www.wikidata.uk-ua.nina.az
Pole Yakobi vektorne pole vzdovzh geodezichnoyi liniyi g displaystyle gamma v deyakomu mnogovidi sho v pevnomu sensi opisuye riznicyu mizh ciyeyu geodezichnoyu liniyeyu i neskinchenno blizkimi yij geodezichnimi liniyami Inshimi slovami polya Yakobi vzdovzh geodezichnoyi liniyi utvoryuyut dotichnij prostir do geodezichnoyi v prostori vsih geodezichnih Osoblivo chasto rozglyadayutsya dlya rimanovih mnogovidiv Vektorne pole vzdovzh geodezichnoyi liniyi ye polem Yakobi todi j lishe todi koli vono zadovolnyaye deyakomu rivnyannyu yake nazivayetsya rivnyannyam Yakobi Nazvani na chest nimeckogo matematika Karla Yakobi Zmist 1 Viznachennya 1 1 Rivnyannya Yakobi 1 2 Odnoparametrichna sim ya geodezichnih linij 2 Priklad 3 Yavnij viglyad rivnyannya Yakobi 3 1 Vlastivosti prostoru poliv Yakobi 4 Tangencialni i normalni polya Yakobi dlya rimanovih mnogovidiv 5 Prikladi 6 Div Takozh 7 LiteraturaViznachennya red Rivnyannya Yakobi red Nehaj M gladkij mnogovid rozmirnosti n displaystyle nabla nbsp afinna zv yaznist na nomu T i R tenzori kruchennya i krivini vidpovidno Rozglyanemo deyaku geodezichnu liniyu g t displaystyle gamma t nbsp i poznachimo g t displaystyle dot gamma t nbsp yiyi dotichne vektorne pole Vektorne pole X viznachene vzdovzh geodezichnoyi liniyi g t displaystyle gamma t nbsp nazivayetsya polem Yakobi yaksho vono zadovolnyaye nastupnomu rivnyannyu rivnyannyu Yakobi g t 2 X g t T X g t R X g t g t 0 displaystyle nabla dot gamma t 2 X nabla dot gamma t T X dot gamma t R X dot gamma t dot gamma t 0 nbsp U rivnosti vishe vikoristano poznachennya g t 2 X g t g t X displaystyle nabla dot gamma t 2 X nabla dot gamma t nabla dot gamma t X nbsp V osoblivo vazhlivomu chastkovomu vipadku rimanovogo mnogovidu iz zv yaznistyu Levi Chiviti tenzor kruchennya ye rivnim nulyu i rivnyannya Yakobi sproshuyetsya g t 2 X R X g t g t 0 displaystyle nabla dot gamma t 2 X R X dot gamma t dot gamma t 0 nbsp Odnoparametrichna sim ya geodezichnih linij red Rozglyanemo teper vidobrazhennya klasu C displaystyle C infty nbsp z mnozhini 0 1 e e displaystyle 0 1 times varepsilon varepsilon nbsp v mnogovid M t t g t t displaystyle tau t to gamma tau t nbsp z takimi vlastivostyami Dlya dovilnogo t e e displaystyle tau in varepsilon varepsilon nbsp kriva g t t displaystyle gamma tau t nbsp ye geodezichnoyu liniyeyu g 0 t g t displaystyle gamma 0 t gamma t nbsp take vidobrazhennya viznachaye odnoparametrichnu sim yu geodezichnih linij Dlya fiksovanogo t g t t displaystyle gamma tau t nbsp viznachaye krivu dlya t e e displaystyle tau in varepsilon varepsilon nbsp Dlya ciyeyi krivoyi viznachenij dotichnij vektor v tochci t 0 displaystyle tau 0 nbsp Povtoryuyuchi cyu proceduru dlya riznih znachen t otrimuyemo vektorne pole yake i nazivayetsya polem Yakobi X t g t t t t 0 displaystyle X t left frac partial gamma tau t partial tau right tau 0 nbsp Mozhna dovesti sho obidva viznachennya polya Yakobi ye naspravdi ekvivalentnimi Priklad red Na sferi geodezichnimi liniyami cherez Pivnichnij polyus ye veliki kola Rozglyanemo dvi taki geodezichni g 0 displaystyle gamma 0 nbsp i g t displaystyle gamma tau nbsp z prirodnoyu parametrizaciyeyu t 0 p displaystyle t in 0 pi nbsp rozdileni kutom t displaystyle tau nbsp Geodezichne vidstan d g 0 t g t t displaystyle d gamma 0 t gamma tau t nbsp rivna d g 0 t g t t arcsin sin t sin t 1 cos 2 t tg 2 t 2 displaystyle d gamma 0 t gamma tau t operatorname arcsin bigg sin t sin tau sqrt 1 cos 2 t operatorname tg 2 tau 2 bigg nbsp Shob otrimati cej viraz potribno znati geodezichni Najcikavishij rezultat takij d g 0 p g t p 0 displaystyle d gamma 0 pi gamma tau pi 0 nbsp dlya bud yakogo t displaystyle tau nbsp Zamist cogo mi mozhemo rozglyanuti pohidni po t displaystyle tau nbsp pri t 0 displaystyle tau 0 nbsp t t 0 d g 0 t g t t J t sin t displaystyle frac partial partial tau bigg tau 0 d gamma 0 t gamma tau t J t sin t nbsp Mi znovu otrimuyemo peretin geodezichnih pri t p displaystyle t pi nbsp Zauvazhimo odnak sho dlya obchislennya ciyeyi pohidnoyi ne potribno znati d g 0 t g t t displaystyle d gamma 0 t gamma tau t nbsp vse sho potribno zrobiti ce rozv yazati rivnyannya y y 0 displaystyle y y 0 nbsp dlya deyakih zadanih pochatkovih umov Polya Yakobi dayut prirodne uzagalnennya cogo yavisha dlya dovilnih rimanovih mnogovidiv Yavnij viglyad rivnyannya Yakobi red Rozglyanemo dlya prostoti vipadok rimanovogo mnogovidu Nehaj e 1 0 g 0 g 0 displaystyle e 1 0 dot gamma 0 dot gamma 0 nbsp dodamo do cogo vektora inshi shob vijshov ortonormovanij bazis e i 0 displaystyle big e i 0 big nbsp v T g 0 M displaystyle T gamma 0 M nbsp Peremistimo jogo paralelnim perenesennyam shob otrimati bazis e i t displaystyle e i t nbsp v bud yakij tochci g displaystyle gamma nbsp Vnaslidok cogo otrimuyemo ortonormalnij bazis z e 1 t g t g t displaystyle e 1 t dot gamma t dot gamma t nbsp Pole Yakobi mozhna zapisati v koordinatah pov yazanih z cim bazisom X t k 1 n y k t e k t displaystyle X t sum k 1 n y k t e k t nbsp zvidki g t X k 1 n d y k d t e k t g t 2 X k 1 n d 2 y k d t 2 e k t displaystyle nabla dot gamma t X sum k 1 n frac dy k dt e k t quad nabla dot gamma t 2 X sum k 1 n frac d 2 y k dt 2 e k t nbsp i rivnyannya Yakobi mozhna perepisati u viglyadi sistemi d 2 y k d t 2 g 2 j y j t R e j t e 1 t e 1 t e k t 0 displaystyle frac d 2 y k dt 2 dot gamma 2 sum j y j t langle R e j t e 1 t e 1 t e k t rangle 0 nbsp dlya kozhnogo k displaystyle k nbsp Takim chinom mi otrimayemo sistemu linijnih zvichajnih diferencialnih rivnyan drugogo poryadku Taka zh sistema otrimuyetsya i u vipadku zvichajnih mnogovidiv de tenzor kruchennya ne ye rivnim nulyu Vlastivosti prostoru poliv Yakobi red Zvazhayuchi na podanij vishe vid rivnyannya Yakobi i jogo vlastivosti otrimuyemo sho oskilki rivnyannya maye gladki koeficiyenti rozv yazki isnuyut dlya vsih t displaystyle t nbsp i ye yedinimi yaksho zadani y k t 0 displaystyle y k t 0 nbsp i d y k d t t 0 displaystyle frac dy k dt t 0 nbsp dlya vsih k displaystyle k nbsp i dovilnoyi tochki t 0 displaystyle t 0 nbsp Zokrema zvidsi viplivaye sho rozmirnist prostoru poliv Yakobi rivna 2n de n rozmirnist mnogovida Tangencialni i normalni polya Yakobi dlya rimanovih mnogovidiv red Vsyudi tut rozglyadyetsya rimaniv mnogovid iz zv yaznistyu Levi Chiviti Vektorni polya g t displaystyle dot gamma t nbsp i t g t displaystyle t dot gamma t nbsp viznacheni uzdovzh g displaystyle gamma nbsp ye polyami Yakobi Spravdi iz kososimetrichnosti tenzora krivini viplivaye sho R g t g t 0 displaystyle R dot gamma t dot gamma t 0 nbsp i takozh R t g t g t t R g t g t 0 displaystyle R t dot gamma t dot gamma t tR dot gamma t dot gamma t 0 nbsp Za oznachennyam geodezichnih linij g t g t 0 displaystyle nabla dot gamma t dot gamma t 0 nbsp i tomu takozh g t 2 g t 0 displaystyle nabla dot gamma t 2 dot gamma t 0 nbsp i tomu g t displaystyle dot gamma t nbsp zadovolnyaye rivnyannyu Yakobi Dlya polya t g t displaystyle t dot gamma t nbsp natomist g t t g t g t t g t g t g t displaystyle nabla dot gamma t dot t gamma t dot gamma t t nabla dot gamma t dot gamma t dot gamma t nbsp i tomu takozh g t 2 g t g t g t 0 displaystyle nabla dot gamma t 2 dot gamma t nabla dot gamma t dot gamma t 0 nbsp tozh ce pole tezh zadovolnyaye rivnyannyu Yakobi Linijni kombinaciyi nad polem dijsnih chisel poliv g t displaystyle dot gamma t nbsp i t g t displaystyle t dot gamma t nbsp tezh ye polyami Yakobi Polya takogo tipu nazivayutsya tangencialnimi polyami Yakobi Vektorne pole f g t displaystyle f dot gamma t nbsp de f f t displaystyle f f t nbsp gladka funkciya ye polem Yakobi todi i tilki todi koli funkciya f displaystyle f nbsp linijna Vidpovidno u comu vipadku vektorne pole ye linijnoyu kombinaciyeyu nad polem dijsnih chisel vektornih poliv g t displaystyle dot gamma t nbsp i t g t displaystyle t dot gamma t nbsp tobto tangencialnim polem Yakobi Oskilki R f g t g t f R g t g t 0 displaystyle R f dot gamma t dot gamma t fR dot gamma t dot gamma t 0 nbsp to f g t displaystyle f dot gamma t nbsp ye polem Yakobi todi i tilki todi koli g t 2 f g t 0 displaystyle nabla dot gamma t 2 f dot gamma t 0 nbsp Ale g t 2 f g t g t f t g t f t g t displaystyle nabla dot gamma t 2 f dot gamma t nabla dot gamma t f t dot gamma t f t dot gamma t nbsp Cej viraz ye rivnim nulyu dlya vsih t todi i lishe todi koli f t 0 displaystyle f t 0 nbsp tobto f t displaystyle f t nbsp ye linijnoyu funkciyeyu Bud yake pole Yakobi X displaystyle X nbsp mozhna v yedinij sposib zapisati u viglyadi sumi a g t b t g t I displaystyle a dot gamma t bt dot gamma t I nbsp de a b displaystyle a b nbsp dijsni chisla a vektor I t displaystyle I t nbsp ye ortogonalnim do g t displaystyle dot gamma t nbsp dlya vsih t displaystyle t nbsp Iz vlastivostej rimanovoyi metriki i oznachennya polya Yakobi d 2 d t 2 g X g t g g t 2 X g t g R X g t g t g t displaystyle d 2 over dt 2 g X dot gamma t g nabla dot gamma t 2 X dot gamma t g R X dot gamma t dot gamma t dot gamma t nbsp Zgidno vlastivostej tenzora krivini u rimanovij geometriyi dlya bud yakih vektoriv A B X Y displaystyle A B X Y nbsp vikonuyetsya rivnist g R X Y A B g R X Y B A displaystyle g R X Y A B g R X Y B A nbsp i zvidsi g R X g t g t g t 0 displaystyle g R X dot gamma t dot gamma t dot gamma t 0 nbsp Tomu takozh d 2 d t 2 g X g t 0 displaystyle d 2 over dt 2 g X dot gamma t 0 nbsp i tomu g X g t a b t displaystyle g X dot gamma t bar a bar b t nbsp dlya deyakih dijsnih chisel a b displaystyle bar a bar b nbsp Tomu yaksho viznachiti a a g b b g displaystyle a bar a dot gamma b bar b dot gamma nbsp to vektorne pole I X a g t b t g t displaystyle I X a dot gamma t bt dot gamma t nbsp bude ortogonalnim do g t displaystyle dot gamma t nbsp v usih tochkah geodezichnoyi liniyi Okrim togo a b displaystyle a b nbsp i pole Yakobi I displaystyle I nbsp viznacheni odnoznachno Polya Yakobi sho ye ortogonalnimi do g t displaystyle dot gamma t nbsp nazivayutsya normalnimi polyami Yakobi Yaksho pole Yakobi X uzdovzh geodezichnoyi liniyi g t displaystyle gamma t nbsp ye ortogonalnim do g t displaystyle gamma t nbsp v dvoh tochkah to vono ye ortogonalnim v usih tochkah geodezichnoyi liniyi Ce viplivaye z togo sho zgidno dovedennya poperednoyi vlastivosti g X t g t displaystyle g X t dot gamma t nbsp ye linijnoyu funkciyeyu vid t i tomu yaksho vona ye rivnoyu 0 u dvoh riznih tochkah to vona ye rivnoyu 0 vsyudi Pole Yakobi X displaystyle X nbsp ye normalnim todi i tilki todi koli dlya dovilnoyi tochki na geodezichnij liniyi sho vidpovidaye deyakomu parametru t vikonuyutsya rivnosti g X t g t 0 displaystyle g X t dot gamma t 0 nbsp i g g t X t g t 0 displaystyle g nabla dot gamma t X t dot gamma t 0 nbsp Spravdi dovilne pole Yakobi odnoznachno zapisuyetsya yak X a g t b t g t I t displaystyle X a dot gamma t bt dot gamma t I t nbsp de vektorne pole I t displaystyle I t nbsp ye ortogonalnim do g t displaystyle dot gamma t nbsp Tomu X displaystyle X nbsp ye normalnim todi i tilki todi koli a 0 displaystyle a 0 nbsp i b 0 displaystyle b 0 nbsp Ale zapisuyuchi X displaystyle X nbsp u takij formi mayemo g a g t b t g t I t g t a b t g t displaystyle g a dot gamma t bt dot gamma t I t dot gamma t a bt dot gamma t nbsp dd ig g t a g t b t g t I t g t b g t displaystyle g nabla dot gamma t a dot gamma t bt dot gamma t I t dot gamma t b dot gamma t nbsp dd tomu a 0 displaystyle a 0 nbsp i b 0 displaystyle b 0 nbsp todi i tilki todi koli g X t g t 0 displaystyle g X t dot gamma t 0 nbsp i g g t X t g t 0 displaystyle g nabla dot gamma t X t dot gamma t 0 nbsp U drugij rivnosti dlya dovedennya vikoristano te sho g I t g t displaystyle g I t dot gamma t nbsp i tomu 0 d d t g I t g t g g t I t g t g I t g t g t g g t I t g t displaystyle 0 d over dt g I t dot gamma t g nabla dot gamma t I t dot gamma t g I t nabla dot gamma t dot gamma t g nabla dot gamma t I t dot gamma t nbsp zgidno oznachen geodezichnoyi liniyi i zv yaznosti Levi Chiviti Tomu g g t I t g t 0 displaystyle g nabla dot gamma t I t dot gamma t 0 nbsp Pidsumovuyuchi tangencialni polya Yakobi utvoryuyut dvovimirnij dijsnij pidprostir prostoru poliv Yakobi a normalni polya Yakobi utvoryuyut pidprostir rozmirnosti 2n 2 Prostir poliv Yakobi ye pryamoyu sumoyu pidprostoriv tangencialnih i normalnih poliv Yakobi Nehaj p q M displaystyle p q in M nbsp tochki sho nalezhat odnij geodezichnij liniyi g t displaystyle gamma t nbsp i ne ye spryazhenimi shodo ciyeyi geodezichnoyi Todi dlya dovilnih Y T p M Z T q N displaystyle Y in T p M Z in T q N nbsp isnuye yedine pole Yakobi viznachene na g t displaystyle gamma t nbsp sho prijmaye znachennya Y v tochci p i Z v tochci q Yaksho X Y polya Yakobi vzdovzh geodezichnoyi liniyi g t displaystyle gamma t nbsp todi g X g t Y g g t X Y c o n s t displaystyle g X nabla dot gamma t Y g nabla dot gamma t X Y const nbsp de g rimanova metrika Zokrema yaksho obidva vektorni polya ye nulovimi v deyakij tochci geodezichnoyi liniyi to g X g t Y g g t X Y 0 displaystyle g X nabla dot gamma t Y g nabla dot gamma t X Y 0 nbsp Ci vlastivosti viplivayut z togo sho d d t g X g t Y g g t X g t Y g X g t 2 Y g g t X g t Y g X R Y g t g t displaystyle d over dt g X nabla dot gamma t Y g nabla dot gamma t X nabla dot gamma t Y g X nabla dot gamma t 2 Y g nabla dot gamma t X nabla dot gamma t Y g X R Y dot gamma t dot gamma t nbsp dd id d t g g t X Y g g t X g t Y g g t 2 X Y g g t X g t Y g R X g t g t Y displaystyle d over dt g nabla dot gamma t X Y g nabla dot gamma t X nabla dot gamma t Y g nabla dot gamma t 2 X Y g nabla dot gamma t X nabla dot gamma t Y g R X dot gamma t dot gamma t Y nbsp dd Oskilki g X R Y g t g t g Y R X g t g t displaystyle g X R Y dot gamma t dot gamma t g Y R X dot gamma t dot gamma t nbsp to d d t g X g t Y g g t X Y 0 displaystyle d over dt g X nabla dot gamma t Y g nabla dot gamma t X Y 0 nbsp sho dovodit tverdzhennya Yaksho X ye polem Yakobi vzdovzh geodezichnoyi liniyi g t displaystyle gamma t nbsp a Y kuskovo diferencijovne vektorne pole na cij zhe liniyi to dlya bud yakih chisel a lt b displaystyle a lt b nbsp takih sho geodezichna liniya ye zadanoyu na promizhku a b displaystyle a b nbsp vikonuyetsya rivnist a b g g t X g t Y g R X g t g t Y d t g g t X Y t b g g t X Y t a displaystyle int a b left g nabla dot gamma t X nabla dot gamma t Y g R X dot gamma t dot gamma t Y right dt g nabla dot gamma t X Y t b g nabla dot gamma t X Y t a nbsp dd Dana rivnist viplivaye iz integruvannya na a b displaystyle a b nbsp oboh storin rivnosti yaka spravedliva dlya vsih tochok krim skinchennoyi kilkosti tochok de g t Y displaystyle nabla dot gamma t Y nbsp maye rozrivi pershogo rodu i tomu pri integruvanni nimi mozhna znehtuvati d d t g g t X Y g g t X g t Y g g t 2 X Y g g t X g t Y g R X g t g t Y displaystyle d over dt g nabla dot gamma t X Y g nabla dot gamma t X nabla dot gamma t Y g nabla dot gamma t 2 X Y g nabla dot gamma t X nabla dot gamma t Y g R X dot gamma t dot gamma t Y nbsp dd Nehaj dlya geodezichnoyi liniyi g t displaystyle gamma t nbsp dlya yakoyi interval a b displaystyle a b nbsp nalezhit oblasti viznachennya i vektornogo polya Y sho ye kuskovo diferencijovnim vzdovzh geodezichnoyi na comu promizhku poznacheno I a b Y a b g g t Y g t Y g R Y g t g t Y d t displaystyle I a b Y int a b left g nabla dot gamma t Y nabla dot gamma t Y g R Y dot gamma t dot gamma t Y right dt nbsp Nehaj dodatkovo g a displaystyle gamma a nbsp ne maye spryazhenih tochok na geodezichnij na intervali a b displaystyle a b nbsp vektorne pole X ye normalnim polem Yakobi vzdovzh geodezichnoyi dlya yakogo X g a 0 displaystyle X gamma a 0 nbsp a Y ye kuskovo diferencijovnim vektornim polem vzdovzh geodezichnoyi na intervali a b displaystyle a b nbsp u kozhnij tochci cogo intervalu Y g t displaystyle Y gamma t nbsp ye ortogonalnim do g t displaystyle dot gamma t nbsp i Y g a X g a 0 Y g b X g b displaystyle Y gamma a X gamma a 0 Y gamma b X gamma b nbsp Todi I a b X I a b Y displaystyle I a b X leqslant I a b Y nbsp i rivnist vikonuyetsya lishe u vipadku X Y displaystyle X Y nbsp Prikladi red Nehaj p M displaystyle p in M nbsp i A B T p M displaystyle A B in T p M nbsp Viznachimo pidmnozhinu Q R 2 displaystyle Q subset mathbb R 2 nbsp takim chinom t t Q displaystyle t tau in Q nbsp todi i tilki todi koli eksponencijne vidobrazhennya exp p t B t A displaystyle exp p t B tau A nbsp ye viznachenim Todi vidobrazhennya F Q M displaystyle F Q to M nbsp viznachene yak F t t exp p t B t A displaystyle F t tau exp p t B tau A nbsp ye odnoparametrichnoyu sim yeyu geodezichnih linij a diferencial d exp p t A displaystyle operatorname d exp p tA nbsp zadaye pole Yakobi vzdovzh kozhnoyi geodezichnoyi liniyi Rozglyanemo geodezichnu liniyu g t displaystyle gamma t nbsp z paralelnim ortonormovanim reperom e i t displaystyle e i t nbsp e 1 t g t g displaystyle e 1 t dot gamma t dot gamma nbsp pobudovanim yak opisano vishe V evklidovomu prostori a takozh dlya prostoriv postijnoyi nulovoyi sekcijnoyi krivini polya Yakobi ye linijnimi po t displaystyle t nbsp Dlya rimanovih mnogovidiv postijnoyi vid yemnoyi sekcijnoyi krivini k 2 displaystyle k 2 nbsp bud yake pole Yakobi ye linijnoyu kombinaciyeyu g t displaystyle dot gamma t nbsp t g t displaystyle t dot gamma t nbsp i exp k t e i t displaystyle exp pm kt e i t nbsp de i gt 1 displaystyle i gt 1 nbsp Dlya rimanovih mnogovidiv postijnoyi dodatnoyi sekcijnoyi krivini k 2 displaystyle k 2 nbsp bud yake pole Yakobi ye linijnoyu kombinaciyeyu g t displaystyle dot gamma t nbsp t g t displaystyle t dot gamma t nbsp sin k t e i t displaystyle sin kt e i t nbsp i cos k t e i t displaystyle cos kt e i t nbsp de i gt 1 displaystyle i gt 1 nbsp Zvuzhennya polya Killinga na geodezichnu liniyu ye polem Yakobi v bud yakomu rimanovomu mnogovidi Polya Yakobi vidpovidayut geodezichnim liniyam na dotichnomu rozsharuvanni po vidnoshennyu do metriki v T M displaystyle TM nbsp indukovanoyi metrikoyu na M displaystyle M nbsp Div Takozh red Spryazheni tochki Teorema Rauha pro porivnyannya Rivnyannya RikkatiLiteratura red Hicks Noel 1965 Notes on Differential Geometry Van Nostrand Princeton N J ISBN 0442034105 angl Kobayashi S Nomizu K 1963 Foundations of differential geometry John Wiley amp Sons ISBN 0 470 49647 9 angl Otrimano z https uk wikipedia org w index php title Pole Yakobi amp oldid 36010727