle gamma 1 gamma n in G nbsp todi znajdetsya takij element a K displaystyle a in K nbsp sho v i a i a g i displaystyle v i a i a geqslant gamma i nbsp dlya vsih i Prodovzhennya normuvan RedaguvatiYaksho v normuvannya polya L a K pidpole L to obmezhennya v v K displaystyle v v K nbsp normuvannya v na pole K ye normuvannyam polya K a jogo grupa znachen G pidgrupoyu grupi G v nazivayetsya pri comu prodovzhennyam normuvannya v Navpaki yaksho v normuvannya a L rozshirennya polya K to zavzhdi isnuye normuvannya polya L sho prodovzhuye v Indeks G G displaystyle G G nbsp pidgrupi G v grupi G nazivayetsya indeksom rozgaluzhennya normuvannya v shodo v i poznachayetsya e v v displaystyle e v v nbsp Pole lishkiv k v displaystyle k v nbsp normuvannya v ototozhnyuyetsya z pidpolem polya lishkiv k v displaystyle k v nbsp stepin rozshirennya k v k v displaystyle k v k v nbsp poznachayetsya f v v displaystyle f v v nbsp i nazivayetsya stepenem lishkiv normuvannya v shodo v Prodovzhennya v normuvannya v nazivayetsya bezposerednim yaksho e v v f v v l displaystyle e v v f v v l nbsp Nehaj L rozshirennya polya K a v i i I displaystyle v i i in I nbsp mnozhina vsih prodovzhen normuvannya v na L Yaksho L skinchenne rozshirennya polya K stepenya n to mnozhina vsih prodovzhen v ye skinchennoyu i i I e v i v f v i v n displaystyle sum i in I e v i v f v i v leqslant n nbsp V ryadi vipadkiv cyu nerivnist mozhna zaminiti na rivnist napriklad koli v ye diskretnim normuvannyam i abo K ye povnim abo L ye separabelnim nad K Yaksho L normalne rozshirennya K to prodovzhennya v na L perevodyatsya K avtomorfizmami L zokrema yaksho L radikalne rozshirennya K to v maye yedine prodovzhennya Div takozh RedaguvatiAbsolyutne znachennya algebra Kilce diskretnogo normuvannya Kilce normuvannya Lokalne kilcePosilannya RedaguvatiHazewinkel Michiel red 2001 Valuation Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Dzherela RedaguvatiAlgebraicheskaya teoriya chisel red Kassels D Fryolih A M Mir 1969 Cohn P M 1991 Algebraic Numbers and Algebraic Functions Chapman Hall CRC Mathematics Series 4 CRC Press ISBN 9780412361906 Gopalakrishnan N S 1984 Commutative Algebra Oxonian Press s 290 Otrimano z https uk wikipedia org w index php title Normuvannya algebra amp oldid 35031075