www.wikidata.uk-ua.nina.az
Lema Shura tverdzhennya sho ye odnim z osnovnih pri pobudovi teoriyi predstavlen grup Zmist 1 Formulyuvannya lemi 2 Dovedennya 3 Div takozh 4 LiteraturaFormulyuvannya lemi RedaguvatiPredstavlennya grupi G displaystyle G nbsp avtomorfizmami deyakogo vektornogo prostoru G L V displaystyle GL V nbsp s G G L V displaystyle sigma G to GL V nbsp nazivayetsya nezvidnim yaksho ne isnuye niyakogo invariantnogo shodo s displaystyle sigma nbsp pidprostoru za vinyatkom nulovogo pidprostoru i samogo V displaystyle V nbsp Lema Shura Nehaj f displaystyle f nbsp linijne vidobrazhennya vektornih prostoriv f V 1 V 2 displaystyle f V 1 to V 2 nbsp nad deyakim polem K displaystyle K nbsp take sho isnuyut dva nezvidni predstavlennya s G G L V 1 displaystyle sigma G to GL V 1 nbsp i t G G L V 2 displaystyle tau G to GL V 2 nbsp taki sho t g f f s g displaystyle tau g f f sigma g nbsp dlya vsih g displaystyle g nbsp todi Vidobrazhennya f displaystyle f nbsp ye abo izomorfizmom abo nulovim vidobrazhennyam Yaksho V 1 V 2 displaystyle V 1 V 2 nbsp ye skinchennovimirnimi nad algebrayichno zamknutim polem K displaystyle K nbsp i s t displaystyle sigma tau nbsp to f displaystyle f nbsp ye mnozhennyam na pevnij element polya f x l x displaystyle f x to lambda x nbsp Takozh lemoyu Shura nazivayut tverdzhennya z teoriyi moduliv pov yazane z poperednim Nehaj E displaystyle E nbsp i F displaystyle F nbsp moduli nad kilcem R displaystyle R nbsp yaki ye prostimi tobto ne mayut pidmoduliv vidminnih vid nulovogo i samogo sebe Todi bud yakij gomomorfizm f E F displaystyle f E rightarrow F nbsp ye abo nulovim abo izomorfizmom na F displaystyle F nbsp Zokrema yaksho E F displaystyle E F nbsp to dovilnij nenulovij endomorfizm modulya E displaystyle E nbsp ye avtomorfizmom i tomu maye obernenij avtomorfizm Inshimi slovami kilce End R E displaystyle operatorname End R E nbsp kilce R displaystyle R nbsp linijnih endomorfizmiv modulya E displaystyle E nbsp ye tilom Dovedennya RedaguvatiDovedemo spershu tverdzhennya dlya moduliv a potim na jogo osnovi i lemu Shura dlya predstavlen grup Spravdi tak yak K e r f displaystyle mathrm Ker f nbsp i I m f displaystyle mathrm Im f nbsp ye pidmodulyami to yaksho f displaystyle f nbsp ye nenulovim gomomorfizmom mayemo K e r f 0 displaystyle mathrm Ker f 0 nbsp a I m f F displaystyle mathrm Im f F nbsp tobto f displaystyle f nbsp izomorfizm na ves modul F displaystyle F nbsp Teper viznachimo grupove kilce K G displaystyle K G nbsp Elementami cogo kilcya budut linijni kombinaciyi k 1 g 1 k 2 g 2 k n g n displaystyle k 1 g 1 k 2 g 2 k n g n nbsp Mnozhennya viznachayetsya k 1 g 1 k 2 g 2 k 1 k 2 g 1 g 2 displaystyle k 1 g 1 k 2 g 2 k 1 k 2 g 1 g 2 nbsp i dali po linijnosti Yasno sho K G displaystyle K G nbsp kilce Na prostori V 1 displaystyle V 1 nbsp viznachimo mnozhennya elementa z K G displaystyle K G nbsp na element x V 1 displaystyle x in V 1 nbsp k 1 g 1 k 2 g 2 k n g n x k 1 s g 1 x k 2 s g 2 x k n s g n x displaystyle k 1 g 1 k 2 g 2 k n g n x k 1 sigma g 1 x k 2 sigma g 2 x k n sigma g n x nbsp Tim samim mi peretvoryuyemo V 1 displaystyle V 1 nbsp v modul nad kilcem K G displaystyle K G nbsp Perevirka aksiom modulya trivialna tomu sho s displaystyle sigma nbsp ye predstavlennyam V 2 displaystyle V 2 nbsp analogichno zaminyuyuchi s displaystyle sigma nbsp na t displaystyle tau nbsp bude modulem nad K G displaystyle K G nbsp a rivnist t g f f s g displaystyle tau g f f sigma g nbsp te sho vidobrazhennya f displaystyle f nbsp ye gomomorfizmom moduliv Tak yak s displaystyle sigma nbsp i t displaystyle tau nbsp ye nezvidnimi a ce oznachaye prostotu V 1 displaystyle V 1 nbsp i V 2 displaystyle V 2 nbsp yak moduliv nad K G displaystyle K G nbsp to persha chastina lemi dovedena Dlya dovedennya drugoyi chastini vikoristovuyemo vidome tverdzhennya linijnoyi algebri pro isnuvannya vlasnogo vektora x 0 displaystyle x neq 0 nbsp dlya skinchennovimirnogo prostoru nad algebrayichno zamknutim polem sho vidpovidaye vlasnomu znachennyu l displaystyle lambda nbsp f x l x displaystyle f x lambda x nbsp Dlya bud yakogo elementa g G displaystyle g in G nbsp mayemo s g f l id f l id s g displaystyle sigma g f lambda operatorname id f lambda operatorname id sigma g nbsp prichomu dlya vlasnogo vektora f l id x 0 displaystyle f lambda operatorname id x 0 nbsp otzhe f l id displaystyle f lambda operatorname id nbsp po pershij chastini lemi ye nulovim gomomorfizmom otzhe f displaystyle f nbsp ye mnozhennyam na deyakij l displaystyle lambda nbsp Div takozh RedaguvatiPredstavlennya grupi Teorema Dzhekobsona pro shilnistLiteratura RedaguvatiPilipiv V M Teoriya predstavlen grup ta yiyi zastosuvannya navchalnij posibnik Ivano Frankivsk VDV CIT Prikarpatskogo nacionalnogo universitetu imeni Vasilya Stefanika 2008 156s Fulton William Harris Joe 1991 Representation theory A first course Graduate Texts in Mathematics Readings in Mathematics 129 New York Springer Verlag MR1153249 ISBN 978 0 387 97527 6 ISBN 978 0 387 97495 8 James Gordon Liebeck Martin 2001 Representations and Characters of Groups 2nd ed Cambridge University Press ISBN 0 521 00392 X Serre Jean Pierre 1977 Linear Representations of Finite Groups Springer Verlag ISBN 0 387 90190 6 Otrimano z https uk wikipedia org w index php title Lema Shura amp oldid 39163378