www.wikidata.uk-ua.nina.az
Kogerentnimi stanami v kvantovij mehanici nazivayut pevni stani kvantovogo garmonichnogo oscilyatora dinamika yakih najblizhcha do kolivan klasichnogo oscilyatora Pershim iz nimi zustrivsya Ervin Shredinger u 1926 roci shukayuchi rozv yazki rivnyannya Shredingera sho zadovolnyali b principu vidpovidnosti 1 Model kvantovogo oscilyatora a otzhe kogerentni stani figuruyut v opisi shirokogo klasu fizichnih sistem 2 Napriklad kogerentnij stan opisuye kolivannya chastinki v kvadratichnomu potenciali Ci stani yaki pershim zaprovadiv Dzhon Klauder 3 ye vlasnimi vektorami operatora ponizhennya j utvoryuyut nadpovnij bazis U kvantovu teoriyu svitla kvantovu elektrodinamiku ta teoriyu inshih bozonnih kvantovih poliv kogerentni stani uvijshli zavdyaki roboti 1963 roku Roya Glaubera Kogerentnij stan opisuye stan sistemi v yakij hvilovij paket osnovnogo stanu zmisheno z pochatku sistemi koordinat Jogo mozhna asociyuvati z klasichnim rozv yazkom kolivan chastinki z amplitudoyu ekvivalentnoyu zmishennyu Koncepciyu kogerentnih staniv bulo uzagalneno sho perevelo yiyi na novij riven abstrakciyi Vona stala vazhlivoyu temoyu doslidzhen matematichnoyi fiziki ta prikladnoyi matematiki Yiyi zastosovuyut dlya rozv yazannya shirokogo kola zadach vid kvantuvannya do obrobki signaliv ta zobrazhen Tomu kogerentni stani vlasne garmonichnogo oscilyatora inodi nazivayut kanonichnimi standartnimi gausovimi abo oscilyatornimi Zmist 1 U kvantovij optici 2 Kvantovomehanichne oznachennya 3 Hvilova funkciya kogerentnogo stanu 4 Matematichni vlastivosti kanonichnih kogerentnih staniv 5 Teplovi kogerentni stani 6 Kogerentni stani v kondensati Boze Ejnshtejna 7 Uzagalnennya 8 VinoskiU kvantovij optici Redaguvati nbsp Ris 1 Elektrichne pole vimiryane gomodinom yak funkciya fazi dlya troh kogerentnih staniv viprominenih Nd YAG lazerom Velichina kvantovogo shumu v elektrichnomu poli zovsim ne zalezhit vid fazi Pri zrostanni napruzhenosti polya inshimi slovami amplitudi a kogerentnogo stanu kvantovij shum abo neviznachenist pri 1 2 zalishayetsya stalim a tomu maye dedali menshe znachennya V granichnomu vipadku velikih poliv stan staye dobrim nablizhennyam stabilnoyi klasichnoyi hvili bez shumu Serednye chislo fotoniv u troh stanah znizu vgoru lt n gt 4 2 25 2 924 5 4 nbsp Ris 2 Hvilovij paket sho vidpovidaye drugomu kogerentnomu stanu ris 1 Dlya kozhnoyi fazi svitlovogo polya rozpodil normalnij zi staloyu shirinoyu nbsp Ris 3 Funkciya Vignera kogerentnogo stanu ris 2 Rozpodil cetrovano na amplitudi stanu a Vin ye simetrichnim v okoli ciyeyi tochki Nerivnosti zumovleni eksperimentalnoyu pohibkoyu U kvantovij optici kogerentnim stanom nazivayut stan kvantovanogo elektromagnitnogo polya 2 5 6 yakij najkrashe opisuye kogerentnist ta maye povedinku shozhu na klasichnu Ervin Shredinger 1926 roku 1 namagayuchis vidshukati rozv yazok rivnyannya Shredingera sho zadovolnyav bi princip vidpovidnosti viviv jogo yak stan iz najmenshoyu neviznachenistyu gausovogo hvilovogo paketu Ce stan najmenshoyi neviznachenosti yedinij parametr yakogo vibirayetsya tak sho zrobiti dispersiyu v naturalnih bezrozmirnih odinicyah standartne vidhilennya polozhennya ta impulsu odnakovimi Pri visokij energiyi obidvi dispersiyi odnakovo mali Dali na vidminu vid vlasnih staniv energiyi sistemi evolyuciya kogerentnogo stanu zoseredzhena vzdovzh klasichnoyi trayektoriyi Linijnij kvantovij oscilyator a otzhe kogerentni stani z yavlyayutsya u shirokomu koli fizichnih sistem v kvantovij teoriyi svitla ta teoriyi inshih bozonnih kvantovih poliv Todi yak gausiv hvilovij paket iz minimalnoyu neviznachenistyu buv dovoli vidomim na nogo ne zvertali osoblivoyi uvagi do togo yak Roj Glauber 1963 roku ne dav povnogo kvantovoteoretichnogo opisu kogerentnosti elektromagnitnogo polya 7 U comu vidnoshenni ne slid zabuvati paralelnogo vnesku Sudarshana 8 u statti Glaubera ye primitka de napisano Vikoristannya cih staniv yak generatoriv dlya staniv n displaystyle n nbsp kvantiv nalezhit Dzhulianu Shvingeru 9 Glauberu potribno bulo opisati efekt Genberi Brauna ta Tvissa yakij dozvolyaye utvorennya interferencijnih kartin iz duzhe shirokoyu bazoyu sotni ta tisyachi kilometriv yaki mozhna vikoristati dlya viznachennya diametriv zir Odnochasno vidkrivsya shlyah do glibshogo rozuminnya kogerentnosti Klasichna optika opisuye svitlo yak elektromagnitni hvili sho viprominyuyutsya dzherelom Kogerentni lazeri chasto opisuyut yak svitlo viprominene z bagatoh dzherel sho kolivayutsya v fazi Vlasne v kvantovij teoriyi govoriti sho foton perebuvaye v fazi z inshim ne zovsim pravilno Viprominyuvannya lazera vidbuvayetsya v rezonatori vlasna chastota yakogo dorivnyuye chastoti elektronnogo perehodu v atomi yakij postachaye polyu energiyu Energiya rezonansnoyi modi narostaye imovirnist vimushenogo viprominyuvannya v cij modi zrostaye Ce stvoryuye dodatnij obernenij zv yazok zavdyaki yakomu amplituda rezonantnoyi modi eksponencialno roste do mezhi viznachenoyi yakimos nelinijnim efektom Z inshogo boku viprominyuvannya svitla lampochkoyu vidbuvayetsya v neperervnij spektr mod i nemaye zhodnogo faktora sho mig bi vidiliti odnu modu sered inshih Tomu viprominyuvannya duzhe vipadkove v prostori j chasi A ot u lazeri viprominyuvannya vidbuvayetsya v rezonantnu modu yaka maye visokij stupin kogerentnosti Vlasni energetichni stani garmonichnogo oscilyatora napriklad masi za pruzhinci kolivan kristalichnoyi gratki v tverdomu tili kolivan elektromagnitnogo polya ye stanami z fiksovanimi chislami Stan Foka napriklad odinichnij foton ye najbilsh korpuskulyarnim chislo chastinok vidome tochno a faza zovsim ne viznachena U kogerentnomu stani kvantova neviznachenist rozpodilena porivnu mizh kanonichno spryazhenimi koordinatami polozhennyam ta impulsom i vidnosni neviznachenosti fazi ta amplitudi priblizno odnakovi j mali pri velikih znachennyah amplitudi Kvantovomehanichne oznachennya RedaguvatiMatematichno kogerentnij stan a displaystyle alpha rangle nbsp viznachayetsya yak yedinij vlasnij stan operatora znishennya a asocijovanij z vlasnim znachennyam a Formalno a a a a displaystyle hat a alpha rangle alpha alpha rangle nbsp Oskilki a ne ye ermitovim operatorom a zagalom kompleksne chislo Zapisuyuchi a a e i 8 displaystyle alpha alpha e i theta nbsp a ta 8 nazivayut amplitudoyu ta fazoyu stanu a displaystyle alpha rangle nbsp Fizichno cya formula oznachaye sho kogerentnij stan ne zminyuyetsya yaksho viluchiti odne zbudzhennya polya abo inshimi slovami chastinki Vlasne znachennya operatora znishennya virazhene cherez vlasni znachennya operatora energiyi maye puassoniv rozpodil Rozpodil Puassona ye neobhidnoyu ta dostatnoyu umovoyu togo shob vsi vimiryuvannya buli statistichno nezalezhnimi Dlya porivnyannya v odnochastinkovih stanah stan Foka 1 displaystyle 1 rangle nbsp yaksho chastinku detektovano to imovirnist detektuvati inshu dorivnyuye nulyu Dovedennya vikoristovuye bezrozmirni operatori X ta P yaki zazvichaj nazivayut u kvantovij optici polovimi kvadraturami Ci operatori zv yazani z operatorami polozhennya ta impulsu materialnoyi tochki z masoyu m na pruzhinci zhorstkosti k P 1 2 ℏ m w p X m w 2 ℏ x displaystyle P sqrt frac 1 2 hbar m omega hat p text quad X sqrt frac m omega 2 hbar hat x text nbsp de w k m displaystyle omega equiv sqrt k m nbsp nbsp Ris 4 Imovirnist detektuvannya n fotoniv rozpodil chisla fotoniv dlya kogerentnogo stanu z ris 3 Yak ce neobhidno dlya rozpodilu Puassona serednye znachennya fotoniv dorivnyuye dispersiyi rozpodilu Sucilni liniyi teoriya krapki eksperimentalni znachennya Dlya optichnogo polya E R ℏ w 2 ϵ 0 V 1 2 cos 8 X displaystyle E rm R left frac hbar omega 2 epsilon 0 V right 1 2 cos theta X nbsp ta E I ℏ w 2 ϵ 0 V 1 2 sin 8 X displaystyle E rm I left frac hbar omega 2 epsilon 0 V right 1 2 sin theta X nbsp ye dijsnoyu ta uyavnoyu chastinami modi elektrichnogo polya Cherez ci bezrozmirni operatori gamiltonian sistemi zapisuyetsya H ℏ w P 2 X 2 displaystyle H hbar omega left P 2 X 2 right nbsp de X P X P P X i 2 I displaystyle left X P right equiv XP PX frac i 2 I nbsp Koli Ervin Shredinger zaprovadiv gausovi hvilovi paketi z minimalnoyu neviznachenistyu vin shukav stani sho buli b najbilshe shozhi na klasichni Kvantovij stan garmonichnogo oscilyatora sho minimizuye spivvidnoshennya neviznachenosti v yakomu neviznachenist bula b rivno rozpodilenoyu mizh X ta P zadovolnyaye rivnyannya X X a i P P a displaystyle left X langle X rangle right alpha rangle i left P langle P rangle right alpha rangle text nbsp abo ekvivalentno X i P a X i P a displaystyle left X i P right left alpha right rangle left langle X i P right rangle left alpha right rangle nbsp a tomu a X X 2 P P 2 a 1 2 displaystyle langle alpha mid left X langle X rangle right 2 left P langle P rangle right 2 mid alpha rangle 1 2 nbsp Otzhe yaksho X P 0 Shredinger viyaviv sho stan garmonichnogo oscilyatora iz najmenshoyu neviznachenistyu ye vlasnim stanom X iP Oskilki a ye X iP same cej stan i ye kogerentnim stanom Vikoristovuyuchi poznachennya bagatofotonnih staniv Glauber viznachiv sho vsi stani z povnoyu kogerentnistyu bud yakogo poryadku ye vlasnimi stanami operatora znishennya formalno v matematichnomu sensi ce same toj stan yakij znajshov Shredinger Nazva kogerentnij stan uvijshla v uzhitok pislya roboti Glaubera Yaksho neviznachenist minimalna ale ne obov yazkovo rivno rozpodilena mizh X ta P stan nazivayut stisnenim kogerentnim stanom Polozhennya kogerentnogo stanu na komplesnij ploshini fazovomu prostri centrovane na znachenni polozhennya ta impulsu klasichnogo oscilyatora z fazoyu 8 ta amplitudoyu a sho viznachayutsya vlasnim znachennyam a abo tim samim znachennyam elektrichnogo polya sho j dlya elektromagnitnoyi hvili Yak pokazano na ris 5 neviznachenist rivno rozpodilena v usih napryamkah predstavlena diskom iz diametrom 1 2 Pri zmini fazi kogerentnij stan obertayetsya navkolo pochatku sistemi koordinat a disk ne spotvoryuyetsya i ne rozplivayetsya Ce viglyadaye majzhe tak nache kvantovij stan tochka v fazovomu prostori nbsp Ris 5 Zobrazhennya kogerentnogo stanu u fazovomu prostori Pokazano sho neviznachenist u kogerentnomu stani rivno rozpodilena u vsih napryamkah Gorizontalna ta vertikalna osi kvadraturi polya X ta P vidpovidno Chervoni krapki na osi iksiv vidslidkovuyut granicyu kvantovogo shumu z ris 1 Oskilki neviznachenist a otzhe shum pri vimiryuvannyah zalishayetsya staloyu zi znachennyam 1 2 pri zrostanni amplitudi kolivan stan dedali bilshe nagaduye sinusoyidalnu hvilyu pokazanu na ris 1 A oskilki vakuumnij stan 0 displaystyle 0 rangle nbsp ye kogerentnim stanom z a 0 usi kogerentni stani mayut odnakovu z vakuumom neviznachenist Tomu kvantovij shum mozhna traktuvati yak zumovlenij fluktuaciyami vakuumu Poznachennya a displaystyle alpha rangle nbsp ne ye stanom Foka Napriklad koli a 1 ce ne slid plutati z 1 displaystyle 1 rangle nbsp dlya odnofotonnogo stanu Foka yakij tezh poznachayut 1 displaystyle 1 rangle nbsp Viraz a displaystyle alpha rangle nbsp z a 1 ye naspravdi puassonovim rozpodilom bagatoh staniv n displaystyle n rangle nbsp z odinichnim serednim znachennyam kilkosti fotoniv Formalnij rozv yazok rivnyannya na vlasni znachennya ye vakuumnim stanom zmishenim na a u fazovomu prostori tobto jogo mozhna otrimati diyeyu unitarnogo operatora zmishennya D a na vakuum a e a a a a 0 D a 0 displaystyle alpha rangle e alpha hat a dagger alpha hat a 0 rangle D alpha 0 rangle nbsp de a X iP a a X iP U comu legko perekonatisya yak praktichno v usih rezultatah z kogerentnimi stanami vikoristovuyuchi predstavlennya kogerentnih staniv u bazisi staniv Foka a e a 2 2 n 0 a n n n e a 2 2 e a a 0 displaystyle alpha rangle e alpha 2 over 2 sum n 0 infty alpha n over sqrt n n rangle e alpha 2 over 2 e alpha hat a dagger 0 rangle nbsp de n vlasni vektori energiyi chisla chastinok gamiltoniana H ℏ w a a 1 2 displaystyle H hbar omega left hat a dagger hat a frac 1 2 right nbsp Dlya vidpovidnogo rozpodilu Puassona imovirnist detektuvannya n fotoniv dorivnyuye P n n a 2 e n n n n displaystyle P n langle n alpha rangle 2 e langle n rangle frac langle n rangle n n nbsp Analogichno serednye chislo fotoniv u kogerentnomu stani dorivnyuye n a a a 2 displaystyle langle n rangle langle hat a dagger hat a rangle alpha 2 nbsp a dispersiya D n 2 V a r a a a 2 displaystyle Delta n 2 rm Var left hat a dagger hat a right alpha 2 nbsp Tobto standartne vidhilennya chisla detektovanih chastinok zbilshuyetsya proporcijno kvadratnomu korenyu yihnogo chisla Tomu v granichnomu vipadku velikih a detektuvannya ekvivalentni tomu sho sposterigayetsya dlya stabilnoyi klasichnoyi hvili Ci rezultati zastosovni do detektuvan odnogo detektora a tomu stosuyutsya kogerentnosti pershogo poryadku Odnak korelyaciyi vidlikiv kilkoh detektoriv vimagayut kogerentnosti vishih poryadkiv napriklad dva detektori vimagayut korelyaciyi intensivnosti ta kogerentnosti drugogo poryadku Kvantova kogerentnist viznachena za Glauberom maye spravu z korelyaciyami n go poryadku n tij stupin kogerentnosti dlya vsih n Korelyaciyi usih poryadkiv doskonalo kogerentnogo stanu dorivnyuyut 1 Robota Glaubera pobachila svit v zv yazku z rezultatami Genberi Brauna ta Tvissa sho prodemonstruvali daleku sotni j tisyachi kilometriv interferenciyu pershogo poryadku vikoristovuyuchi fluktuaciyi intensivnosti vidsutnist kogerenciyi drugogo poryadku ta filtr z vuzkoyu smugoyu propuskannya chastkova kogerentnist pershogo poryadku v kozhnomu z detektoriv Mozhna uyaviti duzhe korotkoplinnu majzhe mittyevu interferencijnu kartinu na dvoh detektorah sho vinikaye zavdyaki vuzkim filtram i vipadkovo stribaye cherez zsuv vidnosnoyi riznici faz Pri vikoristanni lichilnika zbigiv nestijka interenferencijna kartina proyavlyayetsya silnishe pid chas zrostannya intensivnosti spilne dlya oboh faz i cya kartina perekrivatime fonovij shum Majzhe vsya optika mala spravu z kogerentnistyu pershogo poryadku Rezultati Genberi Brauna ta Tvissa zmusili Glaubera rozglyanuti kogerentnist vishih poryadkiv i vin znajshov kvantovomehanichnij opis kogerentnosti elektromagnitnogo polya bud yakogo poryadku i kvantovo teoretichnij opis vidnoshennya signalu plyus shumu Vin zaproponuvav nazvu kogerentnij stan i pokazav sho ci stani vinikayut koli klasichnij elektrichnij strum vzayemodiye z elektromagnitnim polem Pri a 1 vihodyachi z ris 5 prosti gemetrichni mirkuvannya dayut D8 a 1 2 Viglyadaye sho vigrash u neviznachenosti chisla chastinok spryazhenij z prograshem u neviznachenosti fazi D8 Dn 1 2 sho inodi interpretuyut yak spivvidnoshennya neviznachenosti chislo faza ale take spivvidnoshennya ne ye matematichno strogim u kvantovij mehanici nemaye odnoznachno viznachenogo operatora fazi 10 11 12 13 14 15 16 17 Hvilova funkciya kogerentnogo stanu Redaguvati nbsp Chasova evolyuciya rozpodilu jmovirnosti kogerentnogo stanu a 3 Zminu fazi pokazano kolorom Shob znajti hvilovu funkciyu kogerentnogo stanu tobto hvilovij paket sho vidpovidaye najmenshij neviznachenosti najlegshe rozpochati z kvantovogo oscilyatora v kartini Gejzenberga dlya kogerentnogo stanu a displaystyle alpha rangle nbsp a t a e i w t a 0 a displaystyle a t alpha rangle e i omega t a 0 alpha rangle nbsp Kogerentnij stan ye vlasnim stanom operatora znishennya v kartini GejzernbergaNevazhko perekonatisya sho te zh vlasne znachennya vinikaye i v kartini Shredingera a t e i w t a 0 displaystyle alpha t e i omega t alpha 0 nbsp a a t a t a t displaystyle a alpha t rangle alpha t alpha t rangle nbsp U koordinatnomu podanni zapisuyetsya diferencialne rivnyannya m w 2 ℏ x ℏ m w x ps a x t a t ps a x t displaystyle sqrt frac m omega 2 hbar left x frac hbar m omega frac partial partial x right psi alpha x t alpha t psi alpha x t nbsp rozv yazok yakogo ps a x t m w p ℏ 1 4 e m w 2 ℏ x 2 ℏ m w ℜ a t 2 i 2 m w ℏ ℑ a t x i 8 t displaystyle psi alpha x t left frac m omega pi hbar right 1 4 e frac m omega 2 hbar left x sqrt frac 2 hbar m omega Re alpha t right 2 i sqrt frac 2m omega hbar Im alpha t x i theta t nbsp de 8 t she ne viznachena faza yaku mozhna znajti vimagayuchi shob hvilova funkciya zadovolnyala rivnyannya Shredingera 8 t w t 2 a 0 2 sin 2 w t 2 s 2 displaystyle theta t frac omega t 2 frac alpha 0 2 sin 2 omega t 2 sigma 2 nbsp de a 0 a 0 exp i s displaystyle alpha 0 equiv alpha 0 exp i sigma nbsp tozh s pochatkova faza Serednye polozhennya ta impuls cogo minimalnogo hvilovogo paketu Shredingera ps a oscilyuyut nache v klasichnij sistemi x t 2 ℏ m w ℜ a t a 0 2 ℏ m w cos s w t displaystyle langle hat x t rangle sqrt frac 2 hbar m omega Re alpha t alpha 0 sqrt frac 2 hbar m omega cos sigma omega t nbsp p t 2 m ℏ w ℑ a t a 0 2 m ℏ w sin s w t displaystyle langle hat p t rangle sqrt 2m hbar omega Im alpha t alpha 0 sqrt 2m hbar omega sin sigma omega t nbsp Gustina jmovirnosti zalishayetsya gausovoyu z centrom na comu zalezhnomu vid chasu serednomu ps a x t 2 m w p ℏ e m w ℏ x x t 2 displaystyle psi alpha x t 2 sqrt frac m omega pi hbar e frac m omega hbar left x langle hat x t rangle right 2 nbsp Matematichni vlastivosti kanonichnih kogerentnih staniv RedaguvatiOpisani kogerentni stani mayut tri vzayemno ekvivalentni risi oskilki kozhna z nih povnistyu viznachaye stan a displaystyle alpha rangle nbsp Ci risi Kogerentni stani ye vlasnimi funkciyami operatora znishennya a a a a displaystyle hat a alpha rangle alpha alpha rangle nbsp Yih mozhna otrimati z vakuumu za dopomogoyu unitarnogo operatora zmishennya a e a a a a 0 D a 0 displaystyle alpha rangle e alpha hat a dagger alpha hat a 0 rangle D alpha 0 rangle nbsp Voni ye stanami z minimalnoyu zbalansovanoyu neviznachenistyu D X D P 1 2 displaystyle Delta X Delta P 1 sqrt 2 nbsp Kozhnu z cih ris mozhna uzagalniti i ci uzagalnennya zagalom rizni vivchayutsya matematichnoyu fizikoyu Vazhlivo vidznachiti sho kogerentni stani mayut risi duzhe vidminni vid staniv Foka napriklad dva rizni kogerentni stani ne ortogonalni b a e 1 2 b 2 a 2 2 b a d a b displaystyle langle beta alpha rangle e 1 over 2 beta 2 alpha 2 2 beta alpha neq delta alpha beta nbsp oskilki voni ye vlasnimi vektorami nesamospryazhenogo opertora znishennya a Tomu yaksho oscilyator perebuvaye v kvantovomu stani a displaystyle alpha rangle nbsp vin takozh mozhe z nenulovoyu imovirnistyu buti v inshomu kvantovomu stani b displaystyle beta rangle nbsp ale chim dali stani perebuvayut u fazovomu prostori tim mensha cya imovirnist Odnak bud yakij stan mozhna rozklasti na kogerentni Tomu voni utvoryuyut nadpovnij bazis v yakomu mozhna diagonalno rozklasti bud yakij stan Ce ye harakternoyu risoyu zobrazhennya Sudarshana Glaubera Vidnoshennya zamikannya mozhna zapisati rezolyuvavshi odinichnij operator I na vektornomu prostori kvantovih staniv 1 p a a d 2 a I d 2 a d ℜ a d ℑ a displaystyle frac 1 pi int alpha rangle langle alpha d 2 alpha I qquad d 2 alpha equiv d Re alpha d Im alpha nbsp Inshoyu osoblivistyu ye te sho a displaystyle hat a dagger nbsp ne maye parnogo sobi vlasnogo ket vektora a a ne maye parnogo vlasnogo bra vektora Nastupne spivvidnoshennya zadaye najblizhchu formalnu zaminu i mozhe prigoditisya v tehnichnih rozrahunkah a a a a 2 a displaystyle a dagger alpha rangle left partial over partial alpha alpha over 2 right alpha rangle nbsp Ostannij stan vidomij pid nazvami stan Agarvala abo kogerentnij stan iz dodanim fotonom Jogo poznachayut a 1 displaystyle alpha 1 rangle nbsp Normalizovani stani Agarvala poryadku n mozhna zapisati yak a n a n a a n a displaystyle alpha n rangle hat a dagger n alpha rangle hat a dagger n alpha rangle nbsp Zgadanu rezolyuciyu odinichnogo operatora mozhna vivesti obmezhuyuchis dlya prostoti odniyeyu prostorovoyu rozmirnistyu vzyavshi matrichni elementi mizh stanami polozhennya x y displaystyle langle x cdots y rangle nbsp z oboh storin rivnyannya Sprava ce odrazu daye d x y Zliva tezh same vihodit pislya vstavki ps a x t x a t displaystyle psi alpha x t langle x alpha t rangle nbsp z poperednogo rozdilu chas dovilnij a todi prointegruvavshi po ℑ a displaystyle Im alpha nbsp j vikoristovuyuchi using the Fur ye obraz delta funkciyi i dali beruchi gausiv integral po ℜ a displaystyle Re alpha nbsp Gausiv hvilovij paket Shredingera mozhna otrimati zi znachennya x a e x 2 ℜ a 2 2 i x 2 ℑ a p 1 4 displaystyle langle x alpha rangle frac e frac x sqrt 2 Re alpha 2 2 ix sqrt 2 Im alpha pi 1 4 nbsp Rezolyuciyu odinichnogo operatora mozhna takozh viraziti cherez polozhennya ta impuls chastinki Dlya kozhnoyi z prostorovih koordinat vikoristovuyuchi adaptovanu notaciyu z novim znachennyam dlya x displaystyle x nbsp a x p x x p p displaystyle alpha rangle equiv x p rangle qquad qquad x equiv langle hat x rangle qquad qquad p equiv langle hat p rangle nbsp zamikannya kogerentnih staniv nabiraye formi I x p x p d x d p 2 p ℏ displaystyle I int x p rangle langle x p frac mathrm d x mathrm d p 2 pi hbar nbsp Ce mozhna vstaviti v bud yake ochikuvane znachennya v kvantovij mehanici spivvidnosyachi jogo z deyakim kvaziklasichnim integralom u fazovomu prostori ta poyasnyuyuchi zokrema pohodzhennya mnozhnika normuvannya 2 p ℏ 1 displaystyle 2 pi hbar 1 nbsp v klasichnij funkciyi rozpodilu sumisnij z kvantovoyu mehanikoyu Okrim togo sho kogerentnij stan ye tochnim vlasnim stanom operatora znishennya vin takozh ye nablizhenim spilnim vlasnim stanom polozhennya ta impulsu Znovu obmezhuyuchis odnovimirnim vipadkom x x p x x p p x p p x p displaystyle hat x x p rangle approx x x p rangle qquad qquad hat p x p rangle approx p x p rangle nbsp Pohibka v cih nablizhennyah vimiryuyetsya v neviznachenostyah polozhennya ta impulsu x p x x 2 x p D x 2 x p p p 2 x p D p 2 displaystyle langle x p left hat x x right 2 x p rangle left Delta x right 2 qquad qquad langle x p left hat p p right 2 x p rangle left Delta p right 2 nbsp Teplovi kogerentni stani RedaguvatiOdnomodovij teplovij kogerentnij stan 18 mozhna otrimati zmishuyuchi zmishanij stan u fazovomu prostori analogichno do zmishennya vakuumnogo stanu z metoyu utvoriti kogerentnij stan Matricya gustini kogerentnogo teplovogo stanu zapisuyetsya cherez operatori u viglyadi r a b 1 Z D a e ℏ b w a a D a displaystyle rho alpha beta frac 1 Z D alpha e hbar beta omega a dagger a D dagger alpha nbsp de D a displaystyle D alpha nbsp operator zmishennya sho generuye kogerentnij stan D a 0 a displaystyle D alpha 0 rangle alpha rangle nbsp z kompleksnoyu amplitudoyu a displaystyle alpha nbsp a b 1 k B T displaystyle beta 1 k B T nbsp Statistichna suma dorivnyuye Z tr e ℏ b w a a n 0 e n b ℏ w 1 1 e ℏ b w displaystyle Z text tr left displaystyle e hbar beta omega a dagger a right sum n 0 infty e n beta hbar omega frac 1 1 e hbar beta omega nbsp Vikoristovuyuchi rozklad odinichnogo operatora po stanah Foka I n 0 n n displaystyle I equiv sum n 0 infty n rangle langle n nbsp operator gustini mozhna zadati v nastupnij formi r a b 1 Z n 0 e n ℏ b w D a n n D a 1 Z n 0 e n ℏ b w a n a n displaystyle rho alpha beta frac 1 Z sum n 0 infty e n hbar beta omega D alpha n rangle langle n D dagger alpha frac 1 Z sum n 0 infty e n hbar beta omega alpha n rangle langle alpha n nbsp de a n displaystyle alpha n rangle nbsp zmisheni fokovi stani Koli temperatura pryamuye do nulya lim b r a b lim b n 0 e n ℏ b w 1 e ℏ b w a n a n n 0 d n 0 a n a n a 0 a 0 displaystyle lim beta to infty rho alpha beta lim beta to infty sum n 0 infty e n hbar beta omega 1 e hbar beta omega alpha n rangle langle alpha n sum n 0 infty delta n 0 alpha n rangle langle alpha n alpha 0 rangle langle alpha 0 nbsp sho ye matriceyu gustini dlya kogerentnogo stanu Serednye chislo fotoniv u comu stani mozhna rozrahuvati tak n Tr r a a 1 Z Tr D a a D a D a a D a e b ℏ w a a 1 Z Tr a a a a e b ℏ w a a displaystyle langle n rangle text Tr rho a dagger a frac 1 Z text Tr D dagger alpha a dagger D alpha D dagger alpha aD alpha e beta hbar omega a dagger a frac 1 Z text Tr a dagger alpha a alpha e beta hbar omega a dagger a nbsp a 2 1 Z Tr e b ℏ w a a 1 Z Tr a a e b ℏ w a a a 2 1 Z n 0 n e n b ℏ w displaystyle alpha 2 frac 1 Z text Tr e beta hbar omega a dagger a frac 1 Z text Tr a dagger ae beta hbar omega a dagger a alpha 2 frac 1 Z sum n 0 infty ne n beta hbar omega nbsp de dlya ostannogo chlena mozhna zapisati n 0 n e n b ℏ w b ℏ w n 0 e n b ℏ w e b ℏ w 1 e b ℏ w 2 displaystyle sum n 0 infty ne n beta hbar omega frac partial partial beta hbar omega left sum n 0 infty e n beta hbar omega right frac e beta hbar omega 1 e beta hbar omega 2 nbsp Yak naslidok n a 2 n th displaystyle langle n rangle alpha 2 langle n rangle text th nbsp de n th displaystyle langle n rangle text th nbsp ye serednim chislom fotoniv obchislenim stosovno teplovogo stanu Tut dlya sproshennya poznachen O th 1 Z tr e b ℏ w a a O displaystyle langle O rangle text th frac 1 Z text tr e beta hbar omega a dagger a O nbsp i mozhna pryamo zapisati n th 1 e b ℏ w 1 displaystyle langle n rangle text th frac 1 e beta hbar omega 1 nbsp U granichnomu vipadku b displaystyle beta to infty nbsp n a 2 displaystyle langle n rangle alpha 2 nbsp sho sumisno z virazom dlya matrici gustini pri nuli temperaturi Analogichno dispersiyu chisla fotoniv mozhna ociniti yak s 2 n 2 n 2 s th 2 a 2 1 2 a a th displaystyle sigma 2 langle n 2 rangle langle n rangle 2 sigma text th 2 alpha 2 left 1 2 langle a dagger a rangle text th right nbsp z s th 2 n 2 th n th 2 displaystyle sigma text th 2 langle n 2 rangle text th langle n rangle text th 2 nbsp Zvidsi visnovok drugij moment rozpodilu ne mozhna rozdiliti na teplovij ta kvantovij na vidminu vid serednogo znachennya pershogo momentu U comu sensi fononna statistika zmishenogo teplovogo stanu ne opisuyetsya sumoyu rozpodiliv Puassona ta Bolcmana Rozpodil pochatkovogo teplovogo stanu v fazovomu prostori ushiryuyetsya vnaslidok kogerentnogo zmishennya Kogerentni stani v kondensati Boze Ejnshtejna RedaguvatiBoze kondensat vinikaye todi koli bagato atomiv bozoniv zbirayutsya v odnomu kvantovomu stani stani z najnizhchoyu energiyeyu Osnovnij stan termodinamichnoyi sistemi staye makroskopichno zaselenim nizhche pevnoyi kritichnoyi temperaturi priblizno koli temperaturna dovzhina hvili de Brojlya pochinaye perevishuvati mizhatomnu vidstan Vvazhayetsya sho z Boze Ejnshtejnivskoyu kondensaciyeyu zv yazana nadplinnist v geliyi 4 Ale 4He maye silnu mizhatomnu vzayemodiyu i ridinnij strukturnij faktor statistika drugogo poryadku graye vazhlivu rol Vikoristannya kogerentnogo stanu pri opisi nadplinnoyi komponenti 4He daye nepoganu ocinku dlya kondensovanoyi ta nekondensovanoyi frakcij v nadplinnosti sumisnu z rezultatami doslidiv z rozsiyannya povilnih nejtroniv 19 20 21 Bilshist osoblivih nadplinnih vlastivostej pryamo sliduyut z modelyuvannya nadplinnoyi komponenti yak kogerentnogo stanu vin diye nache makroskopichno zaselenij odnochastinkovij stan iz dobre viznachenoyu amplitudoyu ta fazoyu sho zberigayutsya v usomu ob yemi Chastka nadplinnoyi komponenti zrostaye vid nulya pri temperaturi perehodu do 100 pri absolyutnomu nuli Ale frakciya kondensatu dosyagaye pri T 0 K tilki priblizno 6 22 She na pochatku doslidzhennya nadplinnosti Oliver Penrouz ta Lars Onsager zaproponuvali harakterizuvati nadplinnist pevnim parametrom poryadku 23 Jogo funkciyu vikonuvala faktorizovana makroskopichna komponenta makroskopichne vlasne znachennya u zvedenij matrici gustini pershogo poryadku Piznishe Yang 24 zaproponuvav zagalnishij parametr poryadku dlya makroskopichnoyi kvantovoyi konerentnosti yakij otrimav nazvu nediagonalnij dalekij poryadok ODLRO 25 sho dozvolilo vklyuchiti ne tilki bozoni a j fermioni ODLRO isnuye yak lishe ye makroskopichno velika faktorizovana komponenta vlasne znachennya u zvedenij matrici gustini bud yakogo poryadku Nadplinnist vidpovidaye velikij faktorizovanij komponenti v zvedenij matrici gustini pershogo poryadku A zvedeni matrici gustini usih vishih poryadkiv mayut analogichnu povedinku Nadprovidnist vimagaye velikoyi faktorizovanoyi komponenti u zvedenij matrici gustini drugogo poryadku kuperivski pari Zvedeni matrici gustini sho opisuyut kvantovu kogerentnist u nadprovidnih ridinah formalno analogichni korelyacijnim funkciyam sho zadayut poryadki kogerentnosti u elektromagnitnomu viprominyuvanni Yak odni tak i inshi ye prikladami makroskopichnoyi kvantovoyi kogerenciyi Makroskopichno velika kogerentna komponenta v elektromagnitnomu poli plyus shum formalno analogichni velikij nadplinnij komponenti plyus normalna komponenta v dvoridinnij modeli nadplinnosti Kogerentnist v nadplinnosti ne ye vlastivistyu bud yakoyi pidmnozhini atomiv geliyu ce riznovid kolektivnogo yavisha v yakomu berut uchast usi atomi Te zh same mozhna skazati pro utvorennya kuperivskih par pri nadprovidnosti Uzagalnennya RedaguvatiGilmor i Perelomov nezalezhno odin vid odnogo pokazali sho pobudovu kogerentnogo stanu mozhna rozglyadati yak zadachu teoriyi grup i sho ci kogerentni stani mozhna asociyuvati z grupami vidminnimi vid grupi Gajzenberga yaka privodit do kanonichnih kogerentnih staniv 26 27 28 29 Sho bilshe ci kogerentni stani mozhna uzagalniti do kvantovih grup U kvantovij teoriyi polya ta teoriyi strun kogerentni stani uzagalnyuyutsya na vipadok neskinchennogo chisla stupeniv vilnosti j vikoristovuyutsya dlya viznachennya vakuumnogo stanu z vakuumnim serednim inshim nizh dlya pochatkovogo vakuumu U odnovimirnih bagatochastinkovih kvantovih sistemah z fermionnimi stupenyami vilnosti nizkoenergetichni zbudzheni stani mozhna aproksimuvati kogerentnimi stanami z operatorom bozonnogo polya sho opisuye zbudzhennya tipu chastinka dirka Ce nazivayut bozonizaciyeyu Gausovi kogerentni stani nerelyativistskoyi mehaniki mozhna uzagalniti na relyativistski kogerentni stani chastinok sho opisuyutsya rivnyannyami Klejn Gordona ta Diraka 30 31 32 Kogerentni stani figuruyut takozh u robotah iz petlovoyi kvantovoyi gravitaciyi ta dlya pobudovi napivklasichnoyi kanonichnoyi kvantovoyi zagalnoyi teoriyi vidnosnosti 33 34 Vinoski Redaguvati a b E Schrodinger Der stetige Ubergang von der Mikro zur Makromechanik Naturwissenschaften 14 1926 664 666 a b J R Klauder and B Skagerstam Coherent States World Scientific Singapore 1985 J R Klauder The action option and a Feynman quantization of spinor fields in terms of ordinary c numbers Ann Physics 11 1960 123 168 G Breitenbach S Schiller and J Mlynek Measurement of the quantum states of squeezed light Arhivovano 4 Bereznya 2016 u Wayback Machine Nature 387 1997 471 475 W M Zhang D H Feng and R Gilmore Coherent states Theory and some applications Rev Mod Phys 62 1990 867 927 J P Gazeau Coherent States in Quantum Physics Wiley VCH Berlin 2009 R J Glauber Coherent and incoherent states of radiation field Phys Rev 131 1963 2766 2788 E C G Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams Phys Rev Lett 10 1963 277 279 J Schwinger Theory of quantized fields III Phys Rev 91 1953 728 740 L Susskind and J Glogower Quantum mechanical phase and time operator Physics 1 1963 49 P Carruthers and M N Nieto Phase and angle variables in quantum mechanics Rev Mod Phys 40 1968 411 440 S M Barnett and D T Pegg On the Hermitian optical phase operator J Mod Opt 36 1989 7 19 P Busch M Grabowski and P J Lahti Who is afraid of POV measures Unified approach to quantum phase observables Ann Phys N Y 237 1995 1 11 V V Dodonov Nonclassical states in quantum optics a squeezed review of the first 75 years J Opt B Quantum Semiclass Opt 4 2002 R1 R33 V V Dodonov and V I Man ko eds Theory of Nonclassical States of Light Taylor amp Francis London New York 2003 A Vourdas Analytic representations in quantum mechanics J Phys A Math Gen 39 2006 R65 R141 J P Gazeau Coherent States in Quantum Physics Wiley VCH Berlin 2009 J Oz Vogt A Mann and M Revzen Thermal coherent states and thermal squeezed states J Mod Opt 1991 VOL 38 2339 2347 G J Hyland G Rowlands and F W Cummings A proposal for an experimental determination of the equilibrium condensate fraction in superfluid helium Phys Lett 31A 1970 465 466 J Mayers The Bose Einstein condensation phase coherence and two fluid behavior in He 4 Phys Rev Lett 92 2004 135302 J Mayers The Bose Einstein condensation and two fluid behavior in He 4 Phys Rev B 74 2006 014516 A C Olinto Condensate fraction in superfluid He 4 Phys Rev B 35 1986 4771 4774 O Penrose and L Onsager Bose Einstein condensation and liquid Helium Phys Rev 104 1956 576 584 C N Yang Concept of Off Diagonal Long Range Order and the quantum phases of liquid He and superconductors Rev Mod Phys 34 1962 694 704 Yang C N 1962 Concept of off diagonal long range order and the quantum phases of liquid He and of superconductors Reviews of Modern Physics 34 4 694 A M Perelomov Coherent states for arbitrary Lie groups Commun Math Phys 26 1972 222 236 arXiv math ph 0203002 Arhivovano 23 Chervnya 2020 u Wayback Machine A Perelomov Generalized coherent states and their applications Springer Berlin 1986 R Gilmore Geometry of symmetrized states Ann Phys NY 74 1972 391 463 R Gilmore On properties of coherent states Rev Mex Fis 23 1974 143 187 G Kaiser Quantum Physics Relativity and Complex Spacetime Towards a New Synthesis North Holland Amsterdam 1990 S T Ali J P Antoine and J P Gazeau Coherent States Wavelets and Their Generalizations Springer Verlag New York Berlin Heidelberg 2000 C Anastopoulos Generalized Coherent States for Spinning Relativistic Particles J Phys A Math Gen 37 2004 8619 8637 A Ashtekar J Lewandowski D Marolf J Mourao and T Thiemann Coherent state transforms for spaces of connections J Funct Anal 135 1996 519 551 H Sahlmann T Thiemann and O Winkler Coherent states for canonical quantum general relativity and the infinite tensor product extension Nucl Phys B 606 2001 401 440 Otrimano z https uk wikipedia org w index php title Kogerentni stani amp oldid 38801716