www.wikidata.uk-ua.nina.az
Mnozhe nnya ma tric ce binarna operaciya yaka vikoristovuyuchi dvi matrici utvoryuye novu matricyu yaka nazivayetsya dob utkom ma tric Dijsni abo kompleksni chisla mnozhatsya vidpovidno do pravil elementarnoyi arifmetiki Z inshogo boku matrici ye masivami chisel tomu isnuyut rizni sposobi viznachiti dobutok matric Takim chinom zagalom termin matrichne mnozhennya oznachaye rizni sposobi peremnozhennya matric Klyuchovimi osoblivostyami bud yakogo matrichnogo mnozhennya ye kilkist ryadkiv i stovpciv v pochatkovih matricyah i pravilo yak elementi matric utvoryuyut novu matricyu Zmist 1 Viznachennya 2 Ilyustraciya 3 Motivaciya 4 Vlastivosti 5 Obernena matricya 6 Algoritmi shvidkogo peremnozhennya matric 7 Div takozh 8 Dzherela 9 PrimitkiViznachennya RedaguvatiNehaj dano dvi pryamokutni matrici A displaystyle A nbsp i B displaystyle B nbsp rozmirnosti m n displaystyle m times n nbsp i n q displaystyle n times q nbsp vidpovidno A a 11 a 12 a 1 n a 21 a 22 a 2 n a m 1 a m 2 a m n B b 11 b 12 b 1 q b 21 b 22 b 2 q b n 1 b n 2 b n q displaystyle A begin bmatrix a 11 amp a 12 amp cdots amp a 1n a 21 amp a 22 amp cdots amp a 2n vdots amp vdots amp ddots amp vdots a m1 amp a m2 amp cdots amp a mn end bmatrix B begin bmatrix b 11 amp b 12 amp cdots amp b 1q b 21 amp b 22 amp cdots amp b 2q vdots amp vdots amp ddots amp vdots b n1 amp b n2 amp cdots amp b nq end bmatrix nbsp Todi matricya C displaystyle C nbsp rozmirnistyu m q displaystyle m times q nbsp nazivayetsya yih dobutkom C c 11 c 12 c 1 q c 21 c 22 c 2 q c m 1 c m 2 c m q displaystyle C begin bmatrix c 11 amp c 12 amp cdots amp c 1q c 21 amp c 22 amp cdots amp c 2q vdots amp vdots amp ddots amp vdots c m1 amp c m2 amp cdots amp c mq end bmatrix nbsp de c i j r 1 n a i r b r j i 1 2 m j 1 2 q displaystyle c ij sum r 1 n a ir b rj left i 1 2 ldots m j 1 2 ldots q right nbsp Operaciya mnozhennya dvoh matric zdijsnenna tilki v tomu vipadku yaksho chislo stovpciv v pershomu spivmnozhniku dorivnyuye chislu ryadkiv u drugomu v comu vipadku govoryat sho forma matric uzgodzhena Zokrema mnozhennya zavzhdi zdijsnimo yaksho obidva mnozhniki kvadratni matrici odnogo i togo zh poryadku Slid zauvazhiti sho z isnuvannya dobutku A B displaystyle AB nbsp zovsim ne viplivaye isnuvannya dobutku B A displaystyle BA nbsp Ilyustraciya Redaguvati nbsp Dobutok matric AB skladayetsya z usih mozhlivih kombinacij skalyarnih dobutkiv vektor ryadkiv matrici A i vektor stovpciv matrici B Element matrici AB z indeksami i j ye skalyarnim dobutkom i go vektor ryadka matrici A i j go vektor stovpcya matrici B Ilyustraciya pravoruch demonstruye obchislennya dobutku dvoh matric A i B Vona pokazuye yak peretini v dobutku matric vidpovidayut ryadkam matrici A i stovpcyam matrici B Rozmir rezultuyuchoyi matrici zavzhdi maksimalno mozhlivij tobto dlya kozhnogo ryadka matrici A i stovpcya matrici B ye zavzhdi vidpovidnij peretin v dobutku matric Znachennya na peretinah vidmichenih kruzhechkami budut x 1 2 a 1 1 a 1 2 b 1 2 b 2 2 a 1 1 b 1 2 a 1 2 b 2 2 x 3 3 a 3 1 a 3 2 b 1 3 b 2 3 a 3 1 b 1 3 a 3 2 b 2 3 displaystyle begin aligned color Red x 1 2 amp a 1 1 a 1 2 cdot b 1 2 b 2 2 amp a 1 1 b 1 2 a 1 2 b 2 2 color Blue x 3 3 amp a 3 1 a 3 2 cdot b 1 3 b 2 3 amp a 3 1 b 1 3 a 3 2 b 2 3 end aligned nbsp U zagalnomu vipadku dobutok matric ne ye komutativnoyu operaciyeyu Primirom 1 2 3 4 3 4 matrix a b c d 4 5 matrix x 3 4 3 5 matrix displaystyle overset 3 times 4 text matrix begin bmatrix cdot amp cdot amp cdot amp cdot cdot amp cdot amp cdot amp cdot color Blue 1 amp color Blue 2 amp color Blue 3 amp color Blue 4 end bmatrix overset 4 times 5 text matrix begin bmatrix cdot amp cdot amp cdot amp color Red a amp cdot cdot amp cdot amp cdot amp color Red b amp cdot cdot amp cdot amp cdot amp color Red c amp cdot cdot amp cdot amp cdot amp color Red d amp cdot end bmatrix overset 3 times 5 text matrix begin bmatrix cdot amp cdot amp cdot amp cdot amp cdot cdot amp cdot amp cdot amp cdot amp cdot cdot amp cdot amp cdot amp x 3 4 amp cdot end bmatrix nbsp Element x 3 4 displaystyle x 3 4 nbsp dobutku matric privedenih vishe obchislyuyetsya takim chinom x 3 4 1 2 3 4 a b c d 1 a 2 b 3 c 4 d displaystyle x 3 4 color Blue 1 color Blue 2 color Blue 3 color Blue 4 cdot color Red a color Red b color Red c color Red d color Blue 1 cdot color Red a color Blue 2 cdot color Red b color Blue 3 cdot color Red c color Blue 4 cdot color Red d nbsp Persha koordinata v poznachenni matrici poznachaye ryadok druga koordinata stovpec cej poryadok vikoristovuyut yak pri indeksaciyi tak i pri poznachenni rozmiru Element x i j displaystyle x color Blue i color Red j nbsp na peretini ryadka i displaystyle i nbsp ta stovpcya j displaystyle j nbsp rezultuyuchoyi matrici ye skalyarnim dobutkom i displaystyle i nbsp go ryadka pershoyi matrici i j displaystyle j nbsp go stovpcya drugoyi matrici Ce poyasnyuye chomu shirina i visota mnozhimih matric povinni zbigatisya inakshe skalyarnij tvir ne viznacheno Motivaciya RedaguvatiOpisane pravilo matrichnogo mnozhennya prozorishe vsogo motivuyetsya vihodyachi z mnozhennya vektora na matricyu Ostannye zvichajno vvoditsya vihodyachi z togo sho pri rozkladanni vektoriv po bazisu diyu kozhnogo linijnogo operatora A daye viraz komponent vektora v Av v i j A i j v j displaystyle v i sum limits j A ij v j nbsp Tobto linijnij operator viyavlyayetsya predstavlenij matriceyu vektori vektorami stovpcyami a diya operatora na vektor matrichnim mnozhennyam vektora stovpcya zliva na matricyu operatora ce okremij vipadok matrichnogo mnozhennya koli odna z matric vektor stovpec maye rozmir 1hn Tak samo perehid do bud yakogo novogo bazisu pri zmini koordinat predstavlyayetsya povnistyu analogichnim virazom tilki v i displaystyle v i nbsp v comu vipadku vzhe ne komponenti novogo vektora v staromu bazisi a komponenti starogo vektora v novomu bazisi pri comu A i j displaystyle A ij nbsp elementi matrici perehodu do novogo bazisu Rozglyanuvshi poslidovnu diyu na vektor dvoh operatoriv spochatku A a potim B abo peretvorennya bazisu A a potim peretvorennya bazisu B dvichi zastosuvavshi formulu otrimuyemo v i j B i j k A j k v k j k B i j A j k v k k j B i j A j k v k displaystyle v i sum limits j B ij sum limits k A jk v k sum limits j sum limits k B ij A jk v k sum limits k sum limits j B ij A jk v k nbsp zvidki vidno sho kompoziciyi BA diyi linijnih operatoriv A i B abo analogichnoyi kompoziciyi peretvoren bazisu vidpovidaye matricya sho obchislyuyetsya za pravilom dobutku vidpovidnih matric B A i k j B i j A j k displaystyle BA ik sum limits j B ij A jk nbsp Viznachenij takim chinom dobutok matric viyavlyayetsya absolyutno zvichajnim i ochevidno korisnim daye prostij i universalnij sposib obchislennya kompozicij dovilnoyi kilkosti linijnih peretvoren Vlastivosti RedaguvatiSpoluchna vlastivist asociativnist A B C A B C displaystyle mathbf A mathbf BC mathbf AB mathbf C nbsp a A B a A B A a B displaystyle alpha mathbf AB alpha mathbf A mathbf B mathbf A alpha mathbf B nbsp Rozpodilna vlastivist distributivnist shodo dodavannya A B C A B A C displaystyle mathbf A mathbf B mathbf C mathbf AB mathbf AC nbsp A B C A C B C displaystyle mathbf A mathbf B mathbf C mathbf AC mathbf BC nbsp Dobutok matrici na odinichnu matricyu E displaystyle mathbf E nbsp togo zh poryadku dorivnyuye samij matrici E A A displaystyle mathbf EA mathbf A nbsp A E A displaystyle mathbf AE mathbf A nbsp Dobutok matrici na nulovu matricyu 0 displaystyle mathbf 0 nbsp tiyeyi zh rozmirnosti dorivnyuye nulovij matrici 0 A 0 displaystyle mathbf 0A mathbf 0 nbsp A 0 0 displaystyle mathbf A0 mathbf 0 nbsp Yaksho A displaystyle mathbf A nbsp i B displaystyle mathbf B nbsp kvadratni matrici odnogo i togo zh poryadku to dobutok matric maye she ryad vlastivostej Mnozhennya matric v zagalnomu vipadku ye nekomutativnim A B B A displaystyle mathbf AB neq mathbf BA nbsp Yaksho A B B A displaystyle mathbf AB mathbf BA nbsp to matrici A displaystyle mathbf A nbsp i B displaystyle mathbf B nbsp nazivayutsya perestanovochnimi abo komutuyuchimi mizh soboyu Najprostishi prikladi komutuyuchih matric bud yaka kvadratna matricya z samoyu soboyu A A A A A 2 displaystyle mathbf AA mathbf AA mathbf A 2 nbsp zvedennya matrici v kvadrat bud yaka kvadratna matricya z odinichnoyu matriceyu togo zh poryadku A E E A A displaystyle mathbf AE mathbf EA mathbf A nbsp bud yaka kvadratna matricya z nulovoyu matriceyu togo zh poryadku A 0 0 A 0 displaystyle mathbf A0 mathbf 0A mathbf 0 nbsp bud yaka nevirodzhena kvadratna matricya zi svoyeyu zvorotnoyu matriceyu A A 1 A 1 A E displaystyle mathbf AA 1 mathbf A 1 A mathbf E nbsp Viznachnik i slid dobutku ne zalezhat vid poryadku mnozhennya matric det A B det B A det A det B displaystyle det mathbf AB det mathbf BA det mathbf A cdot det mathbf B nbsp tr A B tr B A displaystyle mbox tr mathbf AB mbox tr mathbf BA nbsp Obernena matricya RedaguvatiDokladnishe Obernena matricyaKvadratna matricya A displaystyle A nbsp nazivayetsya neosoblivoyu nevirodzhenoyu yaksho vona maye yedinu obernenu matricyu A 1 displaystyle A 1 nbsp taku sho vikonuyetsya umova A A 1 A 1 A E displaystyle AA 1 A 1 A E nbsp Inakshe matricya A displaystyle A nbsp nazivayetsya osoblivoyu virodzhenoyu Matricya A a i k displaystyle A left a ik right nbsp poryadku n displaystyle n nbsp ye nevirodzhenoyu v tomu i lishe v tomu vipadku yaksho det A det a i k 0 displaystyle det A det left a ik right neq 0 nbsp v comu vipadku A 1 displaystyle A 1 nbsp ye kvadratna matricya togo zh poryadku n displaystyle n nbsp A 1 a i k 1 A k i det A displaystyle A 1 left a ik right 1 left frac A ki det A right nbsp de A i k displaystyle A ik nbsp algebrayichne dopovnennya elementu a i k displaystyle a ik nbsp u viznachniku det a i k displaystyle det left a ik right nbsp Algoritmi shvidkogo peremnozhennya matric RedaguvatiDokladnishe Algoritm peremnozhuvannya matricSkladnist obchislennya dobutku matric za viznachennyam stanovit O n 3 displaystyle O n 3 nbsp odnak isnuyut bilsh efektivni algoritmi 1 sho zastosovuyutsya dlya velikih matric Pitannya pro granichnu shvidkist mnozhennya velikih matric takozh yak i pitannya pro pobudovu najbilsh shvidkih i stijkih praktichnih algoritmiv mnozhennya velikih matric zalishayetsya odniyeyu z nevirishenih problem linijnoyi algebri Algoritm Shtrassena 1969 Pershij algoritm shvidkogo mnozhennya velikih matric buv rozroblenij Folkerom Shtrassenom 2 v 1969 V osnovi algoritmu lezhit rekursivne rozbittya matric na bloki 2H2 Shtrassen doviv sho matrici 2H2 mozhna nekomutativno peremnozhiti za dopomogoyu semi mnozhen tomu na kozhnomu etapi rekursiyi vikonuyetsya sim mnozhen zamist vosmi V rezultati asimptotichna skladnist cogo algoritmu skladaye O n log 2 7 O n 2 81 displaystyle O n log 2 7 approx O n 2 81 nbsp Nedolikom danogo metodu ye velika skladnist programuvannya v porivnyanni zi standartnim algoritmom slabka chiselna stijkist i bilshij obsyag vikoristovuvanoyi pam yati Rozrobleno ryad algoritmiv na osnovi metodu Shtrassena yaki pokrashuyut chiselnu stijkist shvidkist po konstanti i inshi jogo harakteristiki Prote v silu prostoti algoritm Shtrassena zalishayetsya odnim z praktichnih algoritmiv mnozhennya velikih matric Shtrassen takozh visunuv nastupnu gipotezu Shtrassena dlya yak zavgodno malogo e gt 0 displaystyle varepsilon gt 0 nbsp isnuye algoritm sho pri dosit velikih naturalnih n garantuye peremnozhuvannya dvoh matric rozmiru n n displaystyle n times n nbsp za O n 2 e displaystyle O n 2 varepsilon nbsp operacij Podalshi polipshennya pokaznika stupenya w dlya shvidkosti matrichnogo mnozhennya nbsp Hronologiya polipshennya ocinok pokaznika stupenya w dlya shvidkosti matrichnogo mnozhennya Nadali ocinki shvidkosti mnozhennya velikih matric bagatorazovo polipshuvalisya Odnak ci algoritmi nosili teoretichnij v osnovnomu nablizhenij harakter V silu nestijkosti algoritmiv nablizhenogo mnozhennya v danij chas voni ne vikoristovuyutsya na praktici Algoritm Pana 1978 U 1978 Pan 3 zaproponuvav svij metod mnozhennya matric skladnist yakogo sklala 8 n2 78041 Algoritm Bini 1979 U 1979 grupa italijskih uchenih na choli z Bini 4 rozrobila algoritm mnozhennya matric z vikoristannyam tenzoriv Jogo skladnist stanovit 8 n2 7799 Algoritmi Shenhage 1981 U 1981 Shenhage 5 predstaviv metod yakij pracyuye zi shvidkistyu 8 n2 695 Ocinka otrimana za dopomogoyu pidhodu nazvanogo chastkovim matrichnim mnozhennyam Piznishe jomu vdalosya otrimati ocinku 8 n2 6087 Potim Shenhage na bazi metodu pryamih sum otrimav ocinku skladnosti 8 n2 548 Romani zumiv poniziti ocinku do 8 n2 5166 a Pan do 8 n2 5161 dd Algoritm Koppersmita Vinograda 1990 U 1990 Koppersmit i Vinograd en 6 opublikuvali algoritm yakij v modifikaciyi Vilyams Vasilevskoyi 7 2011 roku peremnozhuye matrici zi shvidkistyu O n2 3727 Cej algoritm vikoristovuye ideyi shozhi z algoritmom Shtrassena Na sogodnishnij den modifikaciyi algoritmu Koppersmita Vinograda ye najbilsh asimptotichno shvidkimi Ale toj fakt sho otrimani polipshennya nikchemni dozvolyaye govoriti pro isnuvannya bar yeru Koppersmita Vinograda v asimptotichnih ocinkah shvidkosti algoritmiv Algoritm Koppersmita Vinograda efektivnij tilki na matricyah astronomichnogo rozmiru i na praktici zastosovuvatisya ne mozhe Zv yazok z teoriyeyu grup 2003 U 2003 Koh ta in rozglyanuli v svoyih robotah 8 algoritmi Shtrassena i Koppersmita Vinograda v konteksti teoriyi grup Voni pokazali sho gipoteza Shtrassena spravedliva yaksho vikonuyetsya odna z gipotez teoriyi grup 9 Div takozh RedaguvatiDobutok Adamara Dobutok Kronekera Basic Linear Algebra Subprograms Dobutok Hatri Rao Torcevij dobutokDzherela RedaguvatiGantmaher F R Teoriya matric 5 e M Fizmatlit 2010 559 s ISBN 5 9221 0524 8 ros Lankaster P Teoriya matric Moskva Nauka 1973 280 s ros R Horn Ch Dzhonson Matrichnyj analiz M Mir 1989 653 s ros Korn G Korn T Dovidnik po matematici Moskva Nauka 1978 S 392 394 Primitki Redaguvati Kibernetichnij zbirnik Nova seriya Vip 25 Sb statej 1983 1985 rr Per z angl M Mir 1988 V B Aleksyeyev Skladnist mnozhennya matric Oglyad Strassen Volker Gaussian Elimination is not Optimal Numer Math 13 p 354 356 1969 Pan V Ya Strassen s algorithm is not optimal trilinear technique of aggregating uniting and canceling for constructing fast algorithms for matrix operations Proc 19th Annual Symposium on Foundations of Computer Science Ann Arbor Mich 1978 Bini D Capovani M Lotti G Romani F O n 2 7799 displaystyle O n 2 7799 nbsp complexity for approximate matrix multiplication Inform Process Lett 1979 Schonhage A Partial and total matrix multiplication SIAM J Comput 1981 Don Coppersmith and Shmuel Winograd Matrix multiplication via arithmetic progressions Journal of Symbolic Computation 9 251 280 1990 Williams Virginia 2011 Multiplying matices in O n2 3727 time Arhivovano 26 zhovtnya 2014 u Wayback Machine Group theoretic Algorithms for Matrix Multiplication Arhiv originalu za 6 serpnya 2011 Procitovano 26 zhovtnya 2014 Toward an Optimal Algorithm for Matrix Multiplication Arhiv originalu za 31 bereznya 2010 Procitovano 26 zhovtnya 2014 Otrimano z https uk wikipedia org w index php title Mnozhennya matric amp oldid 36887293